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Genetic association and causal
effects between inflammatory
bowel disease and conjunctivitis
Shuangqing Chang1*, Qinghua Luo2 and Zhifang Huang1

1Department of Anorectal Surgery, Jiangmen Wuyi Hospital of Traditional Chinese Medicine,
Jiangmen, China, 2Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
Background: Inflammatory bowel disease (IBD) is often clinically associated with

conjunctivitis, which may result from genetic associations and causal effects.

Methods: Genetic correlations were investigated through the genome-wide

association study (GWAS) data on IBD and conjunctivitis using the linkage

disequilibrium score regression (LDSC) and heritability estimated in summary

statistics (HESS). The causal effect analysis was performed using four methods of

Mendelian randomization (MR) and the genetic risk loci common to both

diseases were identified by the statistical method of conditional/conjoint false

discovery rate (cond/conjFDR), followed by genetic overlap analysis. Finally, a

multi-trait GWAS analysis (MTAG) was performed to validate the identified

shared loci.

Results: IBD (including CD and UC) and conjunctivitis showed a significant

overall correlation at the genomic level; however, the local correlation of IBD

and CD with conjunctivitis was significant and limited to chromosome 11. MR

analysis suggested a significant positive and non-significant negative correlation

between IBD (including CD and UC) and conjunctivitis. The conjFDR analysis

confirmed the genetic overlap between the two diseases. Additionally, MTAG

was employed to identify and validate multiple genetic risk loci.

Conclusion: The present study provides evidence of genetic structure and causal

effects for the co-morbidity between IBD (both CD and UC) and conjunctivitis,

expanding the epidemiologic understanding of the two diseases.
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inflammatory bowel disease, conjunctivitis, genetic association, genetic risk loci,
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1 Introduction

Inflammatory bowel disease (IBD) is a recurrent immune-

mediated disease with two subtypes, ulcerative colitis (UC) and

Crohn’s disease (CD), both characterized by chronic diarrhea,

abdominal pain, and hematochezia (1) with certain differences in

their lesion patterns. Specifically, UC occurs mostly in the

rectosigmoid colon showing fine granulomatous changes in the

mucosa, whereas, CD mainly involves the right colon and ileum

with cobblestone-like changes (2). According to the reports, 6.8

million people worldwide affected with IBD were reported in 2017

with a loss of 1.02 million healthy life years due to the resulting

disability, thereby ranking 4th among digestive diseases (3). In

addition, understanding the extra-intestinal manifestations (EIM)

of IBD is crucial, such as lesions in the eyes, joints, liver, and

mucous membranes of the skin (4). Reportedly, the prevalence of

ocular complications in patients with IBD is 3.5–11.8%. Of these,

conjunctivitis is the most common ocular condition characterized by

inflamed and swollen conjunctival tissues with vascular congestion,

ocular discharge, and pain (5, 6). Presently, the co-morbidity of IBD

and conjunctivitis is one of the major public health concerns.

Therefore, analysis of the genetic perspective of their common

genetic risk loci may be effective in disease management.

Although the investigation of the causal relationship between

IBD and conjunctivitis has been facilitated by the improvement of

genome-wide association studies (GWAS) in recent years (7, 8).

Based on GWAS data, a two-sample Mendelian randomization

(MR) analysis has demonstrated that IBD elevates the genetic

predisposition to allergic conjunctivitis (9). Furthermore, there is

sporadic evidence indicating that certain pleiotropic loci may

contribute to a potential association between these conditions.

