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Transcriptome sequencing and
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analysis identified biomarkers
related to neutrophil
extracellular traps in
diabetic retinopathy
Linlin Hao1, Songhong Wang1, Lian Zhang1,2, Jie Huang2,
Yue Zhang3 and Xuejiao Qin1*

1Department of Ophthalmology, the Second Hospital of Shandong University, Cheeloo College of
Medicine, Shandong University, Jinan, China, 2Affiliated Eye Hospital of Shandong University of
Traditional Chinese Medicine, Shandong University, Jinan, China, 3Department of Operating Room,
the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University,
Jinan, China
Summary: In the development of diabetic retinopathy (DR), neutrophil infiltration

hastens the adhesion between neutrophils and endothelial cells, leading to

inflammation. Meanwhile, neutrophil extracellular traps (NETs) produced by

neutrophils could clear aging blood vessels, setting the stage for retinal

vascular regeneration. To explore the mechanism of NETs-related genes in DR,

the transcriptome of NETs from normal and DR individuals were analyzed with

gene sequencing and mendelian randomization (MR) analysis. Five NETs-related

genes were identified as key genes. Among these genes, CLIC3, GBP2, and

P2RY12 were found to be risk factors for Proliferative DR(PDR), whereas HOXA1

and PSAP were protective factors. Further verification by qRT-PCR recognized

GBP2, P2RY12 and PSAP as NETs-associated biomarkers in PDR.

Purpose: To investigate neutrophil extracellular traps (NETs) related genes as

biomarkers in the progression of diabetic retinopathy (DR).

Methods:We collected whole blood samples from 10 individuals with DR and 10

normal controls (NCs) for transcriptome sequencing. Following quality control

and preprocessing of the sequencing data, differential expression analysis was

conducted to identify differentially expressed genes (DEGs) between the DR and

NC groups. Candidate genes were then selected by intersecting these DEGs with

key module genes identified through weighted gene co-expression network

analysis. These candidate genes were subjected to mendelian randomization

(MR) analysis, then least absolute shrinkage and selection operator analysis to

pinpoint key genes. The diagnostic utility of these key genes was evaluated using

receiver operating characteristic curve analysis, and their expression levels were

examined. Additional analysis, including nomogram construction, gene set

enrichment analysis, drug prediction and molecular docking, were performed

to investigate the functions and molecular mechanisms of the key genes. Finally,

the expression of key genes was verified by qRT-PCR and biomarkers

were identified.
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Results: Intersection of 1,004 DEGs with 1,038 key module genes yielded 291

candidate genes. Five key genes were identified: HOXA1, GBP2, P2RY12, CLIC3

and PSAP. Among them, CLIC3, GBP2, and P2RY12 were identified as risk factors

for DR, while HOXA1 and PSAP were protective. These key genes demonstrated

strong diagnostic performance for DR. With the exception of P2RY12, all other

key genes exhibited down-regulation in the DR group. Furthermore, the

nomogram incorporating multiple key genes demonstrated superior predictive

capacity for DR compared to a single key genes. The identified key genes are

involved in oxidative phosphorylation and ribosome functions. Drug predictions

targeting P2RY12 suggested prasugrel, ticagrelor, and ticlopidine as potential

options owing to their high binding affinity with this key genes. The qRT-PCR

results revealed that the results of GBP2, PSAP and P2RY12 exhibited consistent

expression patterns with the dataset.

Conclusion: This study identified GBP2, P2RY12 and PSAP as NETs-associated

biomarkers in the development of PDR, offering new insights for clinical

diagnosis and potential treatment strategies for DR.
KEYWORDS

neutrophil extracellular traps, transcriptome sequencing, mendelian randomization,
pathway, diabetic retinopathy
1 Introduction

Diabetic retinopathy (DR) is the top microvascular

complication of diabetes mellitus, affecting approximately 30% to

40% of diabetic patients (1, 2). Globally, DR afflicts over 100 million

people, making it the leading cause of irreversible blindness in

working-age adults (1, 3). The key characteristics of DR include

capillary occlusion, retinal ischemia, and vascular leakage (4).

Current treatment options for DR include intravitreal injection of

anti-vascular endothelial growth factor (VEGF), retinal laser

photocoagulation and vitrectomy surgery (5). Although these

therapeutic interventions have been deemed safe and effective

through clinical research, they only provide temporary control of

DR progression. Moreover, retinal capillary damage is irreversible

and abovementioned therapies carry the risk of elevated intraocular

pressure and retinal ischemia (6–8). Therefore, it is a priority to

explore and identify the underlying pathogenesis of DR, which may

provide more effective disease management.

Under the stimulation of inflammatory mediators, neutrophils

release chromatin, histones and neutrophil granule proteins,

forming a network structure outside the cell that binds and

kills pathogens. This network structure is called neutrophil

extracellular traps (NETs) (9). Recent reports have shown

elevated serum NETs levels in patients with proliferative

diabetic retinopathy (PDR) (10, 11). Other evidence suggests that

neutrophil infiltration accelerates the adhesion of neutrophil to

endothelial cells and promotes inflammation. NETs produced by

neutrophils play a role in removing aging-damaged blood vessels
02
and promoting the regeneration of retinal vasculature (12).

Neutrophil aggregation near neovascularization has been

detected in retinal slices of human PDR patients, and typical

NETs have been observed in vitreous and retinal tissues. These

findings indicate that NETs participate in the process of DR (10,

13). However, it is unclear which NETs-related genes regulate the

pathogenesis of DR.

