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Ischemic heart disease (IHD) can trigger responses from the innate immune

system, provoke aseptic inflammatory processes, and result in the recruitment

and accumulation of neutrophils. Excessive recruitment of neutrophils is a

potential driver of persistent cardiac inflammation. Once recruited, neutrophils

are capable of secreting a plethora of inflammatory and chemotactic agents that

intensify the inflammatory cascade. Additionally, neutrophils may obstruct

microvasculature within the inflamed region, further augmenting myocardial

injury in the context of IHD. Immune-related molecules mediate the recruitment

process of neutrophils, such as immune receptors and ligands, immune active

molecules, and immunocytes. Non-immune-related molecular pathways

represented by pro-resolving lipid mediators are also involved in the regulation

of NR. Finally, we discuss novel regulating strategies, including targeted

intervention, agents, and phytochemical strategies. This review describes in as

much detail as possible the upstream molecular mechanism and external

intervention strategies for regulating NR, which represents a promising

therapeutic avenue for IHD.
KEYWORDS

neutrophil recruitment, immunoinflammation, ischemic heart disease, aseptic
inflammation, innate immunity
1 Introduction

Neutrophils, representing the predominant fraction of granulocytes in the majority of

mammalian species, serve an integral function within the innate immune defense

mechanism. They are short-lived, nonspecific, and highly mobile, enabling entry into the

tissue where other cells/molecules cannot invade. Aseptic inflammation is the main
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response of innate immunity and the necessary condition to trigger

and drive vascular diseases. After the onset of aseptic inflammation,

neutrophils are the first leukocytes to be recruited to the site of

inflammation and subsequently promote the immune response (1).

A moderate immune response coordinates a beneficial dynamic

homeostatic response and contributes to tissue repair, while an

exaggerated response can cause additional damage. Ischemic heart

diseases (IHD), such as myocardial infarction (MI), myocardial

ischemia-reperfusion(I/R) injury, and heart failure (HF), can initiate

innate immune responses, induce aseptic inflammation (2), and

culminate in the mobilization and proliferation of neutrophils (3).

Neutrophil recruitment (NR) is pivotal in mediating the aseptic

inflammatory response associated with IHD (3). Pathological

recruitment of neutrophils is triggered by changes in the surface of

endothelial cells caused by inflammatory mediator (including

histamine, cysteinyl leukotrienes, and cytokines) stimulation (4–7).

Once recruited, neutrophils can release various inflammatory and

chemotactic mediators that cause cell damage and in turn further

facilitate the recruitmentprocess; it canalsoblock small bloodvessels at

the site of inflammation, thereby impeding blood flow (8, 9). Animal

studies and clinical studies have demonstrated that increased

neutrophil counts correlate with the severity of coronary artery

damage in patients with coronary artery disease (CAD) (10, 11).

Neutrophil-to-leukocyte ratio (NLR) has been shown to be an

independent predictor of outcome in patients with stable CAD, as

well as a predictor of short- and long-term mortality in patients with

acute coronary syndrome (ACS), ST-segment elevation myocardial

infarction (STEMI), and heart transplantation (12–14). Consequently,

the recruitment and subsequent accumulation of neutrophils may

serve as key determinants of sustained cardiac inflammation in the

context of IHD. Therapeutic modulation and inhibition of these

processes may prove beneficial in attenuating myocardial

inflammation and impeding the advancement of IHD pathology.

Recent studies have predominantly directed attention toward

elucidating the global contribution of neutrophils to ischemic heart

disease pathophysiology. In contrast, the mechanisms governing

neutrophil recruitment have been comparatively underexplored,

largely attributable to the pronounced heterogeneity in initiating

signals for neutrophil recruitment across diverse tissue (15, 16). In

recent years, the upstream molecular mechanism and external

intervention strategies for regulating NR have attracted the attention

of many scholars, and many satisfactory results have been obtained.

