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Chimeric antigen receptor-T (CAR-T) cell therapy has made remarkable strides in

treating hematological malignancies. However, the widespread adoption of CAR-T

cell therapy is hindered by several challenges. These include concerns about the

long-term and complex manufacturing process, as well as efficacy factors such as

tumor antigen escape, CAR-T cell exhaustion, and the immunosuppressive tumor

microenvironment. Additionally, safety issues like the risk of secondary cancers post-

treatment, on-target off-tumor toxicity, and immune effector responses triggered by

CAR-T cells are significant considerations. To address these obstacles, researchers

have explored various strategies, including allogeneic universal CAR-T cell

development, infusion of non-activated quiescent T cells within a 24-hour period,

and in vivo induction of CAR-T cells. This review comprehensively examines the

clinical challenges of CAR-T cell therapy and outlines strategies to overcome them,

aiming to chart pathways beyond its current Achilles heels.
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1 Introduction

In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a

pivotal immunotherapeutic approach, profoundly reshaping the treatment landscape of

hematological malignancies. Engineered synthetic receptors, CAR-T cells empower T cells

to selectively recognize and eliminate tumor cells independent of the major

histocompatibility complex (MHC) (1, 2). Since the first FDA approval of a CAR-T cell

product in 2017 (3), this therapy has witnessed rapid expansion in hematologic

malignancies. As of now, six CAR-T cell products have received FDA approval,

achieving remarkable complete remission (CR) rates of up to 80% in certain relapsed or

refractory (R/R) B-cell malignancies (Table 1) (14, 15), while hundreds of CAR-T cell

therapies are currently undergoing clinical trials (16, 17). Additionally, CAR-T cell therapy
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TABLE 1 FDA-approved CAR T-cell products.

Indication Age Approval
Pivotal
trial

No.
of
Patients

Response
Toxicities
(Grade≥3, %)

Ref

R/RB-ALL ≤25y
Aug
30, 2017

ELIANA 75
ORR 81%,
CR 60%

CRS:77 (46)
NT:40 (13)

(4)

R/R LBCL Adult May 1, 2018 JULIET 93
ORR 52%,
CR 40%,

CRS:58 (22)
NT:21 (12)

(5)

R/R FL Adult May27, 2022 ElARA 97
ORR 86%,
CR 69%

CRS:49 (0)
NT:37 (3)

(6)

R/R LBCL Adult Oct 18, 2017 ZUMA-1 111
ORR 82%,
CR 54%

CRS:93 (13)
NT:64 (28)

(7)

R/R FL Adult Mar 3, 2021 ZUMA-5 104
ORR 92%,
CR 74%

CRS:82 (7)
NT:59 (19)

(8)

R/R MCL Adult Jul 24, 2020 ZUMA-2 60
ORR 93%,
CR 67%

CRS:91 (15)
NT: 63 (31)

(9)

R/R B-ALL ≥26y Oct 1, 2021 ZUMA-3 71
ORR 71%,
CR 56%

CRS:89 (24)
NT:60 (25)

(10)

R/R LBCL Adult Feb 5, 2021
Transcend
NHL001

256
ORR 73%,
CR 53%

CRS:42 (2)
NT:30 (10)

(11)

R/R MM Adult
Mar
26, 2021

KarMMa 128
ORR 73%,
CR 33%

CRS:84 (5)
NT:18 (3)

(12)

R/R MM Adult Feb 28, 2022 CARTITUDE-1 113
ORR 97%,
CR 67%

CRS:95 (5)
NT:21 (10)

(13)

lymphoma; MCL, Mantle-cell lymphoma; MM, multiple myeloma.
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Product Target
CAR structure:
Ag binding domain/Hinge/
transmembrane/intracellular

Cost

Kymriah (tisagenlecleucel) CD19 Anti-CD19 scFv/CD8a/CD8a/4-1BB/CD3z $475 000

Yescarta
(axicabtagene ciloleucel)

CD19 Anti-CD19 scFv/CD28/CD28/CD28/CD3z $375 000

Tecartus
(brexucabtagene
autoleucel)

CD19 Anti-CD19 scFv/CD28/CD28/CD28/CD3z $373 000

Breyanzi
(lisocabtagene maraleucel)

CD19 Anti-CD19 scFv/IgG4/CD28/4-1BB/CD3z
$410
300

Abecma
(idecabtagene vicleucel)

BCMA Anti-BCMA scFv/CD8a/CD8a/4-1BB/CD3z
$419
500

Carvykti
(ciltacabtagene autoleucel)

BCMA Anti-BCMA scFv/CD8a/CD8a/4-1BB/CD3z $465 000

R/R, refractory or relapsed; B-ALL, B-cell acute lymphoblastic leukemia; LBCL, large B Cell Lymphoma; FL, follicula
r
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has shown notable success in treating autoimmune diseases,

offering a 100% drug-free alternative to systemic lupus

erythematosus in clinical trials (18, 19). The high remission rates

and broad application across various diseases underscore the

significance of CAR-T cell therapy as a pivotal tool in combating

disease and reducing mortality rates (20, 21).