To gain deeper insights into the potential role that NETs-related

genes played in DR, we employed a statistical method known as

Mendelian randomization (MR). Observational epidemiological

studies are prone to reverse causation, confounding and various

biases, which limits their ability to provide conclusive evidence (14,

15). MR analysis utilizes genetic variants as exposure indicators that

are not influenced by conventional study designs (14). This method

effectively eliminates the confounding effects of extraneous factors

and enhances causal inference, contributing to a better

understanding and prevention of adverse effects on human health

caused by modifiable exposures (15, 16). Despite its proven utility,

the application of MR in DR research remains limited. In this study,

we utilized MR analysis to investigate the causal associations

between NETs-related genes and DR.

To this end, we first identified differentially expressed genes

(DEGs) between the DR and normal control (NC) groups through

transcriptome sequencing and bioinformatics analysis.

Subsequently, we examined and certified the associations between

these identified markers and PDR. In our study, we revealed the

significance of five NETs-related genes in the pathogenesis of PDR

and provided novel strategies for DR control.
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2 Materials and methods

This study was carried out in the Second Hospital

of Shandong University and adhered to principles of the

Declaration of Helsinki involving human subjects. The study

was approved by the Ethics Committee of Scientific Research

of the Second Hospital of Shandong University (Approval

number: KYLL2024043). Signed consent was obtained from

each participant.
2.1 Sample collection and RNA-
sequencing analysis

Whole blood samples were collected from 10 patients with DR

and 10 NC patients. The DR group consisted of patients who were

diagnosed as PDR with vitreous hemorrhage whereas without

retinal detachment or fibrous formation, with a mean age of

61.50 ± 7.13 years. It included 7 males and 3 females, all of

whom had type 2 diabetes. All of the patients with diabetes

were diagnosed according to the criteria of the American

Diabetes Association (17). PDR was defined as the presence

of neovascularization or fibrous proliferation of the disc or

elsewhere on the retina (18). Patients with the following

conditions were excluded: (1) severe systemic diseases such as

metabolic syndrome (excluding type 1 diabetes), ongoing

infection or autoimmune diseases and malignant tumors; and (2)

any other ocular disease, such as glaucoma, high myopia, retinal

diseases, or a history of previous ocular surgery (except mild

cataract) (19).

The NC group contained patients who underwent routine

cataract surgery at the hospital. The patients had a mean age of

59.20 ± 10.83 years and included 6 males and 4 females. The

patients would be excluded if they were found to suffer from ocular

diseases other than age-related cataract, as well as participants with

diabetes, hyperthyroidism, hypertension, immune-related diseases,

and cancer. The specific sample information can be found in

Supplementary Table S1.

The manufacturer’s protocol was followed to extract total

RNA using TRIzol (Invitrogen, CA, USA). The quantity and

quality of total RNA were assessed using NanoDrop ND-1000

(NanoDrop, Wilmington, DE, USA) to ensure its integrity.

Subsequently, the assessment of RNA integrity was conducted

utilizing a Bioanalyzer 2100 (Agilent, CA, USA) and verified

through agarose electrophoresis. The samples were considered

acceptable if they met the following criteria: concentration > 50

ng/mL, RNA integrity number (RIN) > 7.0, optical density (OD)

260/280 > 1.8, and total RNA > 1mg. Based on the guidelines

provided by the manufacturer, the library was prepared for Illumina

sequencing using Hieff NGS Ultima Dual-mode mRNA Library

Prep Kit. Importantly, these libraries were sequenced on the

Illumina Novaseq 6000 platform in a pair-end (PE) 150 mode.

The overview of this study design was shown in Supplementary

Figure S1.
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2.3 Preprocessing of sequencing data

The quality of the sequencing data was evaluated using FastQC

software. The original data were preprocessed using Trimmomatic

to filter out low-quality data and remove pollution and joint

sequences, resulting in clean data. The filtered clean sequencing

data were then compared to the reference genome using the hisat2

comparison tool with default parameters. After the analysis, the

gene expression matrix was obtained for subsequent analysis.
2.4 Identification and enrichment analysis
of DEGs

The DESeq2 package (v 1.36.0) (20) was utilized to compare

gene expression levels between the DR and NC groups. DEGs

were identified with screening conditions of p < 0.05 and

|log2FoldChange(FC)| > 0.5. Volcano plots were generated using

ggplot2 (v 3.4.0) (21) to visualize DEGs, heatmaps were generated

using ComplexHeatmap (v 2.12.1) (22) to visualize the expression

patterns of the top 10 up- and downregulated DEGs. Enrichment

analyses based on the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases were

performed using the clusterProfiler package (v 4.4.4) (23) and the

org.Hs.eg.db (v 3.15.0) (24) human gene annotation package (p adj

< 0.05). The GO system comprised three components: biological

process (BP), molecular function (MF) and cellular component

(CC). The treemap package (v 2.4-3) was used to generate a tree

diagram illustrating the enrichment results.
2.5 Screening of NETs related
module genes

A total of 257 NETs-related genes were obtained from

published literature (25, 26). NETs scores were calculated for each

sample using the GSVA package (v 1.38.2) (27), the differences in

NETs scores between DR and NC groups were compared using the

Wilcoxon test. The results were visualized using gghalves (v 0.1.4) to

plot cloud and rain maps. Based on all gene expression data, NETs

scores were used as trait data, a weighted gene co-expression

network analysis (WGCNA) was performed using WGCNA

package (v 1.72-1) (28) to screen for the modules and their genes

that were most relevant to NETs scores.

