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Introduction: Disulfidptosis is a recently identified form of non-apoptotic

programmed cell death which distinguishes itself from classical cell death

pathways. However, the prognostic implications of disulfidptosis-related long

non-coding RNAs (DRLs) and their underlying mechanisms in hepatocellular

carcinoma (HCC) remain largely unexplored.

Methods: In this study, we leveraged RNA-sequencing data and clinical

information of HCC patients from the TCGA database. Through expression

correlation and prognostic correlation analyses, we identified a set of top-

performing long non-coding RNAs. Subsequently, a 5-DRLs predictive

signature was established by conducting a Lasso regression analysis.

Results: This signature effectively stratified patients into high- and low-risk groups,

revealing notable differences in survival outcomes. Further validation through

univariate and multivariate Cox regression analyses confirmed that the risk score

derived from our signature independently predicted the prognosis of HCC

patients. Moreover, we observed significant disparities in immune cell infiltration

and tumor mutation burden (TMB) between the two risk groups, shedding light on

the potential connection between immune-related mechanisms and

disulfidptosis. Notably, the signature also exhibited predictive value in the

context of chemotherapeutic drug sensitivity and immunotherapy efficacy for

HCC patients. Finally, we performed experimental validation at both cellular and

patient levels and successfully induced a disulfidptosis phenotype in HCC cells.

Discussion: In general, this multifaceted approach provides a comprehensive

overview of DRLs profiles in HCC, culminating in the establishment of a novel risk

signature that holds promise for predicting prognosis and therapy outcomes of

HCC patients.
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1 Introduction

Hepatocellular carcinoma (HCC) is a multifaceted, globally

impactful disease (1). Owing to its inconspicuous clinical

symptoms in the early stages and the presence of numerous risk

factors, it poses a significant clinical challenge. Primary liver cancer

is the sixth most common cancer in the world and the third leading

cause of cancer-related deaths in 2022, according to global cancer

statistics published in 2024 (2). HCC accounts 80-90% of primary

liver cancer cases and is the most common type (3). In recent years,

enormous strides in targeted therapies and immunotherapies have

been developed, offering renewed hope for better patient outcomes

(4). However, patients with HCC continue to experience high rates

of recurrence, metastasis, and drug resistance, contributing to an

unfavorable prognosis (5). This underlines the necessity for early

detection and a multidisciplinary approach for managing this

formidable malignancy. Therefore, it is imperative to explore the

intricate molecular mechanisms underlying HCC. The development

of innovative therapies is indispensable in the ongoing battle

against HCC.

Cell death is crucial for the development and homeostasis of

multicellular organisms, and its dysregulation can lead to various

diseases including cancer (6). A comprehensive understanding of

programmed cell death modes could potentially pave the way for

the targeted elimination of cancer cells, thereby improving cancer

treatment outcomes (7). For example, the apoptotic signaling

pathway has been the focal point of tumor chemotherapy in the

past few decades. Some chemotherapeutic drugs, such as Paclitaxel

and Vinca Alkaloids, can induce apoptosis of tumor cells by

targeting microtubules and oxidative phosphorylation, thus

achieving a therapeutic effect on tumors (8, 9). However, these

therapies are associated with a high rate of drug resistance, posing

significant challenges. Therefore, it is necessary to expand our
Abbreviations: DRLs, Disulfidptosis-related long non-coding RNAs; HCC,

Hepatocellular carcinoma; TMB, Tumor mutation burden; GLUT, Glucose

transporter; ORF, Open reading frame; ROS, Lipid reactive oxygen species;

TCGA, The cancer genome atlas; TME, Tumor microenvironment; FPKM,

Fragments per kilobase of transcript per million mapped reads; OS, Overall

survival; DCLs, Disulfidptosis co-expressed lncRNAs; DELs, Differentially

expressed lncRNAs; LASSO, Least absolute shrinkage and selection operator;