However, despite significant achievements, the widespread

application of CAR-T cell therapy encounters numerous

challenges. Firstly, the individualized customization and labor-

intensive manufacturing process of CAR-T cells result in high

costs and prolonged production cycles, limiting patient

affordability and treatment accessibility (22–24). Moreover,

efficacy concerns such as tumor antigen modulation, CAR-T cell

persistence, and the immunosuppressive tumor microenvironment

(TME) contribute to initial resistance or relapse in some patients

(25–27). Additionally, safety issues including the risk of secondary

cancers post-treatment, on-target off-tumor toxicity, and immune

effector responses triggered by CAR-T cell activation further

impede broad adoption (28–30). Specifically, the FDA requires

the addition of warning information regarding the risk of

secondary cancers post-treatment to the label of CAR-T cell

products, introducing a new Achilles’ heel to CAR-T cell therapy.
Frontiers in Immunology 03
To tackle these challenges, various strategies have been

explored. These include constructing allogeneic CAR-T cells with

enhanced potency and safety through leveraging the multiple gene

editing functions of CRISPR-Cas9 and base editing (31, 32), in vivo

induction of CAR-T cells by nanocarriers and optimized lentiviral

vectors (33, 34), and the rapid production of potent CAR-T cells

employing the FasTCAR platform or the MASTER scaffolds (35,

36). These efforts aim to provide more economically viable,

efficacious, and secure therapeutic alternatives. In this review, we

comprehensively scrutinize the clinical challenges associated with

CAR-T cell therapy and provide an overview of potential strategies

to overcome these obstacles. Our aim is to chart pathways for CAR-

T cell therapy to navigate beyond its current limitations.
2 Achilles heels of CAR T-cell therapy

As depicted in Figure 1, the Achilles’ heels of CAR T-cell therapy,

which currently hinder its wider efficacy and acceptance in clinical

practice, encompass resistance to CAR-T cell therapy, safety concerns,

and manufacturing intricacies (26, 37, 38). One major issue is tumor

antigen escape, where cancer cells mutate or downregulate the target
FIGURE 1

The current limitations of CAR-T cell therapy include tumor antigen escape, CAR-T cell exhaustion, secondary T-cell malignancies following
treatment, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) toxicity, on-target off-tumor
toxicity, and complex, long-term manufacturing processes.
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antigen recognized by CAR-T cells, leading to treatment resistance and

disease relapse (37). Additionally, CAR-T cell exhaustion, characterized

by decreased efficacy and persistence of infused cells over time, poses a

significant challenge to long-term therapeutic success (39). On-target

off-tumor toxicity is another concern, as CAR-T cells may

inadvertently target healthy tissues expressing the target antigen,

leading to adverse effects (29). Furthermore, the development of

secondary T-cell malignancies following CAR-T cell treatment,

though rare, underscores the need for continued vigilance regarding

long-term safety outcomes (40). The toxicities associated with CRS and

ICANS further complicate CAR-T therapy, requiring careful

management to mitigate potentially life-threatening complications

(41). Moreover, the complex and lengthy manufacturing processes

involved in producing personalized CAR-T cell products limit their

scalability and accessibility to patients (42). Addressing these Achilles’

heels is crucial for enhancing the overall efficacy, safety, and feasibility

of CAR T-cell therapy in clinical settings.
2.1 Tumor antigen escape

While CAR-T cell therapy has demonstrated unprecedented

response rates, not all patients benefit from it, and a significant

percentage experience relapses (43). Antigen escape stands out as the

most common cause of relapse in CD19-positive B-cell malignancies

following CAR-T cell therapy. Published data indicate that CD19-

negative relapse occurs in 7-25% of B-cell acute lymphoblastic

leukemia (B-ALL) cases and approximately 30% of large B-cell

lymphoma (LBCL) cases in patients treated with CD19 CAR therapy

(4, 44–46). Mechanisms underlying CD19 loss have been extensively

investigated, including CD19 gene mutations or splice variants,

abnormal processing or trafficking of CD19 due to CD81 expression

deficiency, and lineage marker switching from the lymphoid to the

myeloid lineage (46, 47). Zah et al. developed a CD19-CD20 CAR and

demonstrated its efficacy in preventing the spontaneous emergence of

CD19-negative tumor cell variants in immune-deficient mice. In

contrast to CD19, loss of B cell maturation antigen (BCMA) appears

to be infrequent following anti-BCMA CAR-T cell therapy and has

only been reported in a few studies (48). For instance, only 4% (3 out of

71) of patients in a phase II clinical trial using Idecabtagene Vicleucel

for multiple myeloma (MM) treatment developed BCMA expression

loss (12). Deletion and mutation of the biallelic TNFRSF17 gene

encoding BCMA have been identified as the main mechanisms

causing BCMA loss (49–51). To mitigate the risk of relapse and

failed responses attributed to tumor antigen escape, it may be

necessary to conduct more precise screening of the patient’s genetic

spectrum before initiating a new CAR-T cell therapy (52).
2.2 CAR-T cell exhaustion

CAR-T cell exhaustion, a significant factor contributing to CAR-

T cell resistance, often leads to antigen-positive relapse and results

from various factors. Firstly, the differentiation status of T cells is

crucial for maintaining the functional persistence of CAR-T cells.