Cluster analysis was implemented on the samples to determine

the necessity of removing outlier samples for accurate subsequent

analyses. The optimal soft threshold (b) was determined to

maximize the adherence of gene interactions to the scale-free

distribution. According to the standard of the hybrid dynamic

tree cutting algorithm, a threshold of 200 genes per gene module

was established in order to facilitate clustering of genes into distinct

modules. The correlation between each module and the NET score

was analyzed with the criteria of |cor| > 0.3 and p < 0.05 to identify

gene modules associated with the NET score trait. The module
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exhibiting the highest relevance to the NET scores was defined as

the key module and included key module genes.
2.6 The identification and functional
investigation of candidate genes

The ggVennDiagram package (v 1.2.2) (29) was utilized to

intersect DEGs and key module genes to identify differentially

expressed NETs-related genes, which were recorded as candidate

genes. To further investigate the functions of the candidate genes,

functional enrichment analysis was implemented via the Metascape

database (https://metascape.org/gp/index.html#/main/step1). On

the other hand, a protein-protein interaction (PPI) network was

constructed based on the STRING (https://string-db.org) website so

as to explore whether there were interactions between candidate

genes (confidence = 0.4). The network was visualized by Cytoscape

software (v 3.9.1) (30).
2.7 Screening of instrumental variables
in MR

MR studies need to comply with three basic principles: (1) there

is a durable and significant correlation between IVs and exposure

factors; (2) IVs are not associated with confounding factors; (3) IVs

can only influence outcome variables through exposure factors. The

DR-related Genome-wide association study (GWAS) dataset (trait

ID: finn-b-DM RETINOPATHY EXMORE) was provided by

Integrative Epidemiology Unit (IEU) Open GWAS (https://

gwas.mrcieu.ac.uk/) database. This dataset included 190,594

European samples (cases: controls = 14,584: 176,010) and

16,380,347 single nucleotide polymorphisms (SNPs).

In MR analysis, each candidate gene was treated as an exposure

factor, DR was treated as the result. The exposure factors were

examined and IVs were filtered using the extract instruments

function in the TwoSampleMR package (version 0.5.6) (31). SNPs

significantly related to exposure factors (p < 5×10-8) were searched,

while SNPs showing linkage disequilibrium (LD) (clump=TRUE, r2 =

0.001, kb=10000) were excluded. The directionality test function in

the TwoSampleMR package was employed to test the directionality of

the exposure factors. Furthermore, the F statistic was calculated to

evaluate the strength of each IV. If the F statistic was greater than 10,

it was considered that there was no weak instrumental bias, indicating

a strong predictive potential of the IV for the outcome.
2.8 MR analysis between candidate genes
and DR

The SNPs of exposure factors and outcomes were unified by the

function harmonise data. MR analysis was then performed using

the mr function combined with five algorithms: MR Egger (32),

weighted median (33), inverse variance weighting (IVW) (34),

simple mode (35) and weighted mode (36). The IVW method

was deemed the most crucial among the five methods and its
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outcomes were conclusive. A p value less than 0.05 indicated a

causal relationship between candidate genes and DR. A b value

greater than 0 represented a risk factor, while a b value less than 0

indicated a protective factor. The MR results were visualized using

scatter plots, funnel plots and forest plots.

Sensitivity analysis was conducted to assess the reliability of the

MR results. Initially, the Cochran’s Q test was employed to evaluate

the presence of heterogeneity in the tests, with a p value greater than

0.05 indicating no significant heterogeneity. Subsequently, a

horizontal pleiotropy test was conducted to determine the

presence of confounding factors (p > 0.05). Eventually, we

employed a Leave-One-Out (LOO) analysis to systematically

remove each SNP and assess whether the IVW method was

affected by any particular individual SNPs. The genes with

potential causal relationship with DR in MR analysis were defined

as candidate key genes for subsequent analysis.
2.9 Access to key genes

The candidate key genes identified from MR analysis were

included in the least absolute shrinkage and selection operator

(LASSO) regression analysis for further screening. Specially, the

LASSO regression analysis was implemented via glmnet package (v

4.1-6) (37). The genes identified as key genes had the lowest cross-

validation error rate. Additionally, the diagnostic ability of each key

genes was assessed by plotting the receiver operating characteristic

(ROC) curve using pROC package (v 1.17.0.1) (38), larger values of

area under the curve (AUC) representing more accurate diagnostic

ability of the key genes for DR. Furthermore, the expression of key

genes was assessed between DR and NC groups, the results were

visualized using ggpubr (v 0.4.0) (39) to generate a box plot.

Spearman correlation analysis was performed among the key

genes and the results were demonstrated using circle plots created

with the circlize package (v 0.4.15) (40).
2.10 Construction and evaluation
of nomogram

The key genes obtained above were employed to construct a

nomogram through rms package (v 6.2-0) (41) to facilitate the clinical

judgment of the risk rate of DR. The nomogram assigned a score to

each key genes, with each score corresponding to a specific key genes.

Subsequently, the risk rate of DR was predicted based on the

cumulative score. A higher score indicated an increased risk rate. In

addition, ROC curves, decision curves and clinical impact curves were

plotted to evaluate the predictive value of nomogram. Specially, the

decision curve analysis (DCA) was generated via rmda package (v 1.6).
2.11 Gene set enrichment analysis

To further explore the pathways and functions associated with

the key genes, GSEA was implemented based on the KEGG

database via clusterProfiler package (v 4.4.4). First, the correlation
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coefficients between the key genes and the remaining genes in the

dataset were determined. The genes were then sorted based on these

correlation coefficients. Subsequently, GSEA was conducted

according to the sorting results, with a significance threshold of p

adj < 0.05). Additionally, the GSEA ridge plot was drawn using

GseaVis package (v 0.0.5) to visualize the enrichment results.
2.12 Drug prediction and
molecular docking