However, the findings have not been systematically summarized. This

paper intends to summarize the specific process and influence ofNR in

IHD, as well as the molecular mechanism of regulating NR and

effective intervention measures, in order to provide ideas for the

study of ischemic heart disease from this perspective.
2 Cascade reactions of NR in IHD

NR is considered to be a series of cascade reactions: tethering,

rolling, adhesion, crawling, and transmigration.When cardiac ischemia

occurs, aseptic inflammation induces inflammatory mediators to

stimulate endothelial cells. P-selectin and E-selectin bind to their

glycosylated ligands, allowing neutrophils to be tethered and trapped
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in fast-flowing blood and subsequently roll with the flow along the

vascular endothelium. Chemokines activate neutrophils by binding to

their receptors. Then, neutrophils express integrins (LFA1 and MAC1)

binding to endothelial surface adhesion molecule (ICAM-1/ICAM-2),

promoting stable adhesion of neutrophils to vascular endothelial cells.

Finally, neutrophils crawl at the endothelial cell-cell junction, release

protease to digest the endothelial basement membrane (EBM), and

complete vertical transmigration through paracellular (between

endothelial cells) and transcellular (through endothelial cells). The

process of transmigration also requires the involvement of integrins,

CAM, and multiple connexins.
3 Role of NR in IHD

3.1 Atherosclerosis

Neutrophils are the main cell group interacting with

atherosclerotic endothelium, as well as the main cell component of

atherosclerotic lesions. Clinical and experimental investigations have

consistently demonstrated a marked presence of neutrophils within

aortic plaques, particularly concentrated in the shoulder regionswhere

inflammatory activity is notably heightened (17, 18). NR plays an

important role in atherosclerosis andplaque rupture. First, neutrophils

recruited in the plaque will release granular protein, which will be

deposited in endothelial cells and vascular walls to adhere to

monocytes, activate macrophages, release proinflammatory factors,

and thus aggravate the inflammatory response. Secondly, the

proteolytic enzyme released by granular protein can weaken the

fibrous cap and promote plaque rupture. Finally, myeloperase

(MPO) released by granular protein induces vascular endothelial cell

apoptosis by reducing the utilization of NO, leading to plaque erosion

(19). Inaddition, cholesterol crystals in plaques also triggerneutrophils

to release neutrophil extracellular traps (NETs), which indirectly

promote NR in atherosclerotic plaques by promoting the release of

macrophages and activating T-helper 17 (TH17) cells (Figure 1).
3.2 Myocardial infarction

Myocardial infarction can quickly activate the innate immune

pathway, and trigger a strong inflammatory response in the early stage.

The necrosis of myocardial cells and stroma will promote the

occurrence of damage related molecule pattern (DAMP) (20), which

can be recognized by toll-like receptor (TLR), and promote the

activation of innate immune cells and inflammation (21). The

inflammatory response caused a marked upregulation of

chemokines in the infarcted myocardium, which facilitated the onset

of theNR.Meanwhile, ROSmediated bymyocardial ischemia can also

promoteNR.Theprocess ofneutrophil recruitmentchangedwith time

after myocardial infarction. Histological examination showed that

neutrophils appeared 12–24 hours after the ischemic attack and

reached the peak on the third day, which suggested that neutrophils

were recruited most in the early stage (1–3 days) after myocardial

infarction and were mainly N1 polarized proinflammatory

neutrophils. From the 5th to the 7th day, the proportion of N2
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polarized anti-inflammatory neutrophils increased (22, 23). After 7

days, neutrophils began to disappear from the infarcted area, and

lymphocytes and monocytes gradually increased (24). It should be

noted that the transmigrationof neutrophils through the endothelium,

the core step of NR, occurs in both ischemic and border regions.
3.3 Myocardial ischemia-reperfusion injury

Neutrophils are themain typeof inflammatory cells inmyocardial I/

R injury. The pathologicalmechanism ofNR inmyocardial I/R injury is

consistent with that of myocardial infarction, as both involve aseptic

inflammatory reactions triggered by the activation of innate immune

pathways. Myocardial ischemia mainly affects the myocardial tissue in

the central necrotic area of the occluded coronary artery perfusion area.