Previous studies have shown that less differentiated T cells have
Frontiers in Immunology 04
greater expansion potential and prolonged persistence compared to

fully differentiated effector T cells (53). Most current CAR-T cell

products are autologous, and due to factors, such as the presence of

tumors, prior cytotoxic treatments, and prolonged ex vivo cultivation,

these cells often exhibit an exhausted phenotype characterized by

excessive differentiation (54, 55). Additionally, immunosuppressive

components of the tumor immune microenvironment, including

regulatory T cells, myeloid-derived suppressor cells, tumor-

associated macrophages (TAMs), and immunosuppressive ligands,

also contribute to CAR-T cell exhaustion (25, 56, 57). Furthermore,

tonic CAR signaling transduction, mainly associated with the

costimulatory domain, plays a key role in CAR-T cell exhaustion.

Insufficient signaling compromises cell persistence, while excessive

signaling leads to exhaustion (58). For example, compared to 4-1BB,

CD28 CAR-T cells demonstrate faster and stronger cellular effector

functions, but this rapid and intense signal transduction can induce

CAR-T cell exhaustion, thereby limiting persistence (59–61).

Achieving potent and sustained activity against specific tumor

targets requires careful selection of optimal CAR designs. Recent

studies have underscored the importance of positively charged

plaques (PCPs) on CAR in mediating CAR aggregation at the

antigen-binding domain surface, thereby facilitating sustained CAR

signaling (62, 63). Regulating PCPs offers a means to optimize CAR-T

cell function. For CARs with high sustained signaling, such as

GD2.CAR and CSPG4.CAR, reducing PCPs during in vitro

expansion or enhancing ionic strength in culture can diminish

spontaneous CAR activation and mitigate CAR-T cell exhaustion.

Conversely, for CARs with weak tonic signaling like CD19.CAR,

augmenting PCPs on the CAR surface can enhance in vivo

persistence and anti-tumor efficacy (62). Recently, the same team

developed CAR-Toner, an artificial intelligence (AI)-based PCP score

calculator and optimizer (64). Taking the camel single-domain

nanobody (VHH) targeting the acute myeloid leukemia (AML)

tumor-associated antigen CLL1 as an example, the authors

optimized the CAR design using CAR-Toner to systematically

reduce their PCP scores. The results showed that an intermediate

tonic signaling strength optimally benefits CAR-T cell function. As an

AI-based tool, CAR-Toner is capable of not only conducting PCP

calculations but also offering optimization recommendations for PCP

scores. This groundbreaking tool is anticipated to catalyze progress in

the field of CAR-T design and significantly contribute to the

advancement of AI-driven CAR-T design.

Various strategies have emerged to combat CAR-T cell exhaustion,

such as blocking exhaustion-promoting signaling pathways, inhibiting

downstream effectors, alleviating immunosuppression within the

tumor microenvironment (TME), and converting inhibitory signals

into stimulatory ones (52, 61). When coupled with AI-based tools,

these approaches facilitate the development of more potent CAR

designs, thus augmenting the efficacy of CAR-T cell therapy (65).
2.3 Secondary T-cell malignancies
following treatment

Recent evidence indicates a concerning association between

CAR-T cell therapy and the development of secondary T-cell
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malignancies, prompting regulatory measures by the FDA to enhance

safety oversight (66, 67). By the close of 2023, 22 reported cases have

documented the emergence of T-cell cancers subsequent to CAR-T

treatment. Notably, in three instances, the CAR transgene was

identified within the malignant clone, strongly implicating the

therapy in the genesis of T-cell cancer (28). Presently, CAR-T

products approved by regulatory agencies employ T cells

engineered via viral transduction to convey the genetic construct.

However, the use of current retroviral vectors still harbors potential

risks of oncogenesis through genomic integration or related

mechanisms. For example, lentiviral vector constructs, while

integrating into the genome in a semi-random manner, display an

affinity for genomic regions characterized by active gene expression,

thereby heightening the risk of insertional oncogenesis (68). To

mitigate these risks in the future, strategies such as precision

targeting of CAR construct insertion to specific genomic loci or the

utilization of transient CAR mRNA delivery to the cytoplasm offer

promising avenues for enhancing safety in CAR-T therapy (68).