The Drug-Gene Interaction Database (DGIdb) (https://

dgidb.genome.wustl.edu/) was utilized to predict key genes-related

drugs with potential therapeutic effects in DR. Drugs reported in the

literature were selected for molecular docking analysis. The 3D

Conformer structures of the drugs was retrieved from PubChem

database (https://pubchem.ncbi.nlm.nih.gov/). Meanwhile, the

crystal structure of the key genes with Protein Data Bank (PDB)

ID 4ntj was obtained from the PDB database (https://

www1.rcsb.org/). Subsequently, molecular docking was performed

using AutoDock vina and visualized by PyMol software (v 2.5).
2.13 Quantitative real-time polymerase
chain reaction

To further confirm the results of the public database analysis, we

collected five paired DR and NC whole blood samples and

implemented RNA isolation and quantitative real-time polymerase

chain reaction (qRT-PCR). Total RNA of 10 samples was separated by

the TRIzol (Ambion, Austin, USA) based on the manufacturer’s

guidance. The inverse transcription of total RNA into cDNA was

implemented by using the SureScript-First-strand-cDNA-synthesis-kit

(Servicebio, Wuhan, China) based on the producer’s indication. Then,

qPCR was carried out utilizing the 2xUniversal Blue SYBR Green

qPCR Master Mix (Servicebio, Wuhan, China) under the direction of

the manual. The primer sequences for PCR were tabulated in Table 1.

The expression was uniformized to the internal reference GAPDH and

computed employing the 2−DDCt method. Finally, key genes with qRT-

PCR results consistent with the dataset were identified as biomarkers.
2.14 Statistical analysis

The data were processed and analyzed using R software (version

4.2.1). The nonparametric Wilcoxon test was employed to assess

differences between different groups, with a p value less than 0.05

considered to statistical significance.
3 Results

3.1 A total of 1,004 DEGs were associated
with inflammation-related signaling
pathways in DR

Differential expression analysis generated 1,004 DEGs between

DR and NC groups. Among these DEGs, 580 were up-regulated in
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DR samples, while 424 were downregulated, in addition, heatmaps

were drawn to visualise the expression patterns of up- and down-

regulated TOP10 differential genes. (Figures 1A, B). Subsequently,

enrichment analysis was conducted to probe the signaling pathways

involved in these DEGs. The results revealed that these DEGs were

enriched in 741 GO entries (including 590 BPs, 72 CCs and 79MFs)

and 26 KEGG pathways. Specially, these enriched GO entries

included cell activation involved in immune response, regulation

of inflammatory response, leukocyte activation involved in immune

response, etc (Figure 1C). Meanwhile, KEGG enrichment results

showed that these DEGs were enriched mainly in NOD-like

receptor signaling pathway, IL-17 signaling pathway and

others (Figure 1D).
3.2 The identification of 1,038 key module
genes was accomplished

The results of the GSVA demonstrated a significant difference

in NETs score between DR and NC groups. The NETs score was

significantly lower in the DR group than in the NC group,

indicating that NETs have an impact on the occurrence and

development of DR (Figure 2A). Therefore, the NETs score could

be used as a trait to find the key module genes related to it through

WGCNA. Cluster analysis revealed that there were no outliers in

the samples (Figure 2B). When the ordinate scale-free R2 crossed

the threshold of 0.85 (red line), the first soft threshold b was

determined to be 5, and the mean connectivity also tended to 0,

indicating that the network approximated the scale-free distribution

at this time. Therefore, the best soft threshold b was selected as 5

(Figure 2C). Furthermore, 16 modules were obtained (Figure 2D).

After merging with a similarity of 0.5, 13 modules were ultimately
TABLE 1 Primer information.

Primer Sequence(5’-3’)

HOXA1 F GGAAGCAGACCCACCAAGAA

HOXA1 R TCACTTGGGTCTCGTTGAGC

GBP2 F CTTCAGGAACAGGAACGCCT

GBP2 R GTTTCTTGGGGAGAGGGAGC

P2RY12 F CACTGCTCTACACTGTCCTGT

P2RY12 R AGTGGTCCTGTTCCCAGTTTG

CLIC3 F GCTGTTTGTCAAGGCGAGTG

CLIC3 R CCAGCGTCTCCTCCAGAAAG

PSAP F GAAATCCCTTCCCTGCGACA

PSAP R AGGTTGAGAGCAGAGCACAC

GAPDH F① CGAAGGTGGAGTCAACGGATTT

GAPDH R① ATGGGTGGAATCATATTGGAAC

GAPDH F② CGAAGGTGGAGTCAACGGATTT

GAPDH R② ATGGGTGGAATCATATTGGAAC
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obtained (Figure 2E). The results of correlation analysis

demonstrated that MEgreenyellow (cor = 0.8, p = 3× 10-5) and

MEpink (cor = 0.48, p = 0.03) modules were strongly correlated

with NETs scores (Figure 2F). Therefore, these two modules were

defined as key modules, containing 1,038 key module genes. The

scatter plot of the correlation between key module genes and NETs

score traits was shown in Figure 2G.
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3.3 The 291 candidate genes were mainly
involved in inflammation and immune-
related signaling pathways in DR

By overlapping 1,004 DEGs and 1,038 key module genes, 291

candidate genes were identified (Figure 3A). Enrichment analysis

revealed that these candidate genes were mainly enriched in
FIGURE 1

Differential expression analysis between the DR and NC groups. (A) Volcano plot displaying differentially expressed genes (DEGs) between DR
patients and healthy controls for combined expression profiling. Pink nodes indicate upregulated DEGs; blue nodes indicate downregulated DEGs;
gray nodes indicate genes that are not significantly expressed. (B) Heatmap plot of the top 10 DEGs. Red indicates DR samples, black indicates
normal control samples, pink indicates high gene expression, and blue indicates low gene expression. (C) GO enrichment plot. (D) KEGG
enrichment plot.
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inflammatory and immune-related signaling pathways, such as

inflammatory response, innate immune response, cytokine signaling

in immune system, and regulation of leukocyte activation (Figure 3B).