The process of reperfusion limits the infarct size of the central necrotic

area but starts molecular events that lead to lethal reperfusion injury in

the border area (25). After permanent coronary artery occlusion,

neutrophil infiltration is mainly limited to the edge of the infarcted

area. The process of reperfusion changes the distribution of neutrophils,

making them recruit in the infarcted area of the myocardium (24).

Neutrophils infiltrate into the infarcted area, producing a large number

of reactive oxygen species (ROS) and proteolytic enzymes (26),

aggravating the damage of myocardial tissue, which in turn maximally

recruited and activated more neutrophils, forming a vicious circle.
3.4 Heart failure

Acute inflammation is an essential mechanism for heart repair and

defense after injury. Systemic inflammation has been recognized as a

pathobiological featureof acute andchronicheart failure, associatedwith

the development, progression, and complications of HF, and predicted

adverse outcomes independently of other clinical parameters such as left

ventricular ejection fraction (27). The timely clearance of neutrophils is
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thefirst critical step in the regression of inflammation during the healing

process after MI-induced myocardial injury. The production of locally

endogenous peptides/bioactive lipids by neutrophil terminates NR,

which is a marker of inflammation resolution. However, if neutrophils

are not cleared on time and remain in a state of continuous recruitment,

chronic inflammation and advanced heart failure will occur (28). The

innate immune system is active in patients with chronic heart failure,

accompanied by a persistent chronic inflammatory response.

Neutrophils recruited into the myocardium release more pro-

inflammatory factors than anti-inflammatory factors, which can

further exacerbate myocardial damage and cardiac decline. It has been

shown that higher neutrophil levels in the first 12 hours after acute

myocardial infarction predict the development of chronic HF (29).
3.5 Myocardial fibrosis and
cardiac remodeling

Inflammation plays a key role in poor ventricular remodeling and

decreased cardiac function after injury (30). Overactive inflammatory

signaling can aggravate myocardial damage and lead to poor cardiac

remodeling. The N2-type neutrophils express anti-inflammatory

molecules in the late stage of cardiac remodeling, and their

proportion increases continuously after myocardial infarction,

reaching nearly 20% on the 7th day (23). On day 3 of myocardial

infarction, neutrophils initiate apoptosis, reduce inflammatory

signaling, and begin to help ECM reorganize. Neutrophils recruited

to the infarct area remove dead cells and matrix debris by phagocytosis

in preparation for scarring in the area. On days 5 to 7 of myocardial

infarction, neutrophils produce ECM proteins needed for scarring,

including fibronectin, Gal-3, and fibrinogen (31). In addition, the heme

MPO released by the primary granules of neutrophils can promote the

deposition of myocardial collagen in the atrium and ventricle, which is

the key medium for myocardial remodeling. Recruitment of

neutrophils leads to increased concentrations of MPO, and the

oxidant produced by MPO can lead to impaired myocardial function

and poor ventricular remodeling after myocardial infarction (32, 33).

Therefore, over recruitment of neutrophils leads to excessive

myocardial collagen deposition and ECM remodeling, leading to the

formation of mature scars, promoting myocardial fibrosis, and

compromising organ compliance (Figure 1).
4 Molecular mechanisms regulating
NR in IHD

4.1 Immune-related
molecular mechanisms

4.1.1 Immune receptors and ligands
Immune receptors and their corresponding ligands are

instrumental in mediating the homing of neutrophils to ischemic

myocardial tissue. For example, transmembrane protein receptor

dectin-1 can promote the expression of chemokine CXCL1 and

granulocyte colony-stimulating factor (G-CSF) in macrophages

through the spleen tyrosine kinase (Syk)/nuclear factor kappa-B(NF-
FIGURE 1

Pathological processes of different IHD involving neutrophils.
Neutrophil recruitment takes place in various pathological processes
of different IHD. Neutrophil recruitment enhances atherosclerotic
plaque formation, exacerbates inflammatory responses and
myocardial injury during myocardial infarction and reperfusion
injury, speeds up myocardial fibrosis and ventricular remodeling,
resulting in persistent chronic inflammation and facilitating the onset
of late-stage heart failure. Created by BioRender.
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kB) signaling pathway, and can also regulate the production of