IPS, Immunophenoscore; MAF, Mutation annotation format; IC50, The semi-

inhibitory concentration; DAVID, Database for annotation, visualization, and

integrated discovery; GSEA, Gene set enrichment analysis; KEGG, Kyoto

encyclopedia of genes and genomes analysis; GO, Gene ontology analysis; FBS,

Fetal bovine serum; SRRSH, Sir run run shaw hospital; GAPDH, Glyceraldehyde

3-phosphate dehydrogenase; RIPA, Radioimmunoprecipitation assay; BCA,

Bicinchoninic acid; PVDF, Polyvinylidene difluoride; ECL, Enhanced

chemiluminescence; DRGs, Disulfidptosis-related genes; DCDELs,

Disulfidptosis co-expressed and differentially expressed lncRNAs; PCA,

Principal component analysis; PFS, Progression-free survival; t-SNE, t-

Distributed stochastic neighbor embedding; AUC, Area under curve; DCA,

Decision curve analysis; ICB, Immune checkpoint blockade; DEGs,

Differentially expressed genes; TMEM9, Transmembrane protein 9; GSH,

Cysteine-dependent glutathione; ECs, Endothelial cells; M1, Type 1-polarized

macrophages; M2, Type 2-polarized macrophages.
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understanding of regulated cell death modes beyond apoptosis to

facilitate the discovery of potential therapeutic targets. In recent

years, research has increasingly shown that many forms of non-

apoptotic cell death are also executed in a regulated manner, which

are collectively referred to as “regulated non-apoptotic cell death

modes” (10). These newly named cell death modes include

necroptosis, oxytosis, pyroptosis, parthanatos, NETosis,

ferroptosis and cuproptosis (11–16). Recently, Gan et al. proposed

a novel form of cell death known as disulfidptosis, which opens a

promising avenue for cancer treatment. Disulfidptosis is triggered

by the significant accumulation of disulfide molecules within cancer

cells in the absence of glucose, particularly in those with elevated

SLC7A11 expression. This phenomenon results in abnormal

disulfide bonding between actin cytoskeletal proteins, disrupting

their organization, and ultimately leading to the collapse of the actin

protein network and cell death. Gan et al. treated cancer cells with a

glucose transporter (GLUT) inhibitor and observed that the

outcome was similar to that under glucose-deprived conditions

(17). This inventive discovery has immense potential for developing

targeted therapies for cancer treatment. It is crucial to acknowledge

that the comprehension of distinct forms of cell death, including

apoptosis, necrosis, ferroptosis, and the newly discovered

disulfidptosis, remains an evolving frontier in the realm of cell

biology and cancer research. Further investigations are warranted to

comprehensively elucidate disulfidptosis, its relevance in the

context of cancer , and its potent ia l as a target for

therapeutic interventions.

LncRNAs are a class of non-coding RNA molecules with a

length exceeding 200 nucleotides. This type of RNA lacks an open

reading frame (ORF) and does not encode proteins, leading to the

belief that it exists solely as a transcriptional byproduct. However,

extensive research has demonstrated that lncRNAs participate in

various biological processes including DNA methylation, histone

modification, post-transcriptional regulation of RNA, and protein

translation (18). Additionally, lncRNAs play pivotal roles in

processes related to immunology, neurobiology, inflammatory

responses, and cancer (19). Furthermore, lncRNAs are critical

regulators of cellular proliferation and programmed cell death.

Sun et al. discovered that lncRNA-ATB regulates the formation of

tumor metastasis foci by modulating the stability of IL-11 mRNA

and STAT3 phosphorylation (20). Concerning regulated cell death,

lncRNA-HEPFAL was found to promote ferroptosis by reducing

SLC7A11 expression and increasing levels of lipid reactive oxygen

species (ROS) and iron ions (21). The association between lncRNAs

and HCC has been extensively explored, notably in the regulation of

cell death processes in HCC. For example, Chen et al. revealed that

lncRNA DUXAP8 decreased the sensitivity of HCC to sorafenib-

induced ferroptosis by interacting with SLC7A11 (22). In the era of

precision medicine, identification of precise lncRNAs that regulate

disulfidptosis in HCC, along with a thorough elucidation of their

mechanisms, could offer innovative insights and perspectives for the

treatment of HCC.