Moreover, we explored the links between these pathways and found

that each function may have the same genes and functions interact

with each other (Figure 3C). Based on a confidence level of 0.4, a PPI

network consisting of 222 nodes and 820 edges was constructed.

Notably, C5AR1, YROBP, FCGR3A, CYBB and other candidate genes

exhibited interactions with multiple genes (Figure 3D).
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3.4 The nomogram based on key genes
exhibited superior diagnostic efficacy
for DR

The MR analysis results demonstrated a causal relationship

between 11 exposure factors and DR (IVW p < 0.05) (Table 2).

Among them, CLIC3 (b = 0.327, p = 5.32E-05), GBP2 (b = 0.303, p =

0.013), HLA-A (b = 0.250, p = 0.004), SPI1 (b = 0.109, p = 0.001),

P2RY12 (b = 0.085, p = 0.010) and OASL (b = 0.054, p = 0.005) were
FIGURE 2

Screening of NETs related module genes. (A) Cloud and rain map. Red indicates control samples, and blue indicates normal DR samples. The NETs
were significantly lower in the DR group. (B) Sample dendrogram and trait heatmap plot. Cluster analysis revealed that there were no outliers in the
samples. (C) Selection of the best soft threshold. (D) Clustering tree based on the module eigengenes of the modules. (E) Hierarchical cluster
dendrogram of identified genes. Each color represents a module, and the vertical line represents a gene. (F) Heatmap of the correlations between
module traits and the NET score. Each color represents a module, and the box contains the correlation coefficient and p value (p value in
parentheses). Blue represents a negative correlation, and red represents a positive correlation. (G) The scatter plot of the correlation between key
module genes and NETs score traits.
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identified as risk factors for DR, whereas DENND3 (b = -0.065, p =

0.045), HLA-F (b = -0.150, p = 0.015), SLC22A15 (b = -0.156, p =

0.022), HOXA1 (b = -0.172, p = 0.012) and PSAP (b = -0.189,

p = 1.35E-07) were found to be protective factors for DR (b < 0,

p < 0.05). Supplementary Table S2 provides the F statistics for

these 11 candidate key genes. These 11 candidate key genes were

subsequently subjected to LASSO analysis for screening purposes.

When lambdamin was 0.01331, five genes were screened by LASSO

regression analysis, which were HOXA1, GBP2, P2RY12, CLIC3 and
Frontiers in Immunology 08
PSAP (Figure 4A). These genes were defined as key genes for

subsequent analysis. The ROC curve demonstrated that the AUC

values of these five key genes exceeded 0.7, indicating their robust

diagnostic potential for DR (Figure 4B). Furthermore, a comparison

of the expression levels of these five key genes between the DR and

NC groups revealed a significant disparity. With the exception of

P2RY12, all other key genes exhibited significantly downregulated

expression in the DR group (Figure 4C). The correlation analysis

indicated a highly significant negative correlation between GBP2 and
FIGURE 3

Identification and functional investigation of candidate genes. (A) Venn diagram. (B) Enrichment bar chart of 291 candidate genes. (C) Metascape
enrichment interaction network. (D) Protein-protein interaction network.
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P2RY12 (cor = -0.641, p = 0.002), while a significant positive

correlation was observed between GBP2 and PSAP (cor = 0.660,

p = 0.002) (Figure 4D; Supplementary Table S3).

Based on these five identified key genes, a nomogram was

constructed (Figure 4E). The AUC value of the ROC curve was 1,

indicating that the nomogram outperformed gene prediction

alone (Figure 4F). Meanwhile, the decision curve analysis

demonstrated that the nomogram model exhibited significant

benefits within the high-risk threshold range of 0-1, surpassing

the clinical utility of the HOXA1, GBP2, P2RY12, CLIC3 and PSAP

curves (Figure 4G). Furthermore, the clinical impact curve further

substantiated the superior predictive capability of the nomogram

model (Figure 4H).
3.5 Notable causal relationship between
key genes and DR

MR analysis revealed that CLIC3 (b = 0.327, p = 5.32E-05),

GBP2 (b = 0.303, p = 0.013), and P2RY12 (b = 0.085, p = 0.010) were

risk factors associated with DR, while HOXA1 (b = -0.172, p =

0.012) and PSAP (b = -0.189, p = 1.35E-07) exhibited protective

effects against the development of DR. The scatter plot showed that

CLIC3, GBP2 and P2RY12 had positive slopes, indicating an

increased risk for DR. Conversely, HOXA1 and PSAP exhibited a

negative slope indicating their potential protective role against DR

(Figure 5A). The forest plot demonstrated that CLIC3, GBP2 and

P2RY12 increased the risk of DR, whereas HOXA1 and PSAP

decreased the risk of DR (Figure 5B). The funnel plot further

reflected that the MR analysis conformed to Mendel ‘s second law

(Figure 5C). Sensitivity analysis was employed to assess the

robustness of the MR results. The heterogeneity test revealed that

CLIC3 and GBP2 exhibited significant heterogeneity with DR (the

p-value of Cochran’s Q test in IVW results was less than 0.05).