For instance, the NOD2 gene, which heightens susceptibility to

IBD, may also play a role in the pathogenesis of vernal

keratoconjunctivitis through its overexpression (10). Nevertheless,

the investigation into shared genomic loci between IBD and

conjunctivitis remains sparse and underexplored. While analyzing

the genetic structures shared by two or more diseases, the

intersection of their respective positive GWAS significant loci

often generates negative results due to the phenomenon of

polygeny (11). Besides, increasing the sample size to obtain

significant results will require more personnel, money, and time

(12). Recently, several novel and reliable genetic statistical methods

have emerged that allow effective analysis of the genetic correlations

between the traits of two diseases. These methods have been

successfully employed in the study of the correlations between

glaucoma and depression (13), schizophrenia and cognitive level

(14), and IBD and psoriasis (15). Therefore, a similar approach was

utilized in the present study to improve the understanding of the

genetic association between IBD and conjunctivitis.

Briefly, IBD and conjunctivitis were initially analyzed to

determine their genetic correlations overall and locally using the

linkage disequilibrium score regression (LDSC) (16) and heritability

estimated in summary statistics (HESS) (17), respectively. Since
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MR, also known as a natural randomized controlled trial (RCT), is

based on the “random assignment of parental alleles to offspring”, it

eliminates the possible confounding factors. Therefore, MR was

used for causality analysis in the present study (18). Finally, the

identification of genetic risk loci between traits and the analysis of

genetic correlations of multiple overlapping genes were performed

using the conditional/conjoint false discovery rate method (con/

conjFDR) (19). We also conducted a multi-trait genome-wide

association study (MTAG) to validate the identified shared loci (20).
2 Materials and methods

2.1 GWAS data

Three datasets, including IBD (ID: ebi-a-GCST004131,

Ncase=25,042, Ncontrol=34,915), CD (ID: ebi-a-GCST004132,

Ncase=12,194, Ncontrol=28,072), and UC (ID: ebi-a-GCST004133,

Ncase=12,366, Ncontrol=33,609) from the IEU GWAS database

(https://gwas.mrcieu.ac.uk/) were selected based on the sample

size, number of SNPs, study ethnicity (Europe), and year of

publication. Moreover, GWAS data for conjunctivit is

(Ncase=32,417, Ncontrol=28,895) were obtained from the FinnGen

database (https://r10.finngen.fi/) (21).
2.2 Genetic correlation analysis

LDSC (version 1.0.1) measures the degree of genetic effects shared

by two traits and estimates their genetic correlation (or rg) (22). It is

the most significant parameter in the LDSC analysis and reflects the

degree of association and effect. The first step of the LDSC analysis

converted the GWAS summary statistics of the traits into the LDSC

representation according to the relevant and default parameters of

munge_sumstats.py. The second step calculated genetic correlations

for the traits using the −rg, -ref-ld-chr, and -w-ld-chr parameters as

reference. The tool (https://alkesgroup.broadinstitute.org/LDSCORE/)

provided pre-calculated linkage disequilibrium (LD) score files for

the -ref-ld-chr and -w-ld-chr markers. In addition, the LD reference

panel used for the analysis was derived from the European pedigree

information from the 1000 Genomes Project (23).
2.3 Local genetic correlation analysis

HESS calculates local SNP heritability and measures the degree of

similarity between two traits driven by genetic variation (17). The

process of calculating localized genetic correlations was as follows.

First, the genes encoding the trait under study were divided into 1,703

segments that were not correlated with a pre-specified LD, followed by

a chromosome-by-chromosome data processing. Finally, the

correlation analysis was performed at the chromosomal level

corresponding to the two traits. In addition, the statistically
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significant correlation of the HESS results was defined as p < 0.05/1703

= 2.94E−05 corrected with the Bonferroni method.
2.4 Mendelian randomization analysis

Potential causal associations between IBD and conjunctivitis were

evaluated using a bidirectional two-sample MR analysis following its

three main assumptions (24). In addition, the causal effects were

estimated mainly by the inverse variance weighted (IVW) (25), while

MR-Egger (26), weighted median (WM) (27), andmaximum likelihood

(ML) (28) methods supplemented the findings. In addition, pleiotropic

(26, 29), heterogeneity (30), and leave-one-out (31) analyses were

performed to ensure the quality, accuracy, and reliability of the

analyzed results. The entire MR analysis utilized the TwoSampleMR

R (https://mrcieu.github.io/TwoSampleMR/) and the MR-PRESSO R

software packages (https://github.com/rondolab/MR-).
2.5 Conditional quantile–quantile plots