2.4 CRS and ICANS toxicity trigger by
CAR-T cells

While CAR-T cell therapy holds tremendous promise in the

therapeutic realm of hematologic malignancies, the associated

potential life-threatening toxicities remain a significant concern.

Cytokine release syndrome (CRS) and immune effector cell-

associated neurotoxicity syndrome (ICANS) emerge as the two

most common adverse events during CAR-T cell therapy (Table 1),

attributed to the overactivation of CAR-T cells and the massive

release of cytokines (69–71). CRS typically manifests a few days

after the initial infusion, with symptoms ranging from mild flu-like

manifestations such as fever, fatigue, chills, and muscle pain to

severe life-threatening complications including shock, hypotension,

coagulation abnormalities, and multi-organ dysfunction (72, 73).

On the other hand, ICANS typically occurs 1-3 weeks post-CAR-T

cell infusion, characterized by symptoms such as aphasia, delirium,

focal neurological deficits, tremors, seizures, or life-threatening

cerebral edema (74, 75). The severity of CRS and ICANS is

categorized from grade I to grade IV, depending on factors such

as CAR structure, CAR-T cell dosage, tumor burden, treatment

targets, and patients’ individual characteristics. Most patients

receiving CAR-T cell therapy are likely to experience varying

degrees of CRS, with nearly half developing ICANS (Table 1).

Among these patients, 10%-40% may experience severe toxicity

reactions (≥ grade 3), necessitating admission to the intensive care

unit (ICU) for life support and the use of additional medications

such as the interleukin (IL)-6 receptor antagonist tocilizumab (76–

78). Blocking cytokine networks or optimizing the structural design

of CARs to reduce toxicity are potential strategies to mitigate CRS

and ICANS triggered by CAR-T cells (79, 80).
2.5 On-target off-tumor toxicity

Given that most CAR-T cell target antigens are not exclusively

tumor-specific and are also expressed in normal cells, CAR-T cells
Frontiers in Immunology 05
may inadvertently cause damage to normal tissue and organs while

targeting tumors (81). Long-term follow-up data indicate that on-

target off-tumor toxicity, leading to B-cell aplasia and

hypogammaglobulinemia, are the most common long-term adverse

reactions following treatment with anti-CD19 CAR-T cells (14).

Although these side effects can be managed through sequential

intravenous immunoglobulin, the long-term repeated infusions

may escalate treatment costs. Additionally, cytopenia, infections,

and tumor lysis syndrome are also common side effects of CAR-T

cell therapy for hematologic malignancies. While proper

management and intervention can control these toxicities, the

resulting disease and economic burden are significant factors

limiting the widespread adoption of CAR-T cell therapy (77, 82).

Additionally, multiple-targeting CAR-T cells are designed to mitigate

the impact of on-target off-tumor effects. Intensive research has

centered on developing diverse protein-based logic-circuit strategies

to enhance the specificity of CAR T cell activation and cytotoxicity

towards tumor cells (83–85). Additionally, locoregional

administration of CAR T cells, aimed at concentrating antitumor

activity within the tumor microenvironment, may offer a potential

solution to mitigate off-tumor toxicity (86–88).
2.6 Complexed and long-term
manufacturing process

A major challenge of CAR-T cell therapy is its high cost and

lengthy manufacturing process. Most FDA-approved and clinical trial

CAR-T cell products are autologous, requiring personalized

customization involving complex processes like T cell isolation,

activation, CAR gene transduction, expansion, and reinfusion (89).

This labor-intensive process occurs in specialized facilities, adding to

expenses and time. Viral vector preparation, crucial for CAR

transfection, also contributes to costs and production delays (90).

Production of viral vectors requires at least 2 weeks, meeting cGMP

standards and extensive safety testing (91–93). The cost of a single dose

of approved CAR-T cell products ranges from $373,000 to $475,000

(Table 1), with a production cycle of 2 to 4 weeks (Figure 2), posing

economic burdens and logistical challenges for patients (94). With

advancements in related technologies, it is imperative to establish

increasingly standardized and simplified manufacturing processes to

mitigate the costs associated with CAR-T therapy (22, 95).
3 New paradigms for CAR-T cell
therapy beyond current Achilles heels

3.1 Allogeneic universal CAR-T cells

Allogeneic CAR-T cells sourced from healthy donors offer

advantages such as scalable production, lower manufacturing

costs, and immediate availability (96). As illustrated in Figure 3,

allogeneic universal CAR-T cells represent off-the-shelf cell

production. They are undergoing testing in numerous clinical

trials, with promising outcomes documented in Table 2. For

instance, a meta-analysis showed CR rates of 70% in R/R ALL
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and 52% in non-Hodgkin lymphoma (NHL) with CD19 CAR-T

cells derived from healthy donors (97). However, allogeneic CAR-T

cells face challenges like T-cell receptor (TCR)-mediated graft-

versus-host disease (GVHD) and human leukocyte antigen (HLA)

related host-versus-graft (HvG) response due to their allogeneic
Frontiers in Immunology 06
nature (96). Targeted knockout of TCR, HLA, and related

molecules using gene editing techniques is an effective strategy.