However, it is important to note that this observed heterogeneity

did not impact the established causal relationships (Table 3). The p-

values of the five key genes all exceeded 0.05, indicating the absence
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of horizontal pleiotropy between key genes and DR (Table 4).

Furthermore, the LOO analysis showed no significant alteration

in the results upon exclusion of each SNP, suggesting the absence of

any substantial bias point (Figure 5D). In summary, these findings

implied a substantial causal association between key genes and DR.
3.6 Oxidative phosphorylation and
ribosome were functional pathways related
to the identified key genes

GSEA was conducted to further explore the pathways associated

with the key genes and their functions. The five key genes were

associated with oxidative phosphorylation and ribosome

functioning pathways. These pathways were also implicated in

Parkinson Disease, Diabetic Cardiomyopathy, Herpes Simplex

Virus 1 Infection, etc. (Figures 6A-E).
3.7 Identification of biomarkers by
qRT-PCR

The qRT-PCR results revealed that among the five key genes,

GBP2, PSAP and P2RY12 whose expression results were consistent

with the expression pattern of the dataset were identified as

biomarkers. Specifically, GBP2 and PSAP were significantly

downregulated in the DR group, while P2RY12 was significantly

upregulated. The expression trends of HOXA1 and CLIC3 aligned

with the dataset, however, no significant difference was observed

between the DR and NC groups (Figure 7).
3.8 Stable binding between biomarkers
and drugs

Only the drugs corresponding to P2RY12 were retrieved from

DGIdb. Among them, prasugrel (42, 43), ticagrelor (44) and
TABLE 2 MR analysis between 11 exposure factors and DR.

gene id.exposure nsnp b pval log2FoldChange p value

CLIC3 eqtl-a-ENSG00000169583 4 0.326987 0 -1.010601402 0.0000532

GBP2 eqtl-a-ENSG00000162645 5 0.303424 0 -0.532966618 0.013069697

HLA-A eqtl-a-ENSG00000206503 7 0.250395 0 -2.356635528 0.003645471

SPI1 eqtl-a-ENSG00000066336 5 0.10926 0 -0.711153491 0.000898097

P2RY12 eqtl-a-ENSG00000169313 9 0.085127 0.018 1.664665635 0.010063468

OASL eqtl-a-ENSG00000135114 9 0.054271 0.033 -0.629893107 0.004634299

DENND3 eqtl-a-ENSG00000105339 5 -0.064965 0.036 -0.571122127 0.044903216

HLA-F eqtl-a-ENSG00000204642 8 -0.149819 0 -2.196836641 0.014580304

SLC22A15 eqtl-a-ENSG00000163393 3 -0.156494 0.008 -0.915905355 0.021889917

HOXA1 eqtl-a-ENSG00000105991 4 -0.172059 0 -1.634093135 0.012697427

PSAP eqtl-a-ENSG00000197746 3 -0.189472 0.002 -0.970284516 0.000000135
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ticlopidine (42, 45) had associated references. Consequently,

molecular docking of these three drugs with P2RY12 was

conducted (Figure 8). These results indicated that there was a

robust binding ability between biomarkers and predicted drugs,

which might provide potential drug targets for the treatment of DR.
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4 Discussion

In the initial phase of this investigation, we identified the five

most interesting NETs-related genes through MR and LASSO

analysis. The diagnostic performance of these five NETs-related
FIGURE 4

Access to biomarkers. (A) LASSO regression analysis. The horizontal axis deviation represents the proportion of residuals explained by the model,
showing the relationship between the number of feature genes and the proportion of residuals explained (dev). The vertical axis represents the
coefficient of genes (left); the horizontal axis represents log (Lambda), and the vertical axis represents the error of cross-validation (right). In practical
analysis, we hope to find the position with the smallest cross-validation error. In the right graph, the dotted line on the left is the position with the
smallest cross-validation error. Based on this position (lambda. min), the corresponding horizontal axis log (Lambda) is determined. The number of
feature genes is displayed above, and the optimal log (Lambda) value is found. The corresponding gene and its coefficient are shown in the left
graph, as well as the proportion of residuals explained by the model. (B) The ROC curve of these five biomarkers. The AUC values of these five
biomarkers exceeded 0.7. (C) Boxplot of the expression of these five biomarkers. P2RY12 exhibited upregulation, and all other biomarkers exhibited
downregulation in the DR group. (D) Chord diagram of the five identified biomarkers. There was a highly significant negative correlation between
GBP2 and P2RY12 (cor = -0.641, p = 0.002), while a significant positive correlation was observed between GBP2 and PSAP (cor = 0.660, p = 0.002).
(E) The nomogram of the five identified biomarkers. (F) The nomogram ROC curve. (G) Decision curve analysis. (H) Clinical impact curve analysis.
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genes was excellent for PDR, as demonstrated by ROC curve

analysis. CLIC3, GBP2 and P2RY12 were identified as risk factors

for PDR, while HOXA1 and PSAP were found to have protective

functions. P2RY12 was upregulated in the DR group, while the

other key genes were downregulated. Three of key genes, GBP2,

P2RY12 and PSAP, were validated in PDR patients by qPCR
Frontiers in Immunology 11
analysis. These genes were enriched in pathways such as oxidative

phosphorylation and ribosomes, confirming the role of NETs in

DR. Upon successful validation, these NETs-associated biomarkers

could serve as valuable diagnostic tools and provide guidance for

the development of novel therapeutic strategies.