The conditional quantile-quantile (QQ) plot depicted the cross-

phenotypic polygenic enrichment for two different traits. When the

proportion of SNPs associated with a primary phenotype (e.g., IBD)

continually increased with the strength of association with a

secondary phenotype (e.g., conjunctivitis), an enrichment

relationship was present between the two (32). Each QQ plot

demonstrated the distribution of the P value for the primary

phenotype, which was determined by its correlation with the

secondary phenotypes and was categorized as P < 0.10, P < 0.01,

and P < 0.001. The QQ plots were plotted using Python 3.5 at the

precimed package (https://github.com/precimed).
2.6 CondFDR/ConjFDR analysis

The condFDR/conjFDR method for gene identification

determined specific common loci not exceeding the significance

threshold based on GWAS data for both traits (33). The condFDR

methods were statistically based on the Bayesian method, which

generally identifies loci associated with major phenotypes according

to the association of secondary phenotypes (34). Initially, the test

statistics were reordered and subsequently, associations between

these variants and the primary phenotypes were recalculated.

Further, the primary and secondary phenotypes were subjected to

a backward process to obtain the backward condFDR values for

both traits. Next, the condFDR analysis was performed to identify

the common genetic loci.

To ensure amore accurate FDR related to the two traits, the highest

value of condFDR was selected as the conjFDR value. Eventually, gene

loci associated with the two phenotypes were detected. The conjFDR

was analyzed following the standard procedure mentioned on the

website (https://github.com/precimed/pleiofdr).
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2.7 Functional analysis

The condFDR/conjFDR analysis generated novel, common, and

specific loci. For subsequent positional mapping and functional

annotation, the functional mapping and annotation (FUMA)

protocol (https://fuma.ctglab.nl/) was used. The screening criteria

for independent significant SNPs were set to “conjFDR < 0.05” and

“r2 < 0.06”. In addition, the approximate LD of r2 < 0.1 indicated

lead SNPs. These mapped genes were subjected to functional

enrichment analysis using the enrichment analysis tool of the

Sangerbox platform (http://vip.sangerbox.com/) (35).
2.8 Cross-trait meta-analysis

We performed an MTAG analysis between IBD and

conjunctivitis using Python 3.11.5. Compared to conventional

single-trait GWAS analysis, MTAG leverages multi-trait GWAS

summary statistics for joint analysis, enhancing statistical power.

Furthermore, compared to other multi-trait whole-genome analysis

methods, it has a wider range of applicability (20).

3 Results

3.1 Genetic correlation

The results of LDSC analysis of IBD and conjunctivitis suggested a

genetic correlation Z-score of 4.58 and a rg value of 0.22 (p = 4.59e−06 <

0.05). Similarly, the Z-score and rg of CD were 4.28 and 0.22 (p = 1.84e

−05 < 0.05), respectively. The rg for UC was smaller (0.16, p = 4.1e−03 <

0.05) than that of IBD and CD. Consequently, a positive association

between either IBD or subtypes of IBD and conjunctivitis was observed.

Next, the local genetic correlation map showed a genetic overlap

of IBD and CD with conjunctivitis on chromosome 11; however, the

results for UC were not significant (Figures 1A–C). The resultant

data for specific analyses are shown in Supplementary Tables S1–S3.
3.2 Mendelian randomization