interleukin (IL) 23 and IL-1b, affecting neutrophil recruitment and

myocardial I/R injury (34). The upregulation of NF-kB p65 expression

in ECs increases the expression of adhesion molecules, leading to

robust infiltration of neutrophils and disorganization/degradation of

ECM in the myocardial ischemic border zone (35). TLR can affect

signal transduction of its downstream protein myeloid differentiation

primary response gene 88(MyD88) or TIR domain-containing adaptor

inducing interferon (TRIF) -b, initiating neutrophil recruitment in the

I/R myocardium (36). In addition, in animal models of heart failure,

fibrinogen (FN) can act as a ligand for TLR2 and TLR4, promote the

process of neutrophil adhesion by regulating TLR and cardiac

endothelial cell adhesion molecules, and participate in neutrophil

recruitment (30) (Table 1; Figure 2).
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4.1.2 Immune-active molecule
Many immune-active molecules, encompassing a diverse array of

cytokines, exert influence over the process of neutrophil recruitment in

the context of IHD. Growth differentiation factor (GDF)-15, a

transforming growth factor beta (TGF-b)-related cytokine, is an

inhibitor of leukocyte integrin activation required for survival after

myocardial infarction in mice and inhibits NR process in mice

through anaplastic lymphoma kinase (ALK)-5/TGF-bRII heterodimer

(37, 38). IL-1b, secreted bymacrophages, upregulates the T-cell-derived

cytokine IL-17, which drives the chemokines CXCL1 and CXCL2 to

promote NR and amplify the inflammatory response (39). Tumor

necrosis factor (TNF) a and TNFb also enhance the activation and

recruitment of neutrophils in the myocardium, thereby further

damaging the myocardium (42). Type I interferons can rely on the
TABLE 1 Immune-related regulatory mediators of NR in IHD pathophysiology.

Key Mediators Effect on NR Function IHD diseases Ref.

Immune receptors

Dectin-1 Promote

Promote CXCL1 and G-
CSF through Syk/NF-kB

signaling pathway,
regulate the production of

IL-23 and IL-1b

Myocardial I/R injury (34)

TLR Promote Affect MyD88 or TRIF-b Myocardial I/R injury (36)

NF-kB p65 Promote
Increase the expression of

adhesion molecules
MI, Myocardial I/

R injury
(35)

Immune ligands fibrinogen Promote
As a ligand for TLR-2 and

TLR-4, promote
neutrophil adhesion

HF (30)

Immune-active molecule

GDF-15 Inhibit
Through the ALK-5/TGF-

bRII heterodimer
MI (37, 38)

IL-1b, IL-17 Promote
Drives the chemokines
CXCL1 and CXCL2

AS (39–41)

TNFa, TNFb Promote
Contributes to the
development of

contractile dysfunction
IR, HF (42)

Type I interferons Promote
Rely on the TLR4/TRIF
pathway to promote
neutrophil adhesion

Myocardial I/R injury (36)

Immunocyte

macrophage Promote

Facilitate the
transendothelial migration
through TLR9/MyD88/

CXCL5 signaling

Myocardial I/R injury (43)

mast cell Promote
Cause vascular fluid
leakage and edema

Myocardial I/R injury (44)

Natural killer (NK) cells
and T lymphocytes

Promote

Produce inflammatory
mediators to stimulate
resident macrophages to

attract neutrophils

MI (45)

Platelets Promote
Promote neutrophils

activation and adhesion
Myocardial I/R injury (46)

Complement System C5 Promote
Upregulate CD11b/CD18

and cause
transendothelial migration

HF (47)
ALK, anaplastic lymphoma kinase; G-CSF, granulocyte colony-stimulating factor; GDF, growth differentiation factor; IL,interleukin; I/R, ischemia reperfusion; MI, myocardial infarction;
MyD88, myeloid differentiation primary response gene 88; NF-kB, nuclear factor kappa-B;TGF, transforming growth factor; TLR, toll-like receptor; TRIF, TIR domain-containing adaptor
inducing interferon; Syk, spleen tyrosine kinase.
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TLR4/TRIF pathway to promote neutrophil adhesion to coronary

endothelial cells, thus coordinating neutrophil recruitment to injured

myocytes (36).

