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Chinese Herbal Medicine (CHM) is being more and more used in cancer

treatment because of its ability to regulate the immune system. Chinese Herbal

Medicine has several advantages over other treatment options, including being

multi-component, multi-target, and having fewer side effects. Dendritic cells

(DCs) are specialized antigen presenting cells that play a vital part in connecting

the innate and adaptive immune systems. They are also important in

immunotherapy. Recent evidence suggests that Chinese Herbal Medicine and

its components can positively impact the immune response by targeting key

functions of dendritic cells. In this review, we have summarized the influences of

Chinese Herbal Medicine on the immunobiological feature of dendritic cells,

emphasized an anti-tumor effect of CHM-treated DCs, and also pointed out

deficiencies in the regulation of DC function by Chinese Herbal Medicine and

outlined future research directions.
KEYWORDS
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1 Introduction

Cancer has always been a problem with high morbidity and mortality rates. Patients

with cancers require multi-disciplinary integrated diagnosis and therapy (1, 2). This

encompasses the combination and planning of diverse treatment modalities (3–7).

Cancer treatments lead to various side effects. These can range from immune-related

adverse events impacting the skin, and the system of gastrointestinal and endocrine to

manifestations such as nervous and hematopoietic toxicities (8), furthermore, these

treatments induce adverse reactions on organs such as the liver, pancreas, and heart

(9, 10). As the result, cancer patients often experience a shorter survival time and a lower

quality of life.
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Cancer immunotherapy has emerged as a standard therapeutic

approach, and has been combined with many new technologies to

improve efficacy. For example, DNA sequencing detects tumor-

specific antigens to develop tumor vaccines (11). Or based on

radiomics to better evaluate tumor clinical outcomes and

immunosuppressive response (12). Tumor immunotherapy is

categorized as active or passive. One of active immunotherapy

takes advantage of antigen-presenting cells (APCs), for instance

dendritic cells (DCs) to enhance the patient’s immune response to

kill tumors (13–15). DCs act as the primary APCs in vivo and play a

vital part in activating anti-tumor immune response.

The effectiveness of cancer therapy is often hindered by

multidrug resistance exhibited by cancer cells (16, 17), thus

researchers and clinicians are constantly searching for more

effective treatments. Chinese Herbal Medicine (CHM) has long

been utilized to heal patients with cancers in China. It not only

improves clinical symptoms but also enhances quality of life for

cancer patients with minimal side effects (18). CHMs exert anti-

tumor effects by upregulating immune responses in tumor

microenvironment (19). Data have shown that CHM obviously

boosted sensitivity to chemotherapy drugs and considerably

ameliorate tumor-related fatigue, myelosuppression, and else

adverse reactions (20). A growing body of evidences suggest that

CHM and its active ingredient can affect immune responses at an

early stage by targeting functions of DCs. In summary, the current

cutting-edge research on CHM for cancer treatment includes

phenomics, the anti-tumor effects of CHM monomers or

compound formulas, and the combined application of CHM with

modern therapies (21). However, the depth and breadth of

mechanism studies are insufficient. For instance, systematic

reviews are needed to investigate the regulatory effects of CHM

on the immune system.
2 Subsets of dendritic cells and
their functions

Dendritic cells (DCs) play an important role in innate immune

system, by processing endocytosed pathogenic microorganisms.

Through combining with MHC-I or MHC-II molecules, the

antigenic peptides are further presented to the B and T cells,

initiating the immune response of B and T cells (22). Immature

DCs (iDCs) found in boundary possess a strong phagocytic capacity

to capture apoptotic and necrotic cells (23). iDCs turn into mature

DCs (mDCs) upon exposure to various activation through

combining with pattern recognition receptors (PRRs) which are

characterized by enhancing surface expression of MHC molecules

and co-stimulatory molecules (CD86, CD80 and CD40).

Additionally, mDCs secrete multiple pro-inflammatory cytokines,

enabling them to effectively activate effector lymphocytes (24, 25).

DCs are categorized into different subgroups. Those are

originated from common DC forerunners in the bone marrow,

and are generally classified into conventional DCs (cDCs) and

plasmacytoid DCs (pDCs). The precursor cDCs can further

differentiate into type II cDCs (cDC2) and type I cDCs (cDC1)

(26). Inflammatory situations can give rise to the CC-chemokine
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receptor 2 (CCR2)-dependent recruitment of monocytes from the

blood, which then divide into monocyte-derived DCs (MoDCs) in

peripheral tissues (27, 28).
2.1 cDC1

cDC1s, particularly in humans, are characterized by the

presence of CD141 on their cell surface. Migratory subsets exist

in lymph nodes and peripheral tissues (29). The cellular indication

markers that make out cDC1 are Clec9A+, Sirp (CD172)−, CD11c+,

CD11b−, CD141+, CD123− and HLADR+ (26). cDC1 is chiefly

responsible for antigen cross-presentation and plays an essential

part in anti-viral and tumor immune responses. CD141+DC

expresses Toll-like receptor 3 (TLR3) at high levels, produces

INF-b and IL-12p70, induces superior Th1 response, and can

sense pathogen-associated molecular patterns (PAMP) through

TLR3. Moreover, poly I:C-actived CD141+DC has a high ability

to cross-submit soluble protein antigen (Ag) to CD8+ cytotoxic T

lymphocytes by MHC I, leading to inducing an adaptive immune

response (30). IL-12 secreted by cDC1 can active NK cells to

produce IFN-g (31). The cDC1 of mouse lymphoid organs chiefly

expresses CD8a, Clec9a, Xcr1 on the surface. And in the non-

lymphoid tissues, cDC1 expresses CD103 (32).

In recent years, drug targeting cDC1s as an anti-tumor therapy

has achieved promising clinical efficacy. In animal and clinical trials,

it has been found that B-cell lymphoma 2 (BCL2) can act as a

specific immune checkpoint for cDC1s, activating cDC1s and thus

promoting anti-tumor immunity (33, 34).
2.2 cDC2

The cell surface factors that make out cDC2 are Clec9A−,

CD123−, HLADR+, CD11chi Sirp+ and CD1c+ (35–37). Myeloid

cDC2 is similar to monocytes, and expressed extensive lectins, RIG-

I-like receptors, Nod-like receptors and Toll-like receptors (27).