Tables 1, 2 demonstrate the final results of the correlation analysis

between IBD (including CD and UC) and conjunctivitis using four

methods. The forward MR analysis (IBD and subtypes as exposure

and conjunctivitis as outcome) suggested a positive causality in all

three cases (p < 0.05, Figures 2A–C, Table 1). Conversely, the

backward MR analysis did not demonstrate a causal effect of

conjunctivitis on IBD or its subtypes (Table 2). Moreover, none of

the six MR analyses showed significant pleiotropy (Tables 1, 2). The

F-statistics corresponding to all the instrumental variables were > 10,

indicating no bias in the weak instrumental variables. Further, in the

leave-one-out analysis (Figures 3A-F), SNPs showed a concentrated

distribution without evidence of any abnormal SNPs. The details of

the instrumental variables used in this study are mentioned in

Supplementary Tables S4–S9.
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3.3 Common genomic loci between IBD
(including CD and UC) and conjunctivitis
identified by ConjFDR analysis

The Q-Q plot (Figures 4A–F) indicated that either IBD

(including CD and UC) or conjunctivitis constantly shifted to the

left as the association p-value decreased. This phenomenon

suggested a strong correlation between the IBD subtypes

(including CD and UC) and conjunctivitis, in which multiple

genetic loci overlap. Thus, they exhibited genetic enrichment

while sharing the same genetic structure.

The results of the ConjFDR analysis identified common loci

between the two traits with a high level of confidence. Specifically,

17 common genetic risk loci were identified for IBD and

conjunctivitis according to the screening criterion “ConjFDR <

0.05”, of which 14 acted in the same direction for both diseases,

while the remaining 3 acted in the opposite direction (Figure 5A,

Supplementary Table S10). Similarly, 24 common risk loci were

identified for CD and conjunctivitis, with 19 acting in the same
Frontiers in Immunology 04
direction (Figure 5B, Supplementary Table S11). Besides, UC and

conjunctivitis shared the fewest number of genetic risk loci (11)

with 7 acting in the same direction (Figure 5C, Supplementary

Table S12).
3.4 Functional annotations

The candidate SNPs shared by IBD (including CD and UC)

with conjunctivitis were 1300, 1787, and 1118, respectively, with

predominantly intronic and intergenic functional attributes

(Figures 6A–C, Supplementary Tables S13–S15). In addition,

mapping genes were observed between them. Specifically, 65, 66,

and 56 mapping genes were enriched for IBD, CD, and UC with

conjunctivitis, respectively (Supplementary Tables S16–18), which

were more concentrated and distributed on chromosome 12

(Figures 7A–C).

Further, these mapping genes were subjected to the GO and

KEGG pathway enrichment analyses (Figures 8A-F). The GO
FIGURE 1

HESS analysis of conjunctivitis and IBD, CD and UC. The top and middle sections of each subgraph represent local genetic correlations and
covariances, respectively, and the colored bars represent loci with significant local genetic correlations and covariances. The bottom portion
represents the local snp heritability of an individual trait, and the colored bars represent loci with significant local snp heritability. (A) Local genetic
correlation between IBD and conjunctivitis. (B) Local genetic correlation between CD and conjunctivitis. (C) Local genetic correlation between UC
and conjunctivitis. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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enrichment analysis suggested their correlation with cytokine-

mediated and immune responses. While IBD and CD were

associated with helper T-cell differentiation, UC showed tyrosine

phosphorylation of STAT proteins and the regulation of the

interleukin-17 and interleukin-2 receptors. The KEGG analysis

generated similar results, where the JAK-STAT signaling pathway,

Th17 cell differentiation, and Th1 and Th2 cell differentiation

pathways were highlighted.
Frontiers in Immunology 05
3.5 MTAG

Following MTAG analysis and Fuma annotation, a total of 96

genetic risk loci were identified between IBD and conjunctivitis

(Supplementary Table S19). Validation results indicated that three

genes (RORC, AC10469.5.3, and AC10810.1) were corroborated by

both conjfdr and MTAG analyses (Figure 9A). Subsequent to

MTAG analysis, 78 genetic risk loci were uncovered in CD
TABLE 1 MR analysis of the causal association between IBD (including CD and UC) and conjunctivitis.