4.1.3 Immunocyte
Various subtypes of macrophages are primarily responsible for

encouraging the recruitment of neutrophils in IHD. The cytokine

interleukin-1b (IL-1b) secreted by macrophages can up-regulate the

T-cell-derived cytokine IL-17, which drives the chemokines CXCL1

and CXCL2 to promote neutrophil recruitment and amplify

inflammation (43). Heart-resident CCR2+ macrophages facilitate

the transendothelial migration of neutrophils into injured hearts

through TLR9/MyD88/CXCL5 signaling (43). In addition, the

process of degranulation and mediator release of mast cells

contributes to the inflammatory response, causing vascular fluid

leakage and edema, and promoting NR (44). Natural killer (NK)

cells and T lymphocytes produce inflammatory mediators such as

IFN-g, which stimulate resident macrophages to attract neutrophils

to cardiac tissue (45). Platelets can also aggravate myocardial I/R

damage by promoting neutrophil activation and adhesion (46).

4.1.4 Complement system
When myocardial ischemia occurs, inflammation stimulates

complement activation and accelerates neutrophil adherence. The

strong neutrophil attraction of C5a causes neutrophils to adhere

firmly to endothelial cells by upregulating CD11b/CD18 (Mac-1)

and causing transendothelial migration (48). In addition, C5a also

stimulates neutrophils to produce superoxide, which aggravates the

occurrence of oxidative stress (49). Therefore, inhibition of C5 may

reduce neutrophil infiltration during myocardial I/R injury in a

manner that provides cardiac protection (47) (Table 1; Figure 2).
4.2 Non-immune-related
molecular mechanisms

Numerous pro-resolving lipid mediators that are produced by

neutrophils in turn affect their own recruitment. For example, lipid
Frontiers in Immunology 05
toxin A4, a dual anti-inflammatory and pro-resolution lipid

mediator, induces changes in the phosphorylation of cytoskeletal

proteins, leading to inhibition of neutrophil migration (50, 51). The

protectins can also play a similar role in inhibiting neutrophil

infiltration (52). Annexins are a widely distributed class of

calcium-dependent phospholipid binding proteins. Annexin 1

inhibits neutrophil adhesion and migration in a mitogen-activated

protein kinase (MAPK)-dependent manner via formyl peptide

receptor (FPR) signaling (53–55), and its mimics exhibit the same

cardioprotective effect through modulation of immune cell

activation in myocardial infarction (56).

Various proteins released in physiological or pathological states

affect the recruitment process of neutrophils and become biomarkers

of inflammatory response in IHD. Angiopoietin-2 (Angpt2),

recognized as a biomarker of poor outcome in IHD, plays a critical

role in MI. In the acute phase of MI, endothelial-derived Angpt2

antagonized Angpt1/Tie2 signaling, which was greatly involved in

increased adhesion molecular expression, enhanced neutrophil

infiltration, and intensified inflammatory response (35). S100A8∕A9,

a kind of Ca2+ binding protein, has become a valuable biomarker and

treatment target to detect and modulate neutrophil involvement in

myocardial infarction. Studies have shown that its blockers can

significantly reduce neutrophil infiltration in infarcted hearts (57).

Developmental endothelial site-1 (DEL-1) is an anti-inflammatory

glycoprotein whose deficiency exacerbates pressure overload-induced

heart failure by promoting neutrophil infiltration and the formation

of neutrophil extracellular traps (58). transcriptional co-activator yes-

associated protein (YAP) reduced cardiomyocyte (CM) necrosis and

neutrophil infiltration after I/R stress (59).

Some biological processes can also affect NR processes in IHD.