They play a vital role in autoimmune diseases and anti-bacterial

defense and in keeping the immune tolerance (38). cDC2 has been

shown to induce Th1, Th2 and Th17 cells (39, 40). Two

new subtypes of CD1c+ have been identified. Human

CD1c+CLEC10A+CLEC4Alo cDC2s and CD1cloCLEC10A–

CLEC4Ahi cDC2s, are the equal to mouse T-bet-cDC2s (‘cDC2B’)

and T-bet+cDC2s (designated ‘cDC2A’), severally. T-bet– cDC2s

more likely to cause inflammation, while T-bet+cDC2s show

transcripts encoding molecules participated in repairing of tissue

and own a reduced capacity to polarize naive T cells (41). In mouse,

cDC2 have a more heterogeneous expression of Sirpa, CD11b, and

other on the surface (42, 43). James et al. found that in pancreatic

adenocarcinomas (PDACs) patients, cDC2s were systematically

suppressed by significantly increased IL-6, as IL-6 disrupted the

polarization of cDC1s and cDC2s, impaired antigen processing and

presentation functions, resulting in anti-tumor immunity being

affected (44). Luo et al. found that blocking Tim-3 in cDC2

promoted CD4+T cell and enhanced the anti-tumor ability of
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ADU-S100(S100), an agonist for Stimulator of interferon genes

(STING) (45).
2.3 pDC

pDC, which are found in blood and lymphoid tissues, and certain

organs like the lung in mice and tonsils in humans (29). pDCs can be

characterized by cell surface markers CD11clo, CD123+, HLADR+,

BDCA2 (CD303)+, BDCA4 (CD304)+, CD45RA+ (46, 47). After

recognizing the virus or its own nucleic acid by Toll-like receptor 9

(TLR9) and TLR7 (47), pDC produces a significant amount of type I

interferon (IFN) as well as a small amount of III IFN (48), acting as an

antiviral agent (49, 50). Type I IFN is crucial for the cross-

presentation of CD8a+ DC and the development of tumor antigen

specific CD8+ T cell in vivo (51). pDC also produces various

chemokines and cytokines like CC chemokine receptor 4 (CCL4),

CCL3, CXC chemokine ligand 10 (CXCL10), CXCL8, IL-6 and IL-12.

pDCs submit antigens to CD4+T cells through co-stimulatory

molecules and MHC II (47). Cha et al. found the enrichment of

pDCs was closely related to the prognosis of smoking-induced lung

cancer (52).
2.4 MoDC

MoDCs, which reside in the skin, lung, and intestine, can be

identified by specific cell surface markers including CD11c+,

HLADR+, CD14+, CD11b+, CD1c+, CD209+, CD206+, CD64+,

CCR2+, CD1a+ and CD172a+ (29). MoDC is primarily produced

in response to inflammation and promotes environmentally

dependent division of CD4+ T cells into the type 2 helper T cells

(Th2 cells), type 1 helper T cells (Th1 cells), or IL-17-producing

helper T cells (53). Additionally, MoDCs secrete numerous

inflammatory cytokines and participate in the partial

inflammatory response (54). Raccosta et al. found a new

antagonist of the oxysterol receptors called Liver X Receptors

(LXRs) promoted the differentiation of MoDCs within tumors

and enhanced their anti-tumor effects in mice (55).

Here we summarize the subsets of dendritic cells in Table 1.
3 Alternation of antigen-presenting
related molecular and cytokines in
DCs treated with CHM

With advancements in technology, the active ingredients of

CHM were ascer ta ined and pur ified , which covered

polysaccharides, saponins and more. Polysaccharides are the main

active ingredient of CHM and have a series of biological activities,

including anti-diabetes, anti-oxidant, anti-viral, anti-inflammatory,

anti-tumor, hepatoprotection, immunomodulation, radioprotection

and neuroprotection (56, 57). CHM and their constituents have the

capacity to facilitate the maturation of immature DC (iDCs) by

upregulating the expression of major histocompatibility complex I
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and II (MHC I/II) and co-stimulatory molecules. This process leads

to a significant increase in the generation of pro-inflammatory

cytokines, such as IL-6, TNF-a, IL-1b and IL-12. These effects can

enhance the immune response against tumors (25).
3.1 Polysaccharides

The studies by G. Cai and colleagues demonstrated that Alhagi

honey polysaccharide (AH) conferred various benefits on mice by

promoting the maturation of dendritic cells (DCs) and enhancing

the production of CCL20, which aggregates DCs. This aggregation

induced the activation of B cells, CD8+ and CD4+ T cells.

Additionally, AH augmented the secretion of secretory IgA (sIgA)

to protect the intestine. This is accomplished either by stimulating

Th cells to divide and produce cytokines or by directly activating

DCs to release cytokines, thereby increasing the number of IgA+

cells, J chain, and pIgR in the gut. AH also significantly elevated the

levels of short-chain fatty acids (SCFAs) in the caecum, thereby

helping to regulate cyclophosphamide-induced intestinal immune

dysfunction. In vitro experiments further revealed that AH

markedly enhanced pIgR protein expression in Caco-2 cells and

promoted the maturation of DCs to regulate immune responses
TABLE 1 Subsets of dendritic cells.

Name
Presence

site
Surface
markers

Main function

cDC1
peripheral
tissues and
lymph nodes

HLADR+,
CD11c+,
CD123−,
CD11b−, Sirp
(CD172)−,
CD141+,
Clec9A+

cDC1 is chiefly responsible for
antigen cross-presentation and
plays a crucial part in anti-viral
and tumor immune responses.

cDC2

lymphoid
tissues, blood,
peripheral
tissues and
lymph nodes

HLADR+,
CD11chi,
CD123−,
Sirp+,
CD1c+,
Clec9A−

They play a vital part in anti-
bacterial defense and
autoimmune illnesses and in
keeping the immunologic
tolerance. cDC2 has been shown
to induce Th1, Th2 and
Th17 cells.

pDC

lymphoid
tissues, blood,
and certain
organs like
the lung in
mice and
tonsils
in humans

CD11clo,
CD123+,
HLADR+,
BDCA2
(CD303)+,
BDCA4
(CD304)+,
CD45RA+

pDC produces a significant
amount of type I interferon
(IFN) and also a small amount of
III IFN, acting as an
antiviral agent.

MoDC
skin, lung,
and intestine

CD11c+,
HLADR+,
CD1c+,
CD11b+,
CD14+,
CD64+,
CD206+,
CD209+,
CD172a+,
CD1a+

and CCR2+

MoDC is primarily produced in
response to inflammation and
promotes environmentally
dependent differentiation of
CD4+T cells into type 2 helper T
cells (Th2 cells), type 1 helper T
cells (Th1 cells), or IL-17-
producing helper T cells.
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(58). Comparing the immune effects of Echinacea purpurea

polysaccharide (EPP) and sulfated EPP (sEPP) on chicken bone

marrow-derived DCs (chBM-DCs), L. Yao et al. found that both

EPP and sEPP enhanced the expressions of CD11c and CD80,

improved the capability of chBM-DCs to promote the proliferation

of allogeneic mixed lymphocytes, and significantly increased the

levels of IL-2 and IFN-g, while down-regulating the levels of IL-4

and IL-10 (59). Y. Wu et al. found that Glycyrrhiza polysaccharide

extract 1 (GPS-1) enhanced the generation of IFN-g and IL-4, and

increased the ratio of CD3+CD4+ T and CD3+CD8+ T lymphocytes

in the mice spleen. Further experiments revealed that GPS-1

promoted maturation and phagocytosis of DCs. Similarly, H.

Zhou et al. (60) also demonstrated that GPS-1 was able to

enhance the secretion of IL-12, TNF-a and IFN-g as well as

promoted the secretion of NO, IL-2, IL-1b, IFN-b, TNF-a and

IL-12p70 from DCs (61). In studies conducted by Y. Wu et al., the

experiments in vitro showed that the acidic Epimedium

polysaccharide (EPS-1) increased the proliferation of the splenic

lymphocytes and the production of cytokines (IFN-g, IL-2, TNF-a
and IL-4). Furthermore, the expression of surface molecules of

mature chBM-DCs (MHC II, CD11c, CD40 and CD86) and the

levels of cytokines (IL-10 and TNF-a) were increased, and EPS-1

also enhanced phagocytosis rate of mature chBM-DCs (62, 63). Y.