Various gene editing tools have been explored, including zinc finger

nucleases (ZFNs) (98), transcription activator-like effector

nucleases (TALENs) (99), and CRISPR-Cas9 (100). CRISPR-Cas9
FIGURE 2

The illustration of the entire manufacturing process of autologous CAR-T cell therapy, which typically takes 2-4 weeks from cell collection to infusion.
FIGURE 3

The illustration of allogeneic universal CAR-T cell therapy for off-the-shelf cell production.
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TABLE 2 Currently registered clinical trials of genome-edited allogeneic CAR-cell products.

Gene
editing tools

Target
Antigen

Product Knockout loci Indication
Clinical
trial phase

Clinical
trial number

Study Start

TALEN

CD19 UCART19 TRAC and CD52

R/R B-ALL
R/R B-ALL
R/R BCL
R/R LBCL/FL

Phase 1
Phase 1
Phase 1/2
Phase 1

NCT02808442
NCT02746952
NCT03166878
NCT03939026

Jun 3, 2016
Aug 1, 2016
Jun, 23, 2017
May 1, 2019

CD19 ALLO-501A TRAC and CD52
R/R LBCL/
CLL/SLL

Phase 1/2 NCT04416984
May 21, 2020

BCMA ALLO-605 TRAC and CD52 R/R MM Phase 1/2 NCT05000450 Jun 6, 2021

BCMA ALLO-715 TRAC and CD52 R/R MM Phase 1 NCT04093596 Sep 23, 2019

CD123 UCART123 TRAC
R/R AML
R/R BPDCN

Phase 1
Phase 1

NCT03190278
NCT03203369

Jul 19, 2017
Jul 28, 2017

CD22 UCART22 TRAC and CD52 R/R B-ALL Phase 1 NCT04150497 Oct 14, 2019

CS1 UCARTCS1 TRAC and CS1 R/R MM Phase 1 NCT04142619 Nov 21, 2019

CRISPR/Cas9

CD7 WU CART-007
TRAC and CD7
TRAC and CD7

T-ALL/LBCL
T-NHL/AML/
TCL/ATL

Phase 1/2
Phase 1

NCT04984356
NCT05377827

Jan 14, 2022
Oct 10, 2023

CLL1 CB-012 TRAC, b2M, PDCD1 R/R AML Phase 1 NCT06128044 Dec 20, 2023

CD19 UCART019 TRAC and b2M R/R BCL Phase 1/2 NCT03166878 Jun, 2017

CD19 PACE CART19
TRAC, B2M
and CIITA

R/R BCL Phase 1 NCT05037669
Jul, 2022

CD19 PBLTT52CAR19 TRAC and CD52 R/R BLL Phase 1 NCT0455743 Aug 12, 2020

CD19 SC291
TRAC, B2M
and CIITA

R/R NHL/CLL Phase 1 NCT05878184
Apr, 2024

CD19 CTA101 TRAC and CD52
R/R B-ALL
R/R B-
ALL/NHL

Phase 1
Early Phase 1

NCT04154709
NCT04227015

Dec 10, 2019
Jan 8, 2020

CD19 ATHENA TRAC and Power3 R/R NHL Phase 1/2 NCT06014073 Sep 6, 2023

CD19 CTX110 TRAC and b2M R/R BCL/NHL Phase 1/2 NCT04035434 Jul 22, 2019

CD19 CB-010 TRAC, PD-1 R/R BCL Phase 1 NCT04637763 May 26, 2021

BCMA CB-011 TRAC and b2M R/R MM Phase 1 NCT05722418 Feb 6, 2023

BCMA CTX120 TRAC and b2M R/R MM Phase 1 NCT04244656 Jan 1, 2020

CD70 CTX130 TRAC and b2M R/R TCL Phase 1 NCT04502446 Jul 31, 2020

CD19/CD7 GC502 TRAC and CD7 R/R BCL Early Phase 1 NCT05105867 Sep 29, 2021

CRISPR-CLOVE BCMA
P-
BCMA-ALLO1

TCR and b2M R/R MM Phase 1 NCT04960579
May 5, 2022

Base editing

CD7 BEAM-201
CD7, TRAC, PDCD1
and CD52

R/R T-ALL/
T-LL

Phase 1/2 NCT05885464
May 25, 2023

CD7 BE-CAR7
CD7, TRAC,
and CD52

R/R T-ALL
Phase 1 ISRCTN15323014

Sep 7, 2023

ARCUS

CD19 PBCAR19B TCR R/R BCL Phase 1 NCT04649112 Jun 16, 2021

CD19 PBCAR0191 TCR R/R NHL/ALL Phase 1/2 NCT03666000 Mar 11, 2019

BCMA PBCAR269A TCR R/R MM Phase 1 NCT04171843 Apr 30, 2020

CD20 PBCAR20A TCR
R/R NHL/
CLL/SLL

Phase 1/2 NCT04030195
Mar 24, 2020
F
rontiers in Immunol
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R/R, refractory or relapsed; B-ALL, B-cell acute lymphoblastic leukemia; LBCL, large B Cell Lymphoma; FL, follicular lymphoma; CLL, chronic lymphocytic leukemia; SLL, small lymphocytic
lymphoma; MM, multiple myeloma; AML, acute myeloid leukemia; BPDCN, Blastic Plasmacytoid Dendritic Cell Neoplasm; NHL, non-Hodgkin lymphoma; TCL, T-Cell Lymphoma; ATL, adult
T-cell leukemia; BCL, B Cell Lymphoma/Lymphoma; -NHL, T-Cell non-Hodgkin lymphoma; T-ALL, T-cell acute lymphoblastic leukemia; T-LL, T-Cell Lymphoblastic Lymphoma.
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stands out for its versatility, allowing for simultaneous editing of

multiple genes. It has been extensively used in allogeneic CAR-T

cells, targeting TCR and HLA class I molecules, and guiding CAR

insertion to specific loci, enhancing CAR-T cell potency and

stability (101). However, CRISPR-Cas9 editing has limitations