In this study, we collected HCC data from The Cancer Genome

Atlas (TCGA) database to elucidate the prognostic and biological

functions of disulfidptosis-related long non-coding RNAs (DRLs)

through various bioinformatic analyses. Our 5-DRLs signature
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1412277
exhibited excellent performance in predicting patient survival and

remarkable superiority over the other clinically independent

variables. Additionally, we established a potential relationship

between the risk signature and tumor microenvironment (TME),

as well as tumor mutation burden (TMB), through immune

infiltration analysis and TMB analysis. Furthermore, KEGG and

GO analyses were performed between the high- and low-risk groups

to identify the potential molecular pathways. Overall, our findings

shed light on the understanding of molecular mechanisms related to

disulfidptosis in HCC and could help to develop individualized

therapies for patients with HCC.
2 Materials and methods

2.1 Data acquisition

A total of 374 HCC samples and 50 adjacent normal hepatic

sample fragments per kilobase of transcript per million mapped

reads (FPKM)-standardized RNA-seq data were downloaded from

The Cancer Genome Atlas(TCGA) (https://portal.gdc.cancer.gov/

projects/TCGA-LIHC). Ensembl IDs were processed and converted

to official gene symbols encompassing various elements, such as

lncRNAs, protein-coding genes, and miRNAs. Additional

information, including clinical data, was also acquired from

patients with HCC in the TCGA database. Samples lacking

survival information and those with an overall survival (OS) of

less than 30 days were excluded from subsequent analysis. Ten

Disulfidptosis-related Genes (DRGs) were obtained in a recent

study (Table 1) (17).
2.2 Identification of disulfidptosis
co-expressed lncRNAs

Pearson’s correlation analysis was chosen as a widely accepted

method to explore the correlation between coding genes and
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lncRNAs. Using a cutoff criterion of R > 0.3 and P < 0.001,

Pearson correlation analysis was applied to identify lncRNAs that

were co-expressed with the 10 DRGs from the RNA-seq data of

TCGA HCC samples.
2.3 Identification of differentially
expressed lncRNAs

Differentially expressed lncRNAs between HCC and normal

patients from TCGA were identified using the R package “Limma.”

The significance criterion for identifying DEGs was set as |log2
(fold-change) | > 1 and p < 0.001.
2.4 Univariate cox analysis for
prognostic lncRNAs

By using the ‘survival’ R package and defining p < 0.05 as

screening criteria, the intersecting lncRNAs of DCLs and DELs were

subsequent to univariate cox analysis for obtaining prognostic

DRLs in HCC patients.
2.5 Construction and validation of the
disulfidptosis-related prognostic signature

To construct a disulfidptosis-related prognostic signature, least

absolute shrinkage and selection operator (LASSO) Cox regression

analysis was used to select the most appropriate lncRNAs and

estimate and weight the regression coefficients of the optimal DRLs

(23). Initially, nine prognostic lncRNAs were screened based on the

optimal penalty parameter l determined by tenfold cross-validation

following the minimum criteria. Afterwards, a multivariate Cox

regression analysis was conducted to establish a five-lncRNA

predictive model. The Risk score of each HCC patient was

calculated using the following formula: Risk score = (Coef.DRL1

× DRL1 exp.) + (Coef.DRL2 × DRL2 exp.) + (…) + (Coef. DRLn ×

DRLn exp.). Patients were categorized into low- and high-risk

groups based on the median risk score. The performance and

prognostic ability of the predictive signature were evaluated using

time-dependent receiver operating characteristic (ROC) analyses

and Kaplan-Meier log-rank tests. These analyses were conducted

with the R packages “timeROC” and “survival,” respectively (24).

Furthermore, in combination with the DRL prognostic signature,

the clinical characteristics of patients with HCC from TCGA were

analyzed using univariate and multivariate Cox regression analyses.
2.6 Establishment of a nomogram

Package “rms” was utilized to create a nomogram, offering

valuable clinical prognostic insights for HCC patients, including

their risk scores and various clinicopathological attributes,

particularly about 1-, 3-, and 5-year OS (25). Subsequently, we
TABLE 1 Disulfidptosis-related genes.