Adipose tissue lipolysis and cardiomyocyte lipid accumulation

augmented cardiac inflammation. Inhibition of adipose tissue

lipolysis reduces lipid droplet accumulation, attenuates neutrophil

infiltration, and improves cardiac function (60). Exocytosis is also a

factor affecting NR. Studies have shown that neutrophil exocytosis

inhibitors (Nexinhib20) not only help reduce the exocytosis process,

but also inhibit neutrophil adhesion and activation of b2 integrin,

thereby reducing neutrophil recruitment (61). By enhancing M2
FIGURE 2

Immune-related regulatory mediators of NR in IHD pathophysiology.
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macrophage-induced efferocytosis of apoptotic neutrophils,

mesenchymal stem cells markedly decrease neutrophil number and

improve cardiac repair after myocardial I/R in rats (62). In addition,

enhancing vascular integrity and inhibiting the high permeability of

cardiac microvascular endothelium (CME) contributed to reducing

the expression of vascular cell adhesion molecule 1 (VCAM-1) on

CME cells, leading to reduced neutrophil infiltration (63).
5 Interventions to regulate NR

5.1 Targeted intervention

Targeted inhibition of key mediators within the cascade

reactions weakens NR. Both MPO-knockout models (64) and

MPO inhibitors (65) lead to reduced neutrophils recruitment,

and improved ventricular function and remodeling in

myocardial infarction. The absence of NR adhesion molecules

also inhibited NR (66). Receptor antagonists of cytokines and

chemokines, such as IL-1 receptor antagonist (67) and NLRP3-

inflammasome inhibitor (68), reduce the extent of neutrophil

infiltration and myocardial infarction size. Targeted regulation

of related proteins or genes in the molecular mechanism of NR

directly inhibits the NR process. Studies have shown that

ferrostatin-1 (Fer-1), as a specific inhibitor of ferroptosis, can

reduce the level of pro-ferroptotic hydroperoxy-arachidonoyl-

phosphatidylethanolamine, reduce cardiomyocyte apoptosis and

block neutrophil recruitment (36).

Targeting adenosine helps to regulate the NR process.

Adenosine A2b receptor (Adora2b), as a G-protein-coupled

receptor, its activation inhibits neutrophils from releasing

TNF-a, which in turn reduces NR and reduces I/R damage

(42, 69, 70). The adenosine analogue AMP579 alleviates heart

damage by inhibiting neutrophil activation and excessive

vascular adhesion (71, 72). Targeted inhibitors of adenosine

hydrolase help to inhibit NR. Targeting PDE4B (the hydrolase

of cyclic adenosine monophosphate) inhibits neutrophil-

endothelial cell interaction and expression of cell adhesion

molecules, neutrophil cardiac infiltration, and release of

proinflammatory cytokines, exerting cardioprotection in acute

myocardial infarction (73).

In ischemic heart disease animal models, targeted depletion

of complement significantly leads to a considerable reduction in

neutrophil numbers (74). The C3 inhibitor, sCR1, reduces the

infarct size and minimizes the accumulation of neutrophils in

the infarct area, possibly by reducing C5a production, promoting

adhesion receptor expression, and promoting chemotactic

processes (75, 76). Anti-C5 therapy in the setting of MI/R

significantly inhibits cell apoptosis, necrosis, and neutrophil

infiltration (77). The recombinant human C5a receptor

antagonist CGS 32359 inhibits surgical I/R injury after

coronary occlusion and reduces the extent of high-risk

myocardial infarction associated with reduced neutrophil

aggregation (78).
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5.2 Agents intervention

Several clinically used drugs have been found to either directly

or indirectly regulate NR (Table 2). Metoprolol has been shown to

inhibit neutrophil migration in an Adrenergic receptor (ADR) b1-
dependent manner (79). During the early stages of neutrophil