Exposures Outcomes nSNPs Method OR (95%CI) P
Heterogeneity test Pleiotropy

test F

Method Q P P intercept

IBD Conjunctivitis 90 IVW (mre) 1.05 (1.03-1.08) 7.49E-06 MR Egger 171.73 2.73E-07 0.55 29.86-500.60

WM 1.06 (1.02-1.09) 3.68E-04 IVW 172.41 2.82E-07

MR Egger 1.04 (0.97-1.10) 0.25

ML 1.06 (1.04-1.07) 3.7E-02

CD Conjunctivitis 73 IVW (mre) 1.04 (1.02-1.06) 5.37E-04 MR Egger 161.90 4.70E-09 0.80 30.15-489.58

WM 1.02 (1.00-1.05) 0.06 IVW 162.04 6.91E-09

MR Egger 1.03 (0.97-1.09) 0.29

ML 1.04 (1.02-1.05) 2.23E-07

UC Conjunctivitis 47 IVW (mre) 1.03 (1.00-1.06) 0.03 MR Egger 97.43 9.83E-06 0.74 30.47-186.78

WM 1.04 (1.00-1.07) 0.02 IVW 97.67 1.38E-05

MR Egger 1.02 (0.92-1.11) 0.04

ML 1.03 (1.01-1.05) 9.49E-03
IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis. IVW (mre), Inverse variance weighted (multiplicative random effects); IVW (fe), Inverse variance weighted (fixed
effects); WM, Weighted median; ML, Maximum likelihood.
TABLE 2 MR analysis of the causal association between conjunctivitis and IBD (including CD and UC).

Exposures Outcomes nSNPs Method OR (95%CI) P

Heterogeneity test Pleiotropy
test

F

Method Q P
P

intercept

Conjunctivitis IBD 6 IVW (fe) 1.07 (0.87-1.31) 0.51 MR Egger 4.00 0.41 0.75 31.23-50.61

WM 1.17 (0.92-1.49) 0.19 IVW 4.12 0.53

MR Egger 0.89 (0.29-2.67) 0.84

ML 1.07 (0.88-1.31) 0.51

Conjunctivitis CD 5 IVW (fe) 1.31 (1.00-1.72) 0.70 MR Egger 3.42 0.33 0.38 32.25-50.61

WM 1.37 (0.97-1.92) 0.34 IVW 4.63 0.33

MR Egger 3.16 (0.58-17.27) 0.35

ML 1.32 (1.00-1.73) 0.70

Conjunctivitis UC 6 IVW (fe) 1.01 (0.78-1.31) 0.81 MR Egger 2.53 0.64 0.74 31.23-50.61

WM 1.06 (0.78-1.44) 0.83 IVW 2.66 0.75

MR Egger 1.30 (0.32-5.30) 0.78

ML 1.01 (0.78-1.31) 0.69
IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis. IVW (mre), Inverse variance weighted (multiplicative random effects); IVW (fe), Inverse variance weighted (fixed
effects); WM, Weighted median; ML, Maximum likelihood.
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(Supplementary Table S20), with validation of four genes

(AC10469.5.3, ZBTB38, AC10810.1, and IL2RA) evident in the

findings (Figure 9B). In the case of UC, a total of 48 genetic risk loci

were obtained (Supplementary Table S21), with no shared genes

identified through validation processes (Figure 9C).
4 Discussion

Our study results provided an overall assessment of the

epidemiology of IBD (including CD and UC) and conjunctivitis
Frontiers in Immunology 06
and identified a similar genetic structure between them. Results

revealed that IBD (including CD and UC) and conjunctivitis were

genetically correlated overall while showing localized correlation on

chromosome 11. Moreover, IBD (including CD and UC) had

positive causality for conjunctivitis; however, the reverse

phenomenon was not observed. In addition, condFDR/conjFDR

analyses identified 17 genetic risk loci between IBD and

conjunctivitis, whereas 24 and 11 genetic risk loci were shared

between CD and UC with conjunctivitis, respectively. Finally, their

mapping genes were associated with immune and cytokine

regulation. Collectively, these results suggested that the genetic
FIGURE 2

(A) Scatter plot for MR analyses of the causal effect of IBD on conjunctivitis. The slope of each line corresponding to the estimated MR effect per
method. (B) Scatter plot for MR analyses of the causal effect of CD on conjunctivitis. (C) Scatter plot for MR analyses of the causal effect of UC on
conjunctivitis. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
FIGURE 3