Zou et al. have observed that purified Achyranthes bidentata

polysaccharide (ABP) promoted the upregulation of MHC II,

CD40 and CD86 expressions, inducing the maturation of DC

phenotypes. Moreover, ABP was demonstrated to enhance the

production of IL-12 (64). X. Wang et al. found that Isatis root

polysaccharide (IRPS) promoted the maturation of MoDCs,

induced the secretion of IL-12, and reduced the expression of

IL-6 (65). Y. Huang et al. found that Rehmannia glutinosa

polysaccharide (RGP) significantly stimulated lymphocyte

proliferation, and enhanced the production of IFN-g and IL-2.

The antigen presenting ability of DCs was also improved by RGP

stimulation (66). J. Gao et al. found that Plantain polysaccharide

(PLP) exhibited the ability to promote the maturation of DCs both

in vivo and in vitro. In mouse model of breast tumors 4T1, PLP

effectively controlled tumor growth and enhanced immune

response by recruiting DC, CD8+T and CD4+T cells to the tumor

microenvironment (67). M. Tian et al. found that Huangqi Guizhi

Wuwu Tang (HGWT) displayed potent anti-tumor effect.

Polysaccharides derived from Astragalus membranaceus and

Polyporus umbellatus were demonstrated to promote DCs

maturation (68).
3.2 Saponins

X. Zhao et al. discovered that Salidroside liposome effectively

promoted the maturation of DCs. Additionally, it was found to

stimulate MLR proliferation and enhance antigen presentation.

Furthermore, Salidroside liposome was able to induce sustained

cellular and humoral immune responses (69). C. Mo et al. found

that Ginsenoside-Rg1 (G-Rg1) exerted its anti-fibrotic properties by
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reducing DC maturation mediated by IDO1 (70). H. Guo et al.

found that Astragaloside IV (ASI) effectively promoted the

maturation of DC phenotype, by means of significant

upregulation of CD14, CD40, CD80, CD83, CD86 and HLA-DR.

Additionally, ASI treatment enhanced the release of IL-12, thereby

bolstering the immune response (71).
3.3 Others

S. Nabeshima et al. found Hochu-ekki-to (HOT) stimulated

DCs to mature in a dose-dependent manner by increasing the

expression of CD83, CD86, CD80 and by producing IL- 12 (72). Y.

Fu et al. found that Myrothecine A was able to promote the

expression of CD86 and CD40 on DCs (73). D. F. Huang et al.

discovered that the Plantago asiatica L. seeds extract (ES-PL)

induced DC maturation with high level of MHC II and key

stimulatory molecules CD80 and CD86. Functional maturation of

ES-PL-treated DC was demonstrated by reduced mannose receptor-

mediated endocytosis and strengthened antigen presentation to

allogeneic naive or homogeneously activated T lymphocytes.

Additionally, the gene expression of CCR7 in ES-PL-treated DC

was also enhanced (74). C. Y. Li et al. observed that Cordyceps

sinensis had the ability to promote DC maturation. Cordyceps

sinensis was found to stimulate the expression of costimulatory

molecules on DCs, to increase the expression of the inflammatory

factors, and to enhance the proliferation of allogeneic T cells. These

findings suggested that Cordyceps sinensis has the potential to

strengthen DC function and stimulate anti-tumor immune

responses (75). N. Takeno et al. discovered that Shi-Quan-Da-Bu-

Tang (SQDBT) enhanced OVA antigen phagocytosis and antigen

presentation in DCs in vitro. In addition, in mice inoculated with

mouse lymphomas expression tumor antigens, the researchers

observed a significant decrease in tumor growth and a

prolongation of survival when SQDBT was administered (76). M.

Kaneko et al. found that Hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang)

(HOT) significantly reduced OVA-specific IgG1 and IgE serum

levels and antigen-specific proliferation of the cells in splenic organ

of young mouse. HOT increased the amount of CD4+T cells and

enhanced expressions of MHC II and CD86, CD80 and CD40 on

antigen-presenting cells (77).

The researchers mentioned above have largely explored the

anti-tumor properties of CHM, emphasizing the augmentation of

MHC I and II expression, CD40, CD80, and the secretion of specific

inflammatory factors. However, several important considerations

arise. Firstly, there has not been a more detailed examination of the

signaling pathways implicated in these processes. Secondly,

the majority of these studies are conducted in vitro and focus on

the modulation of DC function by CHM. Only a limited number of

studies have been extended to animal models, and there is a

significant absence of clinical trials to confirm these observations.

These issues certainly merit our thorough attention and

further investigation.
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4 Pathway of CHM in regulating
DC function

With further research, it has been discovered CHM primarily

promotes the maturation of DCs through Toll-like receptors

(TLRs), nuclear factor kappa-B (NF-kB) pathways, and Mitogen-

Activated Protein Kinase pathway (MAPK). This activation leads to

the secretion of pro-inflammatory cytokines, contributing to a more

effective anti-tumor effect.
4.1 TLR pathway

TLRs play a crucial part in the activating innate immunity by

recognizing specific microbial signatures, and are essential

components of both the innate and adaptive immune systems. A

series of studies have shown that TLRs signaling pathways were

composed of two main components. The first is the MyD88-

dependent pathway shared by all TLRs. The second is the

MyD88-independent pathway specific to the TLR3- and TLR4

pathways (78). TLRs are widely expressed in various immune

cells, and apart from tumor-infiltrating immune cells, other

tumor also exhibit TLR activation (79, 80). Within the TLR

family, TLR4 is particularly important for the maturation of DCs.

MyD88 (myeloid differentiation primary response gene 88), which

contains TIR (Toll-interleukin-1 receptor) domain, is an adaptor

protein involved in the TLR4 pathway. TRAF6 (TNF receptor-

associated factor 6), another adaptor protein, is crucial for the

recruiting of IRAK1 in MyD88-dependent pathway (81). MyD88

activates TRAF6 and the downstream transcription factor NF-kB,
thus promoting the generation of inflammatory factors.

Pearce et al. found that the activation of TLRs led to an early

rapid increase in the rate of glycolysis within DCs. This metabolic

shift supported the expansion of the Golgi and endoplasmic

reticulum apparatus in DCs, which was necessary to accommodate

the enhanced transport, protein synthesis, and cytokine secretion that

were crucial for DC activation (82). J. J. Kim et al. found that the B-

chain of Korean mistletoe lectin (KML-B) increased the expression of

co-stimulatory molecules (MHC II, CD86, CD80 and CD40) and the

secretion of cytokines (TNF-a, IL-12p70, IL-6 and IL-1b).
Furthermore, KML-B influenced other markers of BMDCs

maturation such as antigen uptake and CCR7 expression. The

capacity of KML-B to improve BMDC features was depend on the

expression of TLR4. Besides, naive CD4+T cells were directly or

indirectly induced to differentiate into Th1 cells by KML-B matured

BMDCs (83). S. Tanaka et al. proved that Chrysanthemum

coronarium L. (C. coronarium) edible plant extracts significantly

activated immune response through TLR9-, TLR4- and TLR2-

dependent way. Stimulation with C. coronarium extract

immediately activated CD11c+ DCs, leading to DC maturation

characterized by increasing the expression levels of MHC II, MHC

I, CD86, and CD40, and the production of IL-12 (84). X. Duan et al.

found that Lycium barbarum Polysaccharides (LBP) promoted

mature DCs in mice through TLR4-Erk1/2-Blimp1 signaling
Frontiers in Immunology 05
pathway. They discovered that LBP treatment induced DC

maturation by upregulating MHC II and co-stimulatory molecules

(CD80, CD86) and increasing the generation of IL-6 and IL-4 (85). X.