In this study, GBP2 was downregulated in PDR and was

identified as a potential risk factor. GBP2 is a member of the

guanylate-binding protein (GBP) family. Previous studies have

reported that GBP2 can regulate the release of a large number of

pro-inflammatory factors such as interleukin (IL) 1b and IL-18

(46). The expression of GBP2 was markedly downregulated in the

retina of mice with oxygen-induced retinopathy, which was

associated with pathological retinal angiogenesis. Overexpression
FIGURE 5

MR analysis between biomarkers and DR. (A) The scatter plot of the MR analysis. CLIC3, GBP2, and P2RY12 had positive slopes, whereas HOXA1 and
PSAP had negative slopes. (B) The forest plot of the MR analysis. CLIC3, GBP2, and P2RY12 increased the risk of DR, whereas HOXA1 and PSAP
decreased the risk of DR. (C) The funnel plot of the MR analysis. (D) LOO analysis. There was no significant alteration in the results upon exclusion of
each SNP.
TABLE 3 Heterogeneity test of the five identified biomarkers.

id.exposure method Q Q_df Q_pval

eqtl-a-ENSG00000169583 MR Egger 5.425 2 0.066

eqtl-a-ENSG00000169583 IVW 9.721 3 0.021

eqtl-a-ENSG00000162645 MR Egger 16.941 3 0.001

eqtl-a-ENSG00000162645 IVW 21.818 4 0.000

eqtl-a-ENSG00000169313 MR Egger 6.086 7 0.530

eqtl-a-ENSG00000169313 IVW 6.318 8 0.612

eqtl-a-ENSG00000105991 MR Egger 2.618 2 0.270

eqtl-a-ENSG00000105991 IVW 3.047 3 0.384

eqtl-a-ENSG00000197746 MR Egger 0.278 1 0.598

eqtl-a-ENSG00000197746 IVW 0.407 2 0.816
TABLE 4 Horizontal pleiotropy test of the five identified biomarkers.

id.exposure egger_intercept se pval

eqtl-a-ENSG00000169583 -0.078 0.062 0.335

eqtl-a-ENSG00000162645 -0.058 0.062 0.421

eqtl-a-ENSG00000169313 -0.006 0.012 0.644

eqtl-a-ENSG00000105991 -0.013 0.024 0.625

eqtl-a-ENSG00000197746 0.007 0.019 0.781
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FIGURE 6

GSEA ridge plot of five identified biomarkers. (A) HOXA1. (B) GBP2. (C) P2RY12. (D) CLIC3. (E) PSAP.
FIGURE 7

The relative mRNA expression of 5 biomarkers in the DR and control groups determined by qRT-PCR. The mRNA levels of GBP2 (p=0.0342) and
PSAP (p=0.0419) were down-regulated, P2RY12 (p=0.0163) was up-regulated *p<0.05.
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of GBP2 significantly inhibited neovascularization (47). These

findings suggest a potential link between GBP2 levels and DR

susceptibility. But the roles of GBPs in DR processes are not

completely understood. This research opens a new way to explore

GBP2 as a biomarker of PDR and implicated mechanism may be

related to oxidative phosphorylation.

In our research, P2RY12 was identified as another potential risk

factor for PDR. P2RY12 belongs to the family of G-protein-coupled

receptors (48). It is used to regulate platelet activation and

aggregation. The over-expression of P2RY12 in the diabetes mellitus

lead to platelet aggregation and atherosclerosis development (49).

Alterations in platelet that favor thrombosis occur early in the diabetic

state and contribute to microvascular disease (50). In recent studies,

P2RY12 can also regulate retinal microglia in retinal tissue, which

initiate inflammation by releasing proinflammatory cytokines,

reactive oxygen species (ROS), and reactive nitrogen species

(RNS) (51).

PSAP is a lysosomal regulatory protein. It was downregulated

and was identified as a potential protective factor in this study. It

was previously reported that silencing of PSAP expression

suppressed glycolysis as well as oxidative phosphorylation.

Inhibition of PSAP may led to a reduction in atherosclerosis

development and in plaque inflammation (52). It was also

discovered that knockdown of PSAP strongly inhibited death

receptor 6-induced apoptosis (53). But the roles of PSAP in PDR

processes are rarely reported.
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Our verification test also showed the down-regulated expression

of CLIC3 and HOXA1 in DR group though without statistical

significance. CLIC3 was a risk factors for PDR, while HOXA1 was

found to have protective function. CLIC3 is a member of chloride

intracellular channel (CLIC) protein family and may be related to

tumor invasion (54). Knockdown of CLIC3 in human gastric cancer

cells significantly accelerates cell proliferation. Decreased expression

of CLIC3 in gastric cancer may result in poor prognosis of the

patients (55). In diabetes mellitus, CLIC3 is significantly

downregulated with a result of increased clinical complications

(56). HOXA1 is a member of the homeobox (HOX) gene family.

The misexpression of HOXA1 in differentiated cells could turn it into

an oncogene to participate in cancer development (57). HOXA1

promotes apoptosis, inflammation and phosphorylated NF-kB p65

levels (57, 58). The non-significant results of CLIC3 and HOXA1may

be partly due to the small sample size in the present study.