such as off-target editing and large-scale genomic rearrangements.

Base editing technology, a precise gene editing tool based on

CRISPR, offers new possibilities for overcoming these challenges

without inducing double-stranded DNA breaks (DSBs) (102, 103).

Adenine base editors (ABEs) and cytosine base editors (CBEs)

enable the conversion of specific DNA bases without DSBs (104).

Recent studies have shown the feasibility of highly specific knockout

of T cell genes using base editing, paving the way for the

development of allogeneic CAR-T cells with enhanced safety and

efficacy (105). While allogeneic CAR-T cell therapy holds promise,

ongoing clinical trials are essential to further evaluate its safety and

efficacy. Longer-term follow-up data from these trials will provide

valuable insights into the durability of responses and the potential

for adverse events. Continued research efforts are necessary to

optimize allogeneic CAR-T cell therapies and address any

challenges that may arise, ultimately advancing their clinical

utility in treating various malignancies (106).

3.2 Rapid manufacturing of autologous
CAR-T cells

While significant progress has been made in the exploration of

allogeneic and in vivo CAR-T cells, they remain in continuous

proof-of-concept stages without clinical approval. Therefore,

enhancing product quality, refining manufacturing processes, and

reducing self-production time are crucial to address the challenges

faced by autologous CAR-T cells. Shortening the ex vivo culture

time has been shown to yield CAR-T cells with improved effector

function and reduced production costs (54). Several promising

methods for rapid CAR-T cell production have been explored,

such as the FasTCAR platform by Gracell Biotechnologies, which

produces CAR-T cells within a day and has demonstrated efficacy in

preclinical and clinical evaluations for R/R B-ALL (35).

Additionally, researchers at the University of Pennsylvania have

successfully prepared functional CAR-T cells within 24 hours by

directly transducing non-activated quiescent T cells (by lentivirus

vector), extending the survival of tumor-bearing mice (107).

Agarwalla et al. have developed an implantable Multifunctional

Alginate Scaffold for T Cell Engineering and Release (MASTER),

which integrates T cell activation, reprogramming, and in vivo

expansion, reducing manufacturing time to 1 day. CAR-T cells

produced using the MASTER scaffold have shown promising anti-

tumor activity in mouse xenograft models of lymphoma (36). These

rapidly manufactured CAR-T cells exhibit superior anti-tumor

activity and greater persistence compared to conventional CAR-T

cells, potentially offering a more cost-effective approach.

3.3 In vivo induced CAR-T cell therapy

Allogeneic universal CAR-T cells, while offering solutions to

immune rejection through gene editing, also raise safety concerns.
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A previous clinical trial of allogeneic CAR-T therapy was halted by

the FDA due to the emergence of chromosomal abnormalities

(108). Although investigations suggested the abnormality wasn’t

related to gene editing, safety concerns persist. A potential solution

lies in direct CAR-T cell generation in patients via a universally

applicable medicinal product containing the CAR gene. The

illustration of in vivo generation of CAR-T cells is depicted in

Figure 4 (109). This approach’s combination of simplicity, speed,

and cost-effectiveness makes it an attractive option for CAR-T cell

therapy. By leveraging the body’s natural processes, in vivo CAR-T

cell generation eliminates the requirement for ex vivo cell

manipulation and lengthy manufacturing processes. This

streamlined method not only reduces production time but also

lowers associated costs, potentially improving the accessibility of

CAR-T cell therapy to a broader patient population. Various vector

platforms are under exploration, including lentiviral vectors (LVs)