Li et al. found that Radix Glycyrrhizae polysaccharide (GP)

strengthened the generation of MHC I-A/I-E, CD86 and CD80 on

DCs. It also facilitated the proliferation of allogenic CD3+T cells and

the secretion of IFN-g, while inhibiting the endocytosis of DCs on

FITC-dextran. Additionally, GP increased the production of IL-

12p70 in DCs in a time-dependent manner. Of note, the increase

in IL-12p70 production was strongly suppressed by NF-kB, TLR4,
p38 MAPK or JNK inhibitors, suggesting that GP was partially

recognized by TLR4, and activation of MAPKs and NF-kB
pathways may led to enhancing DC maturation (86). J. Du et al.

investigated the effect of Actinidia eriantha Benth polysaccharide

(AEPS) on DCs. They observed that AEPS decreased the BMDC

phagocytosis and enhanced the expression of co-stimulatory

molecules. AEPS also increased cytokines (IL-12p40, IL-10, IL-6,

TNF-a, IL-1b, IFN-b and IFN-g) and chemokines (CCL5, MIP-1a,
MIP-1b, MDC and MCP-1). AEPS primarily exerted its effects

through the TLR2/4 and NF-kB pathway to enhance DC

maturation and functionality, thereby augmenting anti-tumor

immune responses. The study also revealed elevated expression

levels of STAT1, STAT2, and STAT5b, indicating the influence of

JAK-STAT signaling on DC function (87). R. Bo et al. found that

through TLR4 signaling pathway, Lycium barbarum polysaccharides

liposomes (LBPL) significantly enhanced the proliferation of mouse

DC precursor cells, and upregulated the expression of co-stimulatory

molecules (CD86, MHCII and CD80) and cytokines (TNF-a, IL-
12p40) to promote DCs maturation. The study further confirmed

that LBPL upregulated the expression of TRAF6, MyD88, TLR4, NF-

kB genes, and proteins (88). J. K. Wang et al. found that Matrine

strengthened the secretion of inflammatory cytokines mediated by

the TLRs signaling pathway to exert an anti-tumor effect. Matrine

drastically enhanced the mRNA expression of TLR8, TLR7, MyD88,

IkB kinase (IKK) and TRAF-6, as well as the protein expression of

TLR8 and TLR7. In addition, Matrine also strengthened the

expression of MHC-II, CD40, CD86, CD80 and CD54 in DCs, and

stimulated the secretion of IL-6, IL-12 and TNF-a (89). Y. Tian et al.

found that Astragalus mongholicus (AMs) promoted the expression

of CD11c and DCs maturation in a dose-dependent manner. This

effect was mediated by up-regulating TLR4 and inhibiting IkB-a (90).

D. Wang et al. have summarized the impacts of Astragalus

polysaccharide (APS) on immune cells. They found that APS

significantly increased the proliferation of CD8+ T and CD4+ T

cells and enhanced the expression of CD40, CD80, and CD86 in DCs.

APS also enhanced the production of IL-12 and TNF-a, and induced
the Th1/Th2 shift towards Th1 (32) (91). Zhou et al. found that APS

activated DCs through the MyD88-dependent signaling pathway

mediated by TLR4. When the TLR4 was activated by ligand, the

TIR domain of the MyD88 protein was bound to the TIR domain of

TLR, activating downstream TRAF-6. This, in turn, activated NF-kB,
facilitating its entry into the nucleus and the subsequent activation of

transcription of genes related to DC maturation. The activated DCs

then expressed co-stimulatorymolecules and related cytokines (92). J.

Li et al. found that after treatment with Pleurotus ferulae water extract
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(PFWE), BM-DCs dose-dependently regulated the expression of

CD86, CD80, CD40, and MHC II, and also strengthened the

production of TNF-a, IL-6, and IL-12, primarily mediated by the

TLR4 signaling pathway. Moreover, PFWE induced DCs to enhance

the proliferation of allogeneic CD8+ T cells and improved their

capacity to present antigens to autologous CD8+ T cells (93). T.-Y.

Jung et al. found that Uncaria rhynchophylla ursolic acid extract

enhanced the generation of CD83, CD80, CD1a, CCR7, HLA-DR and

CD86 on DCs, promoted the proliferation of T cells, and

strengthened the secretion of IFN-g and IL-4. The production of

IL-12p70 was induced by TLR2 and TLR4 signaling pathways,

thereby inducing T cell differentiation to Th1 subtype (94). In

addition, K. S. Kim et al. also found that Uncaria rhynchophylla

(Miq.) Miq. ex Havil. uncarinic acid C extract (URC) enhanced the

expression of CD40, CD38, CD1a, CD83, CD80, CD54, CCR7, HLA-

DR and CD86 on DCs, and also promoted the production of IL-

12p70 through TLR2 and TLR4 signaling pathways, leading to the

conversion to Th1 subtype and the production of substantial

amounts of IFN-g. URC also prompted DCs to induce NF-kB
transcription factor. DCs treatment with URC demonstrated

moderate migration capability to CCL19 and CCL21 (95).
4.2 NF-kB pathway

The NF-kB pathway plays a pivotal role in the anti-tumor

process, being a key downstream molecule of TLR4 (96). This

pathway is composed of two branches: canonical and non-canonical

pathways. And it is well known for its activity in responding to a

series of external stimuli, such as immune response, cell

proliferation, survival, and differentiation (97–100). Dysregulated

NF-kB activity has implicated in inflammatory diseases and tumors,

making it as a potential therapeutic target (101). IkB-a is the main

regulatory protein that inhibits nuclear translocation. Numerous

studies highlighted the interplay between NF-kB and MAPK

signaling pathways in DCs activation and maturation (102).

Studies have revealed that interferon (IFN) and NF-kB pathways

were highly enriched in mature cDC1s associated with tumors. And

the IFN response genes, which is necessary for anti-tumor

immunity contained in cDC1, are regulated by IFN regulatory

factor 1 (IRF1)-dependent NF-kB. Activated NF-kB promotes the

recruitment and activation of CD8+T cells, which are important in

orchestrating anti-tumor immunity (103).

E.-Q. L et al. found that Lycium barbarum Polysaccharides

(LBP) induced the maturation of DCs, increased the production of

IL-12p70 and IFN-g, and promoted the expression of NF-kB in

MLR, suggesting that these effects were associated with the NF-kB
pathway (104). B. Zhao et al. discovered that a CHM formula

Yangyinwenyang (YYWY) significantly inhibited tumor

development in a mouse model of Lewis NSCLC. YYWY was

found to promote DCs maturation through MAPK and MyD88-

NF-kB pathways. This led to the generation of cytokines such as IL-

2, IL-1b, IFN-g, IL-12, and TNF-a from DCs. In addition, DCs

matured under YYWY enhanced T cell proliferation and promoted

differentiation of Th1 and CTL, thereby increasing the Th1/Th2

ratio (105).
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4.3 MAPK pathway

MAPK pathway activation was a common feature in many

types of cancers (106, 107). JNK, ERK and p38 MAPK pathways are

often deregulated in cancers, and these pathways regulate the

expression and activity of key inflammatory mediators, including

proteases and cytokines, which may function as effective cancer

promoters (108). Wang et al. found that inhibition of p38 MAPK

restored the function, phenotype and cytokine secretion of BMDCs

affected by tumor culture conditioning medium, thereby activating

allospecific T cells, increased the expression of DC surface

molecules, and enhanced the production of IL-12 (109).