Official Symbol Official Full Name

GYS1 Glycogen Synthase 1

NDUFS1 NADH Dehydrogenase Fe-S Protein 1

OXSM 3-Oxoacyl-ACP Synthase, Mitochondrial

LRPPRC Leucine Rich Pentatricopeptide Repeat Containing

NDUFA11 NADH: Ubiquinone Oxidoreductase Subunit A11

NUBPL
NUBP Iron-Sulfur Cluster Assembly
Factor, Mitochondrial

NCKAP1 NCK Associated Protein 1

RPN1 Ribophorin I

SLC3A2 Solute Carrier Family 3 Member 2

SLC7A11 Solute Carrier Family 7 Member 11
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conducted calibration curve analysis to validate the clinical accuracy

of the nomogram.
2.7 Relationship of DRL risk signature with
tumor microenvironment in HCC

The immune and stromal scores of each HCC patient were

calculated using the ESTIMATE algorithm (26). Next, the levels of

22 immune cell subtypes of each patient were computed using the

CIBERSORT algorithm (27). The differentially expressed immune

checkpoint genes between high- and low- risk groups were

identified using R package “Limma.” Immunophenoscore (IPS)

was obtained from the TCIA database (https://tcia.at/home) to

predict the relative immune response (28).
2.8 Tumor mutation burden analysis

To delineate the mutational profiles of HCC patients within two

distinct risk groups, the Mutation Annotation Format (MAF) was

generated using the “maftools” package (29). This MAF served to

characterize the mutational landscape of patients with HCC from

different DRL risk groups.
2.9 Drug sensitivity analysis

The semi-inhibitory concentration (IC50) values for commonly

used chemotherapy agents in HCC patients were calculated using

the “pRRophetic” package to predict the clinical performance of

chemotherapy agents in different DRL risk groups for HCC

patients (30).
2.10 Gene set enrichment analysis, Kyoto
encyclopedia of genes and genomes and
gene ontology analysis

To identify the potential molecular pathways between the high-

and low-risk groups, KEGG, GO, and GSEA were performed.

Firstly, R package “Limma” was performed to classified

differential expressed genes between high- and low-risk groups (|

log2 FC| > 1, p < 0.05). Significant genes were inserted into the

Database for Annotation, Visualization, and Integrated Discovery

(DAVID, https://david.ncifcrf.gov/) to enrich closely related

metabolic pathways. GSEA was performed using GSEA software

with c5.all.v7.4 symbols.gmt as a template. The criteria for statistical

significance were nominal p < 0.05 and FDR< 0.25.
2.11 Cell culture and human samples

The normal human liver cell line MIHA and the human

hepatocellular carcinoma cell lines HA22T, HCCLM3, HepG2,

and JHH-7 were purchased from the Cell Bank of the Chinese
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Academy of Sciences. All cell lines were cultured in DMEM

medium (Gibco, USA) containing 10% fetal bovine serum (FBS,

Gibco) at 37°C in humidified air with 5% CO2. A total of 16 HCC

samples and adjacent normal tissues were collected from patients

with HCC who underwent surgical resection at the Sir Run Run

Shaw Hospital (SRRSH), in accordance with the principles of the

Declaration of Helsinki. Written informed consent was obtained

from all the patients. All human samples were obtained after

obtaining informed consent as approved by the Institutional

Review Board of SRRSH, School of Medicine, Zhejiang

University, Hangzhou, China (ethical code: 20210729-282).
2.12 RNA extraction and quantitative real-
time PCR

RNA extraction was performed using an RNA-Quick

Purification Kit (AG21023, Accurate Biology). Reverse

transcription was conducted according to the protocol of the Eco

M-MLV RT Premix Kit (AG11706, Accurate Biology). RT-qPCR

was conducted on a QuantStudio 1 (Applied Biosystems, Thermo

Fisher Scientific, USA) using the SYBR Green Premix Pro Tag HS

qPCR kit (AG11701, Accurate Biology). Target gene expression was

normalized to the endogenous control gene glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). The primers used in this

study was listed in Table 2.
2.13 Cell counting kit-8 assay

HepG2 and JHH-7 cell viability was assessed using the CCK-8

reagent (Meilunbio, China), following the manufacturer’s

instructions. Cells were seeded in 96-well plates at a density of
TABLE 2 Primers for RT-qPCR in this study.