recruitment, it inhibits the structural and functional changes

necessary for the effective engagement of circulating platelets,

resulting in erratic intravascular dynamics, weakened neutrophil-

platelet interactions, and blunted inflammation. Trimetazidine has

been shown to inhibit neutrophil accumulation after myocardial

ischemia and reperfusion (80). Empagliflozin prevented the

permeation of neutrophils into the myocardium and therefore

suppressed the transcription of these inflammatory cytokines

(81). Metformin, as a first-line drug for hypoglycemia, can also

inhibit NR in IHD. It has been shown to reduce myocardial

neutrophil activity and cardiac remodeling after myocardial

infarction through the AMPK pathway, thereby alleviating

myocardial injury (82). Colchicine has been shown to inhibit

neutrophil proliferation through inflammatory signaling pathways

and reduce microvascular obstruction after myocardial I/R

injury (83).
5.3 Phytochemical strategies

Herbal medicines have been widely utilized alone or as a

supplement and alternative therapy to treat various disorders in

East Asia because of their reduced toxicity, fewer side effects, and

cheaper cost (84). Many herbal ingredients may act synergistically

to protect against myocardial injury in IHD through

suppressing NR, such as salvianolic acid b, stigmasterol,

resveratrol (85), tetrandrine (86), baicalin (87), silibinin (88), 2-
TABLE 2 Agents interventions to regulate NR.

Drugs
IHD

diseases
Molecular

mechanisms
Ref.

Metoprolol
MI, myocardial I/

R injury
Targeting ADRB1 (79)

Trimetazidine
Myocardial I/

R injury
Unknown (80)

Empagliflozin
Myocardial I/

R injury

Activate the
AMPKa1/ULK1/

FUNDC1/
mitophagy
pathway

(81)

Metformin MI
Activatte

AMPK pathway
(82)

Colchicine
Myocardial I/

R injury

Inhibit S100A8/
A9-NLRP3/IL-1b/
IL-1R pathway

(83)
ADRB, adrenergic receptor; AMPK, AMP-activated protein kinase; FUNDC, FUN14 domain-
containing protein; IL,interleukin; I/R, ischemia reperfusion; MI, myocardial infarction; ULK,
Unc-51-like autophagy activating kinase.
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TABLE 3 Phytochemical strategies to regulate NR.

Chemical name Sdf structure IHD diseases
Molecular

mechanisms
Ref.

Salvianolic acid b MI Bingding with TLR4 (85)

Stigmasterol MI Bingding with TLR4 (85)

Resveratrol MI Bingding with TLR4 (85)

Tetrandrine Myocardial I/R injury
Inhibit N-fMLP-induced

adhesion and ROS production
(86)

Baicalin Myocardial I/R injury Inhibit JAK/STAT pathway (87)

Silibinin Myocardial I/R injury Inhibit NF-kB pathway (88)

(Continued)
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methoxycinnamaldehyde (89), celastrol (90), et al. (Table 3). These

phytochemicals, derived from different herbs, alleviated the

inflammatory response of IHD to varying degrees by inhibiting

NR through different molecular pathways.
6 Concluding remarks
and Perspectives

Vast efforts have been continuously engaged over the past

decades in the search for cardioprotective pharmacological agents

in preventing immunoinflammatory response. Neutrophil

recruitment is an important part of the immunoinflammatory

response, which acts as a double-edged sword in the pathogenesis,

progression, and healing of IHD. In the early stages of cardiac

ischemia, the moderate inflammatory response caused by

neutrophil recruitment lays the foundation for subsequent healing

and repair by clearing dead myocardium and stromal debris.

However, the occurrence of NR can promote the release of various

inflammatory and chemotactic mediators, leading to cell damage and

aggravating inflammatory response to myocardial injury. Therefore,

how to inhibit the specific parts of the innate immune system that

cause damage without affecting the healing process of ischemic

myocardium and infarcted myocardium has become the research

frontier of intervention in ischemic heart disease from the perspective

of neutrophil recruitment. This review mainly discusses and

summarizes the biological information of NR in the context of

myocardial ischemia, which will contribute to a better

understanding of their effects in the pathophysiology of IHD, and

provide new avenues and methods for the prevention and treatment

of IHD.
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TABLE 3 Continued

Chemical name Sdf structure IHD diseases
Molecular

mechanisms
Ref.

2-methoxycinnamaldehyde Myocardial I/R injury Inhibit HO-1 (89)

Celastrol MI Inhibit NLRP3 inflammasomes (90)
TLR, toll-like receptor; I/R, ischemia reperfusion; MI, myocardial infarction; fMLP, formyl-methionyl-leucyl-phenylalanine;JAK, janus kinase; STAT, signal transducer and activator of
transcription; NF-kB, nuclear factor kappa-B; HO, Heme Oxygenase.
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