T. Qin et al. modified polysaccharides extracted from Hericium

ericium (HEP) to produce its nine selenium derivatives, sHEP1-

sHEP9. Among them, sHEP1, sHEP2 and sHEP8 were found to

increase the expression of MHC-II and CD86 on DCs, triggering

their maturation. Additionally, sHEP2 and sHEP8 significantly

reduced DCs endocytosis and strengthened the productions of

cytokines (IL-12 and IFN-g). Mechanistically, sHEP2 was found

to promote the phosphorylation of JNK, p38 and ERK, as well as the

nuclear translocation of p-c-Jun, p-CREB and c-Fos. Furthermore,

sHEP2 also activated NF-kB pathway, leading to the decrease of the

IkBa/b and nuclear translocation of p65 and p50 (110). Moreover,

R. Yu et al. discovered that HEP also promoted DC maturation,

with increased MHC II and CD86 expression, typical morphology,

low antigen uptake, elevated TNF-a and IL-12 levels, and

upregulation of MyD88, TLR4 and NF-kB proteins (111). D. H.

Kim et al. found that 6-Acetonyl-5,6-dihydrosanguinarine (ADS)

obtained from Chelidonium majus L. activated ERK/JNK

phosphorylation in DCs by inducing ROS. This phosphorylation

activated the NK-kB pathway, subsequently triggering the

production of inflammatory cytokines, including TNF-a, IL-6,
and IL-8 (112). J. Pan et al. found that Huaier extract enhanced

the infiltration of CD4+ T cells and promoted DCs maturation in

mice with 4T1 breast cancer. Huaier promoted the expression of co-

stimulatory molecules in DC2.4 and BMDCs, as well as enhanced

the levels of IL-12p70 and IL-1b, while inhibited their phagocytosis

activities. Furthermore, Huaier promoted the proliferation of

CD4+T cells, induced their differentiation into Th1 cells, which

was achieved by modulating of the PI3K/Akt and MAPK pathways.

Huaier increased the expression of p-Akt, Akt, PI3K, p-JNK, and

JNK in BMDCs, while reduced the expression of p-p38 MAPK

(113). N. Perera et al. found that the galactomannan isolated from

Antrodia cinnamomea (ACP) stimulated the production of IL-6

and TNF-a in human monocyte-derived DCs through engagement

with TLR4. ACP achieved this by activating MAPK and protein

kinase C-a (PKC-a) phosphorylation, leading to the increased the

phosphorylation of p38, JNK1/2 and ERK1/2. Furthermore, ACP

induced TNF-a secretion and COX-2 expression via PKC-a (114).
4.4 JAK-STAT pathway

In addition, research has shown that CHM regulates DCs

function through various signaling pathways, including the

STATs pathway. The JAK/STAT pathway is particularly
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important in malignant tumors, with its inhibition holding

therapeutic potential. One key regulator involved in the negative

regulation of the JAK/STAT pathway is SOCS1, which exerts its

effects through modulating phosphorylation states (115). JAK

signals activate STAT-related transcriptional activity, driving gene

expressions that control maturation, differentiation, and function in

DCs (116).

In Chinese Herbal Medicine, there is a formula (SL) which

consists of Lonicerae Japonicae Flos and Sophorae Flos. Y. X. Liu

et al. found that treatments with an ethanolic extract of SL (SLE)

increased the infiltrations of cytotoxic T cells (Tc), helper T cells

(Th), and DCs in both melanoma tumors and spleens of mice.

Furthermore, SLE was found to inhibit STAT3 activation in B16F10

cells, and to down-regulate the mRNA levels of STAT3 target genes

in splenic lymphocytes (117). Y. Wang et al. discovered that the

extract from Pinellia pedatisecta Schott plant, known as PE, had

several beneficial effects on the immune response against tumors.

They found that PE promoted the expression of MHC II and co-

stimulatory molecules CD86 and CD80 on tumor-associated

dendritic cell (TADCs), induced the production of IL-12 by

TADCs, and enhanced the proliferation of both CD8+ T and

CD4+ T cells. Moreover, PE induced the differentiation of

GZMB+ CD8+ T and IFN-g+ CD4+ T cells. In vivo experiments,

PE strengthened the proliferation of cytotoxic T cells, as evidenced

by increased expression of GZMB, CD137, Ki67, or TNF-a, IFN-g.
PE reversed the expression of PD-1 or CD95. The researchers

confirmed that PE down-regulated SOCS1 expression and the

phosphorylation of JAK2, STAT1, STAT4 and STAT5 in a time-

and dose-dependent manner (118, 119).
4.5 Other pathways

J. Tian et al. found that Ficus carica Polysaccharides (FCPS) was

able to effectively promote maturation of DCs through dectin-1/Syk

pathway, leading to increased CD40, CD80, CD86 and MHC II

expression. FCPS also stimulated DCs to produce cytokines, such as

IL-6, IFN-g, IL-12, and IL-23. Furthermore, FCPS enhanced the

capacity of DCs to stimulate T cells and promoted T cell

proliferation (120). F. Yao et al. discovered that Yupingfeng

Granule (YPF) enhanced the proportion of mature DCs in

tumors and adjacent tissues in mouse models of hepatocellular

carcinoma. YPF treatment also led to a reduction in Th2 levels, an

increase in Th1 levels, and an elevation in the Th1/Th2 ratio. In

vitro experiments clarified that YPF not only promoted DCs

maturation and stimulated IL-12 secretion, but also reduced the

generation of OX40L and the ratio of CD4+ IL-13+ T cells. Of note,

these effects were associated with the DC-mediated TSLP-OX40L

pathway (121).

In conclusion, CHM promotes the functionality of DCs either

directly or indirectly through various signaling pathways including

MAPK, TLRs, NF-kB, or JAK-STAT. Here we summarize the

pathway of CHM in regulating DC function in Figure 1. Mature

DCs highly express MHC I and MHC II, CD80, CD86, and pro-

inflammatory factors, activating the anti-tumor immunity.

Currently, the majority of studies on signaling pathways which
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regulated DCs functionality are focused on NF-kB, MAPK, TLR,

and JAK-STAT pathways. There is a need for further exploration of

new signaling pathways induced by CHM in the maturation of DCs.

CHM does not exert its enhancing effect on the anti-tumor

function of DCs via a singular signaling pathway. For instance,

certain herbs, such as Radix Glycyrrhizae polysaccharide, may

activate the MAPK pathway while also activating the NF-kB
pathway. Currently, the majority of research focus on the

regulatory effects of CHM on individual signaling pathways, while

there is a lack of investigation into how CHM activates multiple

signaling pathways simultaneously. In the future, utilizing gene

chips or proteomics may enable researchers to elucidate the primary

signaling pathways through which CHM enhances the anti-tumor

functions of DCs.

CHM not only exert anti-tumor effects through the previously

mentioned signaling pathways but are also capable of activating

specific signaling pathways that suppress immune function.