Primer name Sequence (5’-3’)

TMCC1-AS1-F GGTAGGGTAGCAGGTCAGCATATC

TMCC1-AS1-R TTGTCACAGGCCAGACTACCAG

FOXD2-AS1-F TATGTGGTAGGGGACTCGCT

FOXD2-AS1-R GGTTTCAAGTGGCGCTGTTT

LINC01063-F CCTGAGCCTGGAAGGTGATT

LINC01063-R TGACTGAGGTTCGCTGTGAC

SLC25A30-AS1-F CAAGTGCCCCTCAGGATCTTC

SLC25A30-AS1-R AATTTCTCTTCCACCTCCCAGTC

AC009283.1-F GCATCTGAGCAGCTGTGCAGCA

AC009283.1-R CCTCCTCATCATCCTCCTGTGGGT

GAPDH-F CTCTGCTCCTCCTGTTCGAC

GAPDH-R ACCAAATCCGTTGACTCCGA

SLC7A11-F TCTCCAAAGGAGGTTACCTGC

SLC7A11-R AGACTCCCCTCAGTAAAGTGAC
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3000 cells/well in 100 mL of medium. Subsequently, CCK8 solution

(10 mL) was added to each well at 3, 6, 12, 24, 36, and 48 hours after

treatment with glucose-free DMEM. The cells were then further

incubated at 37°C for 2 h. The absorbance of each well was

measured at 450 nm wavelength using a spectrophotometer.
2.14 Confocal microscopic imaging of F-
actin staining

HepG2 and JHH-7 cells were seeded in 24-well plates at a

density of 20000 cells per well and treated with DMEM Medium

without glucose for 24 h. For actin filament staining, cells were fixed

for 30 min at room temperature with 4% paraformaldehyde and

then permeabilized for 10 min with permeabilization buffer (0.1%

Triton X-100 in PBS). Subsequently, the cells were incubated in

darkness at room temperature for 1-2 hours with TRITC Phalloidin

(Solarbio, CA1610). Afterward, the cells were then washed twice

and mounted with antifade mounting medium containing DAPI

(Beyotime, P0131). Finally, all fluorescence images were captured

using a confocal microscope (LSM 880, Zeiss).
2.15 Drugs and reagents

Z-VAD-FMK (ZVF, S7023), ferrostatin-1 (Fer-1, S7243),

necrostatin-1 (Nec-1, S8037), and N-acetyl cysteine (NAC, S5804)

were purchased from Selleck. Tetrathiomolybdate (TTM, 323446)

was purchased from Sigma. Tris (2-carboxyethyl) phosphine

(TCEP, T2556) was purchased from Thermo Fisher. The

concentration of ZVF, Fer-1, Nec-1, NAC, TTM and TCEP were

30mM, 10mM, 20mM, 1mM, 20mM, 1mM.
2.16 Western blotting

Proteins from cells were extracted using radioimmunoprecipitation

assay (RIPA) buffer (Fude Biotech, China) containing protease

inhibitors. Subsequently, protein concentrations were determined

using a Bicinchoninic Acid (BCA) Protein Assay Kit (Meilunbio,

China). A total of 20 mg of protein was subjected to sodium

dodecyl sulfate–polyacrylamide gel electrophoresis and transferred to

a 0.22 or 0.45 µm polyvinylidene difluoride (PVDF) membrane.