(A) Forest plot for the leave-one-out analysis of IBD on conjunctivitis. (B) Forest plot for the leave-one-out analysis of CD on conjunctivitis.
(C) Forest plot for the leave-one-out analysis of UC on conjunctivitis. (D) Forest plot for the leave-one-out analysis of conjunctivitis on IBD.
(E) Forest plot for the leave-one-out analysis of conjunctivitis on CD. (F) Forest plot for the leave-one-out analysis of conjunctivitis on UC.
IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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association between IBD (including CD and UC) and conjunctivitis

was mainly due to overlapping genetic structures and causal effects.

The association between IBD and conjunctivitis is well

established. According to a prospective study involving 116

patients with IBD, 34 developed ocular abnormalities, and 10

were affected with conjunctivitis (36). Another study also

reported that IBD could lead to conjunctivitis (37), and meta-

analyses on the relationship between IBD and conjunctivitis also

reported consistent results (38). However, contradictory findings

were also reported. A study involving a French population of IBD

patients revealed that ocular inflammatory conditions, such as

conjunctivitis were not associated with IBD (39). Nevertheless,

several of the above-mentioned studies were influenced by

confounding factors, such as the use of immunomodulators and/

or anti-TNF drugs. The present study investigated a genetic

perspective involving the SNPs, thereby effectively avoiding the

confounding factors. Moreover, our findings highlighted the causal

association of the two diseases and provided evidence of their

genetic structure for co-morbidities. Additionally, the genetic

association of conjunctivitis was more pronounced with CD than

with UC, as confirmed by previous reports (38, 40). While CD is

characterized by transmural inflammation of the intestine that can

affect any part of the gastrointestinal tract from the oral cavity to the

perineum, UC is limited to the mucosal layer of the colon (2). In

addition, the CD has important immunologic differences compared

with UC (41). These differences between the two subtypes of IBD

may contribute to the aforementioned discrepancies.
Frontiers in Immunology 07
The concept of the “gut-retina” axis has been one of the current

hotspots of biological research since its introduction (42). It is

closely related to the homeostasis of the ocular immune system and

is critically involved in various ocular diseases, such as

conjunctivitis, uveitis, and diabetic retinopathy (43). The “gut-

retina” axis has become a new area of basic and clinical research

in ophthalmology. Some studies have also reported the possible

pathways for the formation and alteration of intestinal flora-ocular

surface-lacrimal gland axis (44). Since IBD and conjunctivitis are

immune-mediated disorders and are inter-connected, they may

form this “gut-retina” axis in which genetic structural overlap

may be a potential basis for the mechanism of action involved.

Next, the enrichment analysis of IL17 and Th17 obtained

significant results. IL-17, a well-known pro-inflammatory factor,

plays an important role in response to injury, physiological stress,

and infection, thus maintaining health (45). Recent epidemiological

studies indicate that serum IL-17 levels are significantly higher in

patients with UC, CD, and vernal keratoconjunctivitis compared to

healthy individuals, suggesting IL-17’s potential as a biomarker for

inflammatory diseases (46, 47). In addition, the IL-17 cytokine axis

is associated with diseases affecting the eyes and the gut (48). Tool-

targeted IL-17 pathways may be of great importance in patients

with hormone-resistant conjunctivitis (49). In a recent retrospective

study, IL-17 inhibitors cured 24 patients with new-onset IBD (50).