Utilizing the advanced techniques of gene chips or proteomics to

investigate multiple signaling pathways, it is anticipated that

researchers in the future may discover CHM monomers or

compounds that selectively enhanced DC functionality through a

specific activating signaling pathway.
5 Integration of traditional Chinese
and western medicine

As science and technology advance, the integration of CHM

with other treatments has emerged as a novel trend in anti-tumor

research. For instance, the combination of CHMwith Nanoparticles

(NPs) or DCs-based Tumor Vaccines shows great promise.

NPs, as novel biomaterials, are increasingly being utilized across

various medical fields. They promote anti-tumor effect by modulating

DCs (122, 123). Targeted and sustained release of simple

nanoliposomes containing Lycium barbarum polysaccharides (LBP)

was employed as a potent immunological adjuvant, which effectively

stimulate the proliferation of both CD4+ and CD8+ T cells in vivo,

thereby enhancing the production of antibodies (124). The

combination of lentinan with multiwalled carbon nanotubes

exhibits low cytotoxicity, high solubility, and biological stability. It

can rapidly enter DCs and significantly increase the expression of

numerous antigens, thereby enhancing antigen-specific immunity

(125). Zhang et al. found that Chinese yam polysaccharide-

encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles

had good stability, promoted antigen uptake of macrophages,

increased MHC I, MHC II, CD86 and CD80 on DCs, whereby

enhancing immune response (126). Studies have shown that

Ganoderma lucidum polysaccharide combined with gold

nanocomposites promoted the function of DCs in anti-tumor

immunity, including the upregulation of MHC II, CD86, CD80,

and pro-inflammatory factors transcription, as well as promoting the

proliferation of CD8+ and CD4+T cells (127). The synergy between

Alhagi honey polysaccharide and PLGA potentially enhanced its

immune-modulating effects, strengthening the expression of MHC II

andMHC I in DCs and boosting the proliferation of CD8+ and CD4+

T cells (128). Besides, Angelica sinensis polysaccharide bound to
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PLGA via the JAK2/STAT3 pathway, mediating DCs activation and

maturation and enhancing the efficacy of the immune response (129).

An investigation considered that Astragalus polysaccharide served as

a potent adjuvant for cancer vaccination via DCs-mediated immunity

(130). Song et al. demonstrated that Bai Hua She She Cao extract and

its active ingredient rutin promoted antigen presentation and DCs

activation throughMAPK signaling pathway. The combination of Bai

Hua She She Cao with peptide-based vaccines has been found to

strengthen the immune response and improve the outcome for

human papillomavirus-induced cancers (131).

Nanoparticles have shown promise in enhancing the efficacy of

CHM, by safeguarding active components, diminishing

cytotoxicity, and demonstrating robust targeting capabilities.

However, several challenges persist. Firstly, the majority of

existing research has focused on the integration of nanoparticles

with individual CHM components, while clinical applications often

benefit from the combined action of CHM compounds. The

complexity of these compounds and the underdeveloped

understanding of their pharmacodynamic mechanisms present

significant hurdles for optimizing the anti-tumor effects of
Frontiers in Immunology 08
nanoparticle-based delivery systems. Second, the fabrication of

nanoparticles containing CHM active ingredients lacks uniformity

and standardization, which could affect their consistency and

performance. Third, enhancing the targeting efficiency of

nanoparticles while minimizing the risk of off-target effects is an

area requiring further investigation. Lastly, although there have

been numerous in vitro studies exploring the anti-tumor

applications of nanoparticles in conjunction with CHM, these

findings need to be corroborated through clinical trials to validate

their efficacy and safety.
6 Clinical trial

In recent years, there has been a significant increase in clinical

trials examining the application of CHM in anti-tumor therapies.

Meta-analysis studies have shown that integration of CHM, such as

Astragalus, with chemotherapy enhanced the response rate to

treatment and reduced the incidence of adverse effects in patients

with colorectal tumors (132). Ye et al.’s investigation has shown that
FIGURE 1

The diagram illustrating the pathways by which Chinese Herbal Medicines (CHM) promote DC maturation. The modulation of Dendritic Cell (DC)
maturation by Chinese Herbal Medicine (CHM) encompasses a complex interplay of multiple signaling pathways, such as Toll-like receptor (TLR)
pathway, NF-kB pathway, MAPK pathway, JAK-STAT pathway, and others. CHM compounds from group A, including Chrysanthemum coronarium L.
(C. coronarium), the B-chain of Korean mistletoe lectin (KML-B), Actinidia eriantha Benth polysaccharide (AEPS), Lycium barbarum polysaccharides
liposomes (LBPL), Matrine, Astragalus mongholicus (AMs), Astragalus polysaccharide (APS), Pleurotus ferulae water extract (PFWE), Uncaria
rhynchophylla (Miq.) Miq. ex Havil. uncarinic acid C extract (URC), Yangyinwenyang (YYWY), Radix Glycyrrhizae polysaccharide (GP), and Hericium
erinaceus polysaccharide (sHEP2), primarily regulate the NF-kB signaling pathway. Compounds in group B, such as Antrodia cinnamomea
polysaccharide (ACP), Radix Glycyrrhizae polysaccharide (GP), Lycium barbarum polysaccharides (LBP), Hericium erinaceus polysaccharide (sHEP2),
6-Acetonyl-5,6-dihydrosanguinarine (ADS) and Huaier, predominantly modulate the MAPK signaling pathway. Additionally, Pinellia pedatisecta Schott
extract (PE) mainly regulates the JAK/STAT pathway and contributes to DC maturation. Antrodia cinnamomea polysaccharide (ACP) promotes DC
maturation by facilitating the phosphorylation of Protein Kinase C-a (PKC-a). Besides, DC maturation was also regulated by Syk, Akt, TSLP, and
STAT3 pathways.
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the CHM preparation Shuangbai San effectively reduced pain in

patients with primary liver cancer and improved their quality of life

(133). Tian et al. found through an investigation of 60 non-small

cell lung cancer patients that Feiji Recipe alleviated a series of

adverse reactions caused by chemotherapy and improved their

living standards (134). In a study involving 39 patients with

advanced hepatocellular carcinoma, Changou and colleagues

showed that the combination of PHY906 (made from Ziziphus

jujube Mill, Paeonia lactiflora Pall, Glycyrrhiza urensis Fisch, and

Scutellaria baicaliasis Georgi) and capecitabine enhanced anti-

tumor efficacy (135). Ni and his team reported that Shenbai

Granules, in a survey of 400 randomly assigned patients, were

effective in reducing the recurrence rate of colorectal adenomas

(136). Zhao et al. found through their study of 63 patients with

esophageal cancer that Fuzheng Yiliu granules combined with

radiotherapy enhanced immune response, and inhibited the

metastasis and invasion of malignant tumors (137). Liu and

colleagues conducted a comprehensive investigation involving

3483 patients with liver cancer and found that CHM remedy

significantly prolonged patients’ survival and improved overall

quality of life. Besides, it was also discovered that the universally

used traditional Chinese patent medicines were Huaier Granule,

Fufang Banmao Capsule, and Jinlong Capsule (138). Zhuang et al.

found that in 105 cancer patients, CCMH (a mixture of extracts of

A. sinensis, C. pilosula and G. lucidum and citronellol) combined

with radiotherapy or chemotherapy maintained the numbers of

neutrophils and leukocytes in blood, thereby improving immune

function and enhancing anti-tumor efficacy (139). Liu et al. found

through a study of 262 patients that compound Kushen injection

significantly reduced symptoms such as cough, fatigue, and pain in

lung cancer patients, alleviated radiation side effects, and improved

their quality of life (140). Xiang et al. conducted a study involving

240 patients with advanced liver fibrosis and found that entecavir

combined with traditional Chinese herbal formula (Ruangan

granules) effectively alleviated liver fibrosis and prevented the

occurrence of hepatocellular carcinoma (141). Xu et al. discovered

that the combined treatment of modified Bu-zhong-yi-qi decoction

and 5 fluorouracil suppressed the increase in CD8+PD-1+T cells

caused by chemotherapy in gastric cancer patients, thereby

inhibiting tumor immune escape (142). Jie et al. discovered that

Sijunzi decoction upregulated the expression of Krüppel-like factor

4 in patients with colorectal cancers, thereby improving patients’

survival and reducing the recurrence rate of rectal cancers (143).