Several reports have demonstrated that hyperglycemia can trigger

sterile inflammation and activate neutrophils (59). The release of

NETs by neutrophils can cause endothelial cell damage and vascular

remodeling (13). NETs formation can be triggered by various stimuli,

including microorganisms, urate crystals, autoantibodies,

lipopolysaccharides, ROS, nitric oxide, proinflammatory cytokines,

as well as interactions between neutrophils and activated platelets or

endothelial cells (9). These findings suggest a reciprocal interaction

between sterile inflammation, NETs formation and endothelial

dysfunction ultimately leading to a vicious cycle.
FIGURE 8

Molecular docking plot of the three drugs with P2RY12. (A) Molecular docking plot of 4 ntj with PRASUGREL. ARG-122, LYS-303, and SER-304
exhibited hydrogen bond interactions with PRASUGREL molecules. The docking affinity between this active molecule and P2RY12 was -6.8 kcal/mol.
(B) The molecular docking plot of 4 ntj with TICAGRELOR. SER-83 and LYS-80 engaged in hydrogen bonding interactions with TICAGRELOR
molecules. The docking affinity between this active molecule and P2RY12 was measured to be -8.2 kcal/mol. (C) The molecular docking plot of 4 ntj
with TICLOPIDINE. TYR-109, ASN-159, ARG-256, and other residues exhibited hydrogen bond interactions with the TICLOPIDINE molecule. The
docking affinity between this active molecule and P2RY12 was -6.6 kcal/mol.
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There have been reports that the expression of GBP2 and

P2RY12 is correlated with neutrophil infiltration (60, 61). The

mechanisms that trigger neutrophil infiltration are poorly

understood but may result from the release of pro-inflammatory

cytokines, such as tumor necrosis factor-a (TNF-a), IL-1b, IL-6, and
IL-8 (9). According to previous studies, both GBP2 and P2RY12 can

regulate the release of these pro-inflammatory factors (46, 51). PSAP

was found to regulate mitogen-activated protein kinase (MAPK),

phosphatidylinositol 3’-kinase/AKT serine/threonine kinase 1 (PI3K/

Akt) and transforming growth factor-b (TGF-b) pathways (62).

These pathways are strongly associated with NETs (63–65). Our

research found these biomarkers were enriched in oxidative

phosphorylation and ribosomes, suggesting that the upregulation of

P2RY2 and the downregulation of GBP2 and PSAP may also regulate

NETs by promoting oxidative stress and inflammatory reaction in

PDR. All these findings indicate that the NETs related biomarkers

play an important role in the pathogenesis of DR.

Furthermore, we predicted drugs targeting P2RY12, among

which prasugrel (42, 43), ticagrelor (44) and ticlopidine (42, 45)

showed enhanced binding affinity for this biomarker. These newer

antiplatelet drugs inhibit platelet aggregation by blocking the P2Y12

platelet receptor. Recent studies have shown that ticagrelor

significantly decreases the levels of proinflammatory cytokines,

such as TNF-a and IL-6, while increasing the number of

circulating endothelial progenitor cells, thereby improving

vascular endothelial function (66). Ticlopidine has also been

found to increase nitric oxide production in human neutrophils

(67). As a result, we predicted that ticagrelor and ticlopidine can be

used as a targeted drugs for the treatment of DR. Further studies are

needed to elucidate the specific regulatory mechanisms underlying

the relationships among P2RY12, the targeted drugs and DR.

There are limitations of the study: Using blood-derived genes

may not completely reflect changes in DR-specific tissues like the

retina. And the insufficient amount of data and the lack of survival

analysis on adequate clinical samples may lead to results bias.

Especially, this may be the reason that the expression of HOXA1

and CLIC3 did not reach statistical significance. In the future, we

will reach out to more patients and medical institutions to expand

the sample size, focusing on an in-depth exploration of specific gene

regulation mechanisms in eye tissues to provide a more detailed

analysis of their complex regulatory pathways, thereby improving

the representativeness and comprehensiveness of the research data.

Simultaneously, we are actively exploring collaboration

opportunities with external experts and research institutions to

gain additional technical support and data analysis resources to

further enhance our research capacity.

This study was conducted based on transcriptome self

sequencing method, three biomarkers (GBP2, P2RY12 and PSAP)

associated with NETs were screened for strong diagnostic value in

PDR. In addition, MR analysis revealed that GBP2 and P2RY12 are

risk factors for DR and PSAP a protective factor, which may provide

a theoretical reference for future studies. However, future

longitudinal studies are required to establish whether NETs are

formed prior to clinically detectable DR and to determine the

diagnostic significance of NETs-related biomarkers for the early

detection and stratification of DR patients.
Frontiers in Immunology 14
Data availability statement

The data presented in the study are deposited in the NCBI SRA

repository, accession number PRJNA1171113.
Ethics statement

The studies involving humans were approved by the

Institutional Review Board of the Second Hospital of Shandong

University (Approval number: KYLL2024043). The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

LH: Formal Analysis, Funding acquisition, Resources, Writing –

original draft, Writing – review & editing. SW: Formal Analysis,

Investigation, Writing – original draft, Writing – review & editing. LZ:

Writing – review & editing. JH: Writing – review & editing. YZ: Writing

– review & editing. XQ: Conceptualization, Funding acquisition,

Supervision, Writing – original draft, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work was

supported in part by the Natural Science Foundation of Shandong

Province (grant no. ZR2023MH195) and the Horizontal Project of

Shandong University (grant no. 26010212002212). The funders had

no role in the study design, data collection and analysis, decision to

publish, or preparation of the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1408974/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1408974/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1408974/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1408974
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hao et al. 10.3389/fimmu.2024.1408974
References
1. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al.
Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. (2012)
35:556–64. doi: 10.2337/dc11-1909

2. Ruta LM, Magliano DJ, LeMesurier R, Taylor HR, Zimmet PZ, Shaw JE.
Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed
countries. Diabetic Med. (2013) 30:387–98. doi: 10.1111/dme.2013.30.issue-4

3. Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence,
major risk factors, screening practices and public health challenges: a review. Clin Exp
Ophthalmol. (2016) 44:260–77. doi: 10.1111/ceo.2016.44.issue-4

4. Clapp C, Thebault S, Jeziorski MC, Martıńez de la Escalera G. Peptide hormone
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