Moreover, Th17, a T-cell lineage distinct from Th1 and Th2 cells, is

a novel type of pre-inflammatory T effector cell (51). In a recent

mouse model of allergic conjunctivitis, stimulation and activation of
FIGURE 4

Conditional quantile-quantile plot. The dashed line indicates the expected line under the null hypothesis, and the deflection to the left indicates the
degree of pleiotropic enrichment. (A) IBD-conjunctivitis. (B) conjunctivitis-IBD. (C) CD-conjunctivitis. (D) conjunctivitis-CD. (E) UC-conjunctivitis.
(F) conjunctivitis-UC. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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the Th17 cytokines IL-17A and IL-17F, as well as the specific

transcription factor RORgt, suggest that developmental

enhancement can exacerbate Th2 dominant allergic inflammation

in conjunctivitis (52). In addition, inhibition of the Th17

differentiation relieved the inflammatory symptoms of IBD (53).

The genes identified through conjfdr and MTAG analyses are

worthy of attention. RORC is a protein-coding gene that regulates

the polarization and function of Th17 cells, and is associated with

autoimmune diseases and inflammation (54). RORC can facilitate

the production of IL21, IL22, and IL17, thereby stimulating Th17

cells to maintain the inflammatory response in IBD (55). In a

murine model, it was discovered that the methylation of RORC

regulates the changes in Th1/Th17 cells to participate in the

immune response of conjunctivitis (56). As an inflammation-

related lncRNA, AC104695.3 may be involved in the pathogenesis

of inflammatory diseases such as IBD and conjunctivitis (57). In a

recent GWAS study, ZBTB38 has been identified as a susceptibility
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gene for CD (58). In the genetic analysis of myopia control, it was

discovered that ZBTB38 has an impact on the conjunctival area

(59). IL2RA is an important regulatory factor of immune function.

On one hand, IL2RA can increase the expression of CD25 and

activate the IL-2 pathway in peripheral CD4 T cells. On the other

hand, it can also enhance the responsiveness of CD4 T cells to T cell

receptor stimulation, ultimately inducing IBD (60). The IL2RA

enhancer variant can modulate the response to IL-2 signaling,

thereby impacting the immune defense process of CD cells (61).

The expression of IL2RA is closely associated with the severity of

inflammation in the conjunctivitis mouse model (62).

Despite several significant findings, the present study had some

limitations. First, it is impossible to completely negate the

occurrence of LD. Although these methods (LDSC, HESS, MR,

conjFDR,and MTAG) substantially reduced the possibility of

sample overlap, the exaggeration of cross-trait enrichment results

due to overlapping participants cannot be ruled out. In addition,
FIGURE 5

(A) ConjFDR Manhattan plot of IBD and conjunctivitis. (B) ConjFDR Manhattan plot of CD and conjunctivitis. (B) ConjFDR Manhattan plot of UC and
conjunctivitis. The shared risk loci between conjunctivitis and IBD, CD and UC were marked. The statistically significant causality is defined to be
conjFDR <0.05. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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certain unavoidable factors, such as behavioral, social, and

environmental factors persisted. The current GWAS data

involved individuals of European ancestry; therefore, the results

cannot be generalized to the non-European populations. The

statistical power of GWAS is contingent upon sample size. A
Frontiers in Immunology 09
larger sample size yields greater statistical power and identifies

more loci of risk, thus justifying further scrutiny of larger

independent cohorts in future studies.While experimental

validation was not conducted, our findings can serve as a

reference for future research on cell biology mechanisms.
FIGURE 6

(A) The distribution of functional attributes of candidate SNPS between IBD and conjunctivitis. (B) The distribution of functional attributes of
candidate SNPS between CD and conjunctivitis. (C) The distribution of functional attributes of candidate SNPS between UC and conjunctivitis.
IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
FIGURE 7

Distribution of mapping genes on chromosomes. (A) IBD-conjunctivitis. (B) CD-conjunctivitis. (C) UC-conjunctivitis.
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5 Conclusion