Wu et al. discovered that Hezhong granules effectively alleviated

nausea and vomiting caused by fluorouracil chemotherapy in

advanced colorectal cancers, thereby improving their quality of

life (144). Yang et al. found through a study of 291 liver cancer

patients that the Fuzheng Jiedu Xiaoji formula restrained the

migration and proliferation of liver cancer cells via the AKT/

CyclinD1/p21/p27 pathway, improved patient survival, and

reduced mortality (145). Small et al. found that PC-SPES

(composed of eight herbal extracts) promoted the decrease of

serum prostate-specific androgen and alleviated the progression

of prostate cancer (146). Shao et al. found that Xiao Chai Hu Tang

inhibited tumor growth by adjusting the TLR4/MyD88/NF-kB
pathway mediated by gut microbiota (147). Zhao et al. conducted
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a study involving 361 cancer patients and found CHM prevented

the recurrence of small hepatocellular carcinoma (148). Lou et al.

found that Rhodiola algida combined with chemotherapy enhanced

lymphocyte proliferation in breast cancer patients, strengthened

their immunity and reduced the side effects following

chemotherapy (149). Meng et al. discovered that GuizhiFuling

Wan reduced the tumor burden in patients with uterine fibroids

and alleviated related symptoms such as pain (150).

In clinical settings, the investigation into the anti-tumor effects of

CHM has primarily centered on its therapeutic benefits, with less

emphasis on the precise mechanisms driving its actions. Especially,

there is a striking absence of research into howCHM influences DCs in

the fight against tumors. On clinical trial databases, there are 114

entries involving CHM in anti-tumor treatments, yet only a single trial

is currently active and enrolling patients, specifically targeting the

interaction between CHM and DCs. This study is accepting patients

with ovarian, colorectal, endometrial, and breast cancers, and it

measures the production of IFN-g, TNF-a, and IL-2 following CHM

treatment. The researchers have established multiple platforms to

assess the effects of CHM on modulating IL-17, PD-1/PD-L1, as well

as to observe the activation of DCs and T cells. Hence, it is essential to

allocate more time and resources to these experiments, in order to

broaden the scientific foundation in this field.
7 Conclusion and perspectives

This accumulation of evidence suggests that various Chinese

Herbal Medicines (CHM) and their active ingredients possess the

capacity to development and function of antigen-presenting

Dendritic Cells (DCs). These effects contribute to the anti-tumor

properties of CHM. A summary of the influence of CHM-derived

active ingredients and herbal compounds on DCs features is

provided in Table 2. These studies demonstrate that CHMs can

modulate the immune response by targeting DCs, emphasizing

their therapeutic potential in treating immune disorders that are

DC-dependent. This also suggests the feasibility of uncovering new

biological modifiers of DCs from natural sources. However, further

research is necessary to elucidate the molecular mechanisms

underpinning the modulatory actions of CHM on DCs.

Despite advancements, certain challenges persist in the study of

CHM and its interactions with DCs in combating tumors. Firstly,

existing research primarily concentrates on the quantity and activity of

DCs, while investigations into the impact of CHM on the subset

classification of DCs and the associated signaling pathways are notably

lacking. Secondly, the lack of standardized and systematic processing of

CHM, along with the separation and purification of active ingredients,

significantly affects DC functionality and the anti-tumor effect as

certain unwanted compounds within CHM have been identified to

possess immunosuppressive effects, mitigate DCs maturation and the

production of pro-inflammatory cytokines. This observation highlights

the need for future research to concentrate on understanding the

implications of these compounds and their impact on the immune

response. Clinical research on CHM has predominantly been

conducted on the Chinese population, which lacks global

representation, randomization, and a systematic approach.
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TABLE 2 The regulating effect of CHM on DCs.

Name Molecular mechanism Pathway Ref.

Polysaccharides

Alhagi honey polysaccharide (AH) vitro experiments, ↑: pIgR protein in Caco-2
vivo experiments, ↑: CCL20, mDC, CD4+ T, CD8+ T, B, pIgR, J-chain, IgA+,
sIgA, SCFAs

(58)

Sulfated Echinacea purpurea
polysaccharide (EPP)

↑: CD11c, CD80, IFN-g, IL-2
↓: IL-4, IL-10

(59)

Lycium barbarum polysaccharides (LBP) ↑: MHC II and costimulatory molecules (CD80, CD86), IL-12p70, IL-4, IL-6
and IFN-g

NF-kB;
TLR4-Erk1/2-Blimp1

(85, 104)

Glycyrrhiza polysaccharide extract 1
(GPS-1)

vivo experiments, ↑: IFN-g, IL-4, IL-10, CD3+CD4+ and CD3+CD8+ T
vitro experiments, ↑: NO, IL-2, IL-1b, IFN-b, TNF-a and IL-12p70, IL-12,
IFN-g

(61) (60)

Radix Glycyrrhizae polysaccharide (GP) ↑: CD80, CD86 and IL-12 p70, MHC I-A/I-E, CD3+T, IFN-g
↓: The endocytosis of FITC-dextran by DCs

p38 MAPK or JNK,
TLR4, NF-kB

(86)

Acidic Epimedium polysaccharide
(EPS-1)

↑: cytokine (TNF-a, IL-4, IFN-g, IL-12 and IL-2); the vital surface molecules
(CD86, CD40, CD11c and MHC II) and cytokine generation (TNF-a and
IL-10) of matured chBM-DCs, phagocytic proportion of matured chBM-DCs

(62, 63)

Actinidia eriantha Benth
polysaccharide (AEPS)

↑: cytokines (TNF-a, IL-1b, IL-6, IFN-b, IL-12p40, IL-10 and IFN-g);
chemokines (CCL5, MIP-1b, MIP-1a, MDC and MCP-1);
pattern recognition receptors (DHX58, DDX58, TLR3 and IFIH1);
↓: phagocytic activity of BMDC

TLR2/4 and NF-kB (87)

Hericium erinaceus polysaccharides
(sHEP1-sHEP9)

sHEP1, sHEP2 and sHEP8: ↑MHC II and CD86, IL-12, IFN-g
sHEP2 and sHEP8: ↓DCs endocytosis

TLR4/MyD88/
NF-kB

(110, 111)

Achyranthes bidentata
polysaccharide (ABP)