PVDF membranes were then blocked in 5% skim milk for 2 h.
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Subsequently, samples were incubated with specific primary

antibodies at 4°C overnight. The primary antibodies were as follows:

SLC7A11 (82115-2-RR, Proteintech, Wuhan, China), GAPDH

(AC002, Abclonal, Wuhan, China). Following this, membranes were

incubated with the appropriate secondary antibodies for 2 h at room

temperature. Finally, the protein bands were visualized with enhanced

chemiluminescence (ECL) Western blotting substrate (Fude

Biotech, China).
2.17 RNA interference

The small interference RNAs (siRNAs) was designed and

synthesized in GenePharma(China), which could effectively knock

down lncRNAs effectively. Cells were transfected with 100 nM of

smart silencer for each well using the Lipofectamine™ 3000

transfection reagent (L3000015; Thermo Fisher, USA). After 48

hours of transfection, cells were collected and processed for RT-

qPCR and other experiments. The sequences of the lncRNA siRNA

were listed in Table 3.
2.18 Statistical analysis

All statistical analyses were conducted using R software (Version

4.1.2). Wilcox test was used to compare lncRNA expression levels

between HCC and para-noncancerous tissues sourced from TCGA.

Differences in the proportions of clinical features were assessed using

the chi-square test. A paired t-test was used to compare data between

HCC and adjacent normal tissues obtained in-house. Variances

among multiple groups were analyzed using one-way ANOVA.

Statistical significance was defined as a p-value < 0.05.
3 Results

3.1 Identification of disulfidptosis-related
differentially expressed and prognostic
lncRNAs in HCC

Initially, we retrieved data from 374 patients diagnosed with

HCC from TCGA database, consisting of transcriptomes and

clinical information. Subsequently, we identified ten DRGs, as

previously reported (Table 1) (17). The flowchart was presented
TABLE 3 Sequences of siRNAs for related lncRNAs.

LncRNA name sense(5’-3’) antisense(5’-3’)

FOXD2-AS1-Homo-1 GAGGGACAGCCAAGAAUACTT GUAUUCUUGGCUGUCCCUCTT

FOXD2-AS1-Homo-2 AGUCCCAGACAGGGUAACUTT AGUUACCCUGUCUGGGACUTT

FOXD2-AS1-Homo-3 GUCAGGAACUAAAGGACUGTT CAGUCCUUUAGUUCCUGACTT

LINC01063-Homo-1 AUCAAGCGGUGGCAGUUCATT UGAACUGCCACCGCUUGAUTT

LINC01063-Homo-2 GGAAGGUGAUUGGCUAGAGTT CUCUAGCCAAUCACCUUCCTT

LINC01063-Homo-3 UGCGAGCAUCAUGUUGCCUTT AGGCAACAUGAUGCUCGCATT
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1412277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1412277
in Figure 1. Figure 2A illustrated the correlation network diagram

and provided insights into the interactions among these 10 DRGs in

patients with HCC. To assess clinical relevance, we conducted a

comparative analysis of gene expression between HCC tissues and

adjacent normal tissues. A total of 3261 Differentially Expressed

lncRNAs (DELs) were identified based on the criteria of |log2FC|>1,

p<0.001. Detailed information on these DEGs were provided in
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Supplementary Table 1, and the volcano plot in Figure 2B depicted

the variation in lncRNA expression levels between HCC and

adjacent normal tissues. To investigate the relationship between

DRGs and lncRNAs, we performed Pearson correlation analysis

with a threshold of R>0.3 and p<0.001, leading to the identification

of 863 DCLs, as shown in Supplementary Figure 1. The correlation

between DRGs and lncRNAs were shown in Supplementary
FIGURE 1

The flow chart of this study.
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FIGURE 2

Identification of disulfidptosis-related differentially expressed and prognostic lncRNAs in HCC. (A) Co-expression network of 10 DRGs. (Red and
blue colors represent a positive correlation and a negative correlation, respectively) (B) Volcano plot showed the differentially expressed lncRNA
between the HCC tissues and adjacent normal tissues. (red: upregulated, blue: downregulated, grey: no significant) (C) Venn diagram displayed the
lncRNAs shared by DCLs and DELs. (D) Forest plots presented the results of the univariate cox regression analysis of the 23 prognostic DCDELs.
(E) Correlation of 23 prognostic DCDELs with 10 DRGs in TCGA-HCC Cohort. The color of each unit showed an indication of the degree of
correlation. (Red implied a positive relationship, while blue indicated the opposite.) (F) The Sankey diagram demonstrated the roles of DCDELs and
DRGs in HCC based on of Pearson’s R>0.3and p<0.001. HCC, hepatocellular carcinoma; DRGs, disulfidptosis-related genes; lncRNAs, long
noncoding RNAs; DRLs, disulfidptosis-related long non-coding RNAs; DCLs, disulfidptosis co-expressed lncRNAs; DELs, differentially expressed
lncRNAs; *p < 0.05, **p < 0.01, and ***p < 0.001.
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Table 2. We further integrated the DCLs and DELs, resulting in a set