and nanoparticles (NPs) (110, 111). Lentiviral vectors (LVs) stand

as the predominant choice for ex vivo CAR-T cell transduction,

boasting stable gene integration, high transduction efficiency, and a

broad host range. Pioneering work by Buchholz et al. introduced the

pseudotyping of vectors with modified envelope proteins of Nipah

virus (Niv), enabling specific targeting of CD8 by fusing the

envelope protein to a CD8-specific single-chain variable fragment

(scFv) (112). Their study demonstrated that CD8-LV could directly

generate human CD19-CAR-T cells in NGS mice in vivo,

showcasing potent anti-tumor activity. Furthermore, Buchholz

et al. developed Niv-LV targeting CD3 and CD4, capable of

directly generating functional CAR-T cells in mice (113). Despite

LVs’ high transduction efficiency, the potential risk of insertional

mutagenesis remains a concern (114). In recent years, researchers

have explored virus-like particles (VLPs) as a novel vector. VLPs

retain viral proteins without containing a packaged genome,

combining viral vector targeting specificity with the transient

delivery advantages of non-viral vectors. Hamilton et al.

demonstrated the generation of gene-edited CAR-T cells in vivo

by packaging Cas9 RNPs into retroviral VLPs, offering a new

direction for future in vivo CAR-T cell generation, albeit with

potentially lower in vivo transduction efficiency compared to LVs

(115). Nanoparticles (NPs) have garnered significant attention as

gene delivery vehicles due to their low immunogenicity, cost-

effectiveness, and customizable production (116). Unlike the

complex machinery of viruses, gene delivery using NPs relies on

the physicochemical properties of the particles and payloads,

offering advantages such as payload flexibility and ease of

modification (117). The two primary types of nanocarriers used

in CAR-T cell development are lipid- and polymer-based NPs.

Numerous preclinical studies have successfully employed these

carriers to deliver CAR gene-containing DNA or mRNA into T

cells in vivo, leading to the on-site generation of CAR-T cells and

effective cytotoxic functions in small animal models. For instance,

Matthias T. Stephan’s team designed polymer nanoparticles

encapsulating CAR DNA and mRNA (118, 119), resulting in

anti-tumor efficacy comparable to CAR-T cells prepared using

traditional lentiviral vectors. In addition to antibody-targeted

nanocarriers, Daniel J. Siegwart’s team recently introduced a

Selective Organ Targeting (SORT) LNP capable of delivering
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mRNA to the spleen and locally generating CAR-T cells in a

controlled manner (120). The research into in vivo generation of

CAR-T cells has the potential to transform CAR-T cell therapy into

a widely adopted pharmaceutical treatment (109). This

advancement could significantly enhance clinical compliance and

substantially reduce costs (121). Amid the FDA’s recent warning

regarding secondary cancer risks following CAR-T cell infusion

treatments, the application of in vivo editing to transiently modify

CAR-T cells using mRNA offers a promising, potentially safer, and

cost-effective solution to address the existing challenges associated

with CAR-T cell therapy (122). By harnessing AI-based tools to

refine CAR design, the advancement of in vivo CAR-T cell

development stands poised to accelerate, offering a more

streamlined and effective approach toward overcoming the

current challenges in CAR-T cell therapy (123, 124).
4 Conclusions and prospects

CAR-T therapies have demonstrated unprecedented efficacy in

the treatment of hematologic malignancies. However, their

widespread application is impeded by high costs, lengthy

preparation time, safety concerns, and limited effectiveness. To

overcome these obstacles, a revolution in gene editing tools and

delivery vectors is necessary to establish new paradigms for CAR-T

cell therapy that surpass current Achilles heels. With the ongoing

refinement of gene editing tools and delivery vectors, highly potent

and super safe CAR-T cells are poised to become widely utilized in

clinical settings akin to conventional living drugs in the future. The

expansion and exploration of these technologies are opening new

possibilities for CAR-T cell therapy, offering patients more efficient,

secure, and affordable therapeutic options.
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33. Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, et al.
CAR T cells produced in vivo to treat cardiac injury. Sci (New York NY). (2022) 375:91–
6. doi: 10.1126/science.abm0594

34. Pfeiffer A, Thalheimer FB, Hartmann S, Frank AM, Bender RR, Danisch S, et al.
In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of
cytokine release syndrome. EMBO Mol Med. (2018) 10:e9158. doi: 10.15252/
emmm.201809158

35. Yang J, He J, Zhang X, Li J, Wang Z, Zhang Y, et al. Next-day manufacture
of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-
in-human clinical study. Blood Cancer J. (2022) 12:104. doi: 10.1038/s41408-022-
00694-6

36. Agarwalla P, Ogunnaike EA, Ahn S, Froehlich KA, Jansson A, Ligler FS,
et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and
release of CAR-T cells. Nat Biotechnol. (2022) 40:1250–8. doi: 10.1038/s41587-022-
01245-x

37. Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy
for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp
Hematol Oncol. (2023) 12:14. doi: 10.1186/s40164-023-00373-7

38. Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, et al. Harnessing
the potential of CAR-T cell therapy: progress, challenges, and future directions in
hematological and solid tumor treatments. J Trans Med. (2023) 21:449. doi: 10.1186/
s12967-023-04292-3

39. Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the
challenges of T cell exhaustion. EBioMedicine. (2022) 77:103941. doi: 10.1016/
j.ebiom.2022.103941

40. Levine BL, Pasquini MC, Connolly JE, Porter DL, GustafsonMP, Boelens JJ, et al.
Unanswered questions following reports of secondary Malignancies after CAR-T cell
therapy. Nat Med. (2024) 30:338–41. doi: 10.1038/s41591-023-02767-w

41. Jain MD, Smith M, Shah NN. How I treat refractory CRS and ICANS after CAR
T-cell therapy. Blood. (2023) 141:2430–42. doi: 10.1182/blood.2022017414

42. Blache U, Popp G, Dünkel A, Koehl U, Fricke S. Potential solutions for
manufacture of CAR T cells in cancer immunotherapy. Nat Commun. (2022)
13:5225. doi: 10.1038/s41467-022-32866-0
frontiersin.org

https://doi.org/10.1038/s41587-020-00749-8
https://doi.org/10.1038/s41587-020-00749-8
https://doi.org/10.1158/2159-8290.CD-12-0548
https://doi.org/10.1158/2159-8290.CD-12-0548
https://doi.org/10.1016/j.jcyt.2019.12.004
https://doi.org/10.1056/NEJMoa1709866
https://doi.org/10.1056/NEJMoa1804980
https://doi.org/10.1038/s41591-021-01622-0
https://doi.org/10.1016/S1470-2045(18)30864-7
https://doi.org/10.1016/S1470-2045(21)00591-X
https://doi.org/10.1056/NEJMoa1914347
https://doi.org/10.1016/S0140-6736(21)01222-8
https://doi.org/10.1016/S0140-6736(20)31366-0
https://doi.org/10.1056/NEJMoa2024850
https://doi.org/10.1016/S0140-6736(21)00933-8
https://doi.org/10.1038/s41571-023-00754-1
https://doi.org/10.1038/s41571-023-00754-1
https://doi.org/10.1038/s41591-022-01959-0
https://doi.org/10.1097/MOH.0000000000000723
https://doi.org/10.3390/cancers15041003
https://doi.org/10.1016/S0140-6736(23)01126-1
https://doi.org/10.1016/S0140-6736(23)01126-1
https://doi.org/10.1056/NEJMoa2308917
https://doi.org/10.1038/s41586-023-06243-w
https://doi.org/10.1038/s41586-023-06243-w
https://doi.org/10.1016/j.cell.2022.10.026
https://doi.org/10.1016/j.omtm.2016.12.006
https://doi.org/10.1016/j.omtm.2016.12.006
https://doi.org/10.1158/2643-3230.BCD-21-0084
https://doi.org/10.3389/fimmu.2022.876339
https://doi.org/10.3389/fimmu.2022.876339
https://doi.org/10.1038/s41573-023-00807-1
https://doi.org/10.1038/s41408-021-00459-7
https://doi.org/10.1038/s41571-019-0184-6
https://doi.org/10.1056/NEJMp2400209
https://doi.org/10.3389/fimmu.2021.799206
https://doi.org/10.1182/blood.2022017415
https://doi.org/10.1158/1078-0432.CCR-20-3863
https://doi.org/10.1158/1078-0432.CCR-20-3863
https://doi.org/10.1056/NEJMoa2300709
https://doi.org/10.1126/science.abm0594
https://doi.org/10.15252/emmm.201809158
https://doi.org/10.15252/emmm.201809158
https://doi.org/10.1038/s41408-022-00694-6
https://doi.org/10.1038/s41408-022-00694-6
https://doi.org/10.1038/s41587-022-01245-x
https://doi.org/10.1038/s41587-022-01245-x
https://doi.org/10.1186/s40164-023-00373-7
https://doi.org/10.1186/s12967-023-04292-3
https://doi.org/10.1186/s12967-023-04292-3
https://doi.org/10.1016/j.ebiom.2022.103941
https://doi.org/10.1016/j.ebiom.2022.103941
https://doi.org/10.1038/s41591-023-02767-w
https://doi.org/10.1182/blood.2022017414
https://doi.org/10.1038/s41467-022-32866-0
https://doi.org/10.3389/fimmu.2024.1409021
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1409021
43. Chong EA, Ruella M, Schuster SJ. Five-year outcomes for refractory B-cell
lymphomas with CAR T-cell therapy. N Engl J Med. (2021) 384:673–4. doi: 10.1056/
NEJMc2030164

44. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term
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