↑: CD86, CD40, and MHC II, IL-12 (64)

Isatis root polysaccharide (IRPS) ↑: the maturation of MoDCs, IL-12, IL-10, IL-1b, and IL-12p35, IFN-g,
TNF-a
↓: IL-6

(65)

Rehmannia glutinosa
polysaccharide (RGP)

↑: IL-2, IFN-g, T lymphocytes, the antigen presenting ability (66)

Ficus carica polysaccharides (FCPS) ↑: CD86, CD80, CD40, IFN-g, IL-12, MHC II, IL-6, and IL-23, T cells dectin-1/Syk (120)

Antrodia cinnamomea
polysaccharide (ACP)

↑: TNF-a, IL-6 PKC-a
MAPK

(114)

Astragalus mongholicus (AMs) ↑: TLR4
↓: IkB-a

TLR4 (90)

Astragalus polysaccharide (APS) ↑: CD86, CD80, CD40, MHC I/II, IL-6, IL-12p70 and TNF-a TLR4-MyD88 (32, 91, 92)

Plantain polysaccharide (PLP) ↑: mDC, naive T cells into cytotoxic T cells (67)

Saponins

Ginsenoside-Rg1 (G-Rg1) ↓: IDO1
↑: mDC

(70)

Astragaloside IV (AS-IV) ↑: mDC, IL-12, CD80, CD40, CD14, HLA-DR, CD86, and CD83 (71)

The water extract

Chrysanthemum coronarium L. (C.
coronarium) water extract

↑: CD40, CD86, MHC I, MHC II, IL-12, IFN-g TLR2, TLR4
and TLR9

(84)

Pleurotus ferulae water extract (PFWE) ↑: CD86, CD80, CD40 and MHC II; IL-6, IL-12 and TNF-a TLR4 (93)

The acid extract

Uncaria rhynchophylla ursolic
acid extract

↑: CD1a, CD86, CD83, CD80, HLA-DR and CCR7, IL-12: enhanced the T
cell stimulatory capacity in an allogeneic MLR

TLR2 and TLR4 (94)

(Continued)
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Furthermore, most clinical studies focus on anti-tumor efficacy, often

overshadowing the in-depth exploration of the underlying anti-tumor

mechanisms involving DCs. To validate the influence of CHM onDCs,

conditional knockout mice lacking DCs could be utilized. With the

growing recognition of DCs’ pivotal role in the immune response, there

has been a surge in research on DC-based vaccines for tumor
Frontiers in Immunology 11
treatment, while the integration of CHM with DC vaccines for

tumor therapy presents an exciting avenue for future research.

CHM augments anti-tumor efficacy through the modulation of

DCs, aligning with the CHM principles of “strengthening the body’s

defenses to expel pathogens” and “maintaining balance between Yin

and Yang.” This action can be likened to the revitalizing the body’s
TABLE 2 Continued

Name Molecular mechanism Pathway Ref.

The acid extract

Uncaria rhynchophylla (Miq.) Miq. ex
Havil. uncarinic acid C extract (URC)

↑: CD40, CD38, CD1a, CD83, CD80, CD54, CD86, HLA-DR and CCR7, IL-
12, IFN-g; stimulated naïve T cells into typical Th1 cells

TLR2 and TLR4 (95)

Chinese herb medicine compound

Yangyinwenyang (YYWY) ↑:IL-2, IL-1b, IFN-g, IL-12, CTL, T cells (Th1), TNF-a, Th1/Th2 (IFN-g/IL-
4 radio)

MAPK and NF-kB (105)

Shi-Quan-Da-Bu-Tang (SQDBT) ↑: antigen presentation to MHC I in DC2.4 cells and original DC cells (76)

Hochu-ekki-to (Bu-Zhong-Yi-Qi-
Tang) (HOT)

↑: MHC II, co-stimulatory molecules (CD40, CD80 and/or CD86) and IL-12 (72, 77)

Yupingfeng Granule (YPF) vitro experiments, ↑: mDC, Th1, Th1/Th2, CD80, CD86, MHC II
vivo experiments, ↓: TSLP, TSLPR, OX40L, Zis, Th2, IL-4, IL-10, IL-5
vitro experiments, ↑: mDC, IL-12
vivo experiments, ↓: OX40L, CD4+ IL-13+ T, Th2

TSLP-OX40L (121)

Huangqi Guizhi Wuwu Tang (HGWT) ↓: IL-6, IL-12 p40 (68)

Others

Salidroside liposome ↑: promote DC maturation, proliferation, antigen presentation capacity
CD80, CD86, MHC II, MHC I; prolong the content of IL-2, IFN-g, IgG in
the serum.

(69)

Lycium barbarum polysaccharides
liposomes (LBPL)

↑: co-stimulatory molecules (CD86, CD80, MHC II), production of cytokines
(IL-12p40, TNF-a);

TLR4-MyD88-NF-
kB
signaling pathway

(88)

Cordyceps Sinensis ↑: costimulatory molecules (CD40, CD80, CD86), T cells (75)

B-chain of Korean mistletoe lectin
(KML-B)

↑: CD86, CD80, CD40, MHC II, IL-12p70, IL-6, IL-1b, TNF-a TLR4 (83)

Myrothecine A ↑: CD86, CD40 (73)

Plantago asiatica L. seeds extract (ES-PL) ↑: CD86, CD80, MHC II, CCR7
↓: mannose receptor-mediated endocytosis

(74)

Huaier ↑: mDC, CD4+T, Th1
In vitro experiments: ↑costimulatory molecules of DC2.4 and BMDCs; IL-1b
IL-12p70,
↓: phagocytic activities

MAPK and
PI3K/Akt

(113)

Matrine ↑: TNF-a, IL-6, IL-12, MHC-II, CD54, CD80, CD86 TLRs (89)

6-acetonyl-5,6-dihydrosanguinarine
(ADS) of Chelidonium majus L.

↑: TNF-a, IL-6, and IL-8 ROS-ERK/JNK-
NF-kB

(112)

Pinellia pedatisecta Schott extract (PE) ↑: MHC II, CD80 and CD86, IL-12, CD4+ and CD8+ T cells, GZMB,
CD137, Ki67 or IFN-g, TNF-a; the differentiation of GZMB+CD8+ T and
IFN-g+CD4+ cells; CD107a, GZMB, and perforin in CTLs
↓: SOCS1

SOCS1
JAK2-STAT1/
STAT4/STAT5

(118, 119)

SL ethanolic extract (SLE)(SL:A Chinese
Herbal Medicine formula comprising
Sophorae Flos and Lonicerae
Japonicae Flos)

↑: Th, Tc, DC STAT3 (117)
"↑" indicates an increase in the previously mentioned factors, and "↓" indicates a decrease in the previously mentioned factors.
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immune system, refining the extracellular matrix’s internal

environment, and subsequently eliciting anti-tumor effects.

However, the specific role of DCs in mediating the anti-tumor

effects of CHM and its underlying mechanisms remain elusive. In

this review, we provide a comprehensive summary of the molecules

and the precise mechanisms through which CHM interfaces with

DCs. Our objective is to provide researchers with a comprehensive

roadmap for future exploration. CHM holds the potential to

facilitate the advancement of enhanced protocols for DCs

maturation, thereby paving the way for improved cancer

treatment outcomes and enhanced quality of life for patients.
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