In conclusion, this study expands the understanding of the

genetic structure and causal relationship between IBD (including
Frontiers in Immunology 10
CD and UC) and conjunctivitis by contributing to the previous

epidemiologic studies. Thus, our findings would benefit the current

treatment of the comorbidity between IBD (including CD and UC)

and conjunctivitis.
FIGURE 9

(A) Intersection gene map of IBD and conjunctivitis after conjfdr and MTAG analysis. (B) Intersection gene map of CD and conjunctivitis after
conjfdr and MTAG analysis. (C) Intersection gene map of UC and conjunctivitis after conjfdr and MTAG analysis. IBD, inflammatory bowel disease;
CD, Crohn’s disease; UC, ulcerative colitis.
FIGURE 8

(A) GO enrichment analysis of mapped genes between IBD and conjunctivitis. (B) KEGG enrichment analysis of mapped genes between IBD and
conjunctivitis. (C) GO enrichment analysis of mapped genes between CD and conjunctivitis. (D) KEGG enrichment analysis of mapped genes
between CD and conjunctivitis. (E) GO enrichment analysis of mapped genes between UC and conjunctivitis. (F) KEGG enrichment analysis of
mapped genes between UC and conjunctivitis. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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et al. New-onset inflammatory bowel diseases among IL-17 inhibitor-treated patients:
results from the case-control MISSIL study. Rheumatol (Oxford). (2022) 61:2848–55.
doi: 10.1093/rheumatology/keab819

51. Vocca L, Di Sano C, Uasuf CG, Sala A, Riccobono L, Gangemi S, et al. IL-33/ST2
axis controls Th2/IL-31 and Th17 immune response in allergic airway diseases.
Immunobiology. (2015) 220:954–63. doi: 10.1016/j.imbio.2015.02.005

52. Wang Y-H, Voo KS, Liu B, Chen C-Y, Uygungil B, Spoede W, et al. A novel
subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17
cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med. (2010)
207:2479–91. doi: 10.1084/jem.20101376

53. Gu Z, Chen X, Zhu D, Wu S, Yu C. Histone deacetylase 1 and 3 inhibitors
alleviate colon inflammation by inhibiting Th17 cell differentiation. J Clin Lab Anal.
(2022) 36:e24699. doi: 10.1002/jcla.24699

54. Yahia-Cherbal H, Rybczynska M, Lovecchio D, Stephen T, Lescale C, Placek K,
et al. NFAT primes the human RORC locus for RORgt expression in CD4+ T cells. Nat
Commun. (2019) 10:4698. doi: 10.1038/s41467-019-12680-x

55. Fransen K, van Sommeren S, Westra H-J, Veenstra M, Lamberts LE,
Modderman R, et al. Correlation of genetic risk and messenger RNA expression in a
th17/IL23 pathway analysis in inflammatory bowel disease. Inflamml Bowel Dis. (2014)
20:777–82. doi: 10.1097/MIB.0000000000000013

56. Qiu Y, Zhu Y, Yu H, Zhou C, Kijlstra A, Yang P. Dynamic DNA methylation
changes of tbx21 and rorc during experimental autoimmune uveitis in mice.Mediators
Inflammation. (2018) 2018:9129163. doi: 10.1155/2018/9129163

57. Zhang S, Li X, Tang C, Kuang W. Inflammation-related long non-coding RNA
signature predicts the prognosis of gastric carcinoma. Front Genet. (2021) 12:736766.
doi: 10.3389/fgene.2021.736766

58. Kim K, Oh SJ, Lee J, Kwon A, Yu C-Y, Kim S, et al. Regulatory variants on the
leukocyte immunoglobulin-like receptor gene cluster are associated with Crohn’s
disease and interact with regulatory variants for TAP2. J Crohns Colitis. (2024)
18:47–53. doi: 10.1093/ecco-jcc/jjad127

59. Alvarez-Peregrina C, Sánchez-Tena MÁ, Martinez-Perez C, Santiago-Dorrego
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