of 494 lncRNAs that were both differentially expressed and

correlated, which named “DCDELs” (Figure 2C). Subsequently,

we conducted a univariate Cox regression analysis to evaluate the

prognostic ability of these DCDELs based on overall survival (OS)

data from the TCGA clinical database. This analysis identified 23

prognostic DCDELs (Figure 2D, Supplementary Table 3). The

correlation and differential expression between these prognostic

DCDELs and DRGs were illustrated in Figure 2E, red indicates a

positive correlation, while blue indicates a negative correlation.

Furthermore, we generated a Sankey diagram (Figure 2F) to visually

represent the roles of DCDELs and DRGs in HCC, providing a clear

depiction of their correlation and prognostic significance in the

context of patients with HCC.
3.2 Construction and validation of
prognostic DRLs signature in HCC

First, we randomly divided 342 patients into training and test

cohorts at a 1:1 ratio. Next, we conducted LASSO regression and

multivariate Cox regression analyses to construct a prognostic

signature based on the expression profiles of the previously identified

23 prognostic DCDELs (Figure 3A). Figure 3B illustrated the lambda

curves obtained from LASSO regression analysis. LASSO regression

selected nine lncRNAs based on the optimal penalty parameter l, and
multivariate Cox regression analysis further refined these to five

lncRNAs, which were ultimately used to build the disulfidptosis-

related prognostic signature. Ultimately, we identified five prognostic

DRLs using the optimal penalty parameter l determined through

tenfold cross-validation following the minimum criteria. The risk score

for each HCC patient was calculated using the following formula: Risk

score = (1.583×TMCC1-AS1 expression) + (0.515×FOXD2-AS1

expression) + (0.577×LINC01063 expression) + (-0.698×AC009283.1

expression) + (-0.890×SLC25A30-AS1 expression) (detailed in

Supplementary Table 4).

Based on the median risk score, patients were categorized into

low- and high-risk groups (Figures 3C-E). To evaluate the feasibility

and universality of the prognostic signature, we validated it in the

train, test, and all cohorts. All cohorts exhibited a similar distribution

in that the mortality rate increased in the high-risk score group,

whereas the mortality rate decreased in the low-risk score group

(Figures 3F-H). Furthermore, we compared the OS between the high-

risk and low-risk groups using the Kaplan-Meier method, and the

results revealed that the high-risk group had a significantly shorter

OS than the low-risk group (p < 0.001) (Figures 3I-K). Principal

Component Analysis (PCA) effectively discriminated the two risk

subgroups in the train cohort, test cohort, and all cohorts (Figures 3L-

N). The signature showed good performance in predicting survival in

all cohorts (1, 3, and 5 years: AUC, 0.782, 0.735, and 0.734), in the

train cohort (1, 3, and 5 years: AUC, 0.798, 0.761, and 0.713), and in

the test cohort (1, 3, and 5 years: AUC, 0.762, 0.709, and 0.712)

(Figures 3O-Q). Taken together, these findings demonstrated that

this DRLs signature could serve as a reliable independent predictive

tool for patients with HCC.
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Additionally, when we compared progression-free survival

(PFS) between the high- and low-risk groups, we observed that

the PFS of the high-risk group was significantly lower than that of

the low-risk group (Supplementary Figures 2A, C, E). Moreover, t-

distributed Stochastic Neighbor Embedding (t-SNE) analysis

revealed significant differences in distributions between the high-

and low-risk groups in the overall dataset, test cohort, and train

cohort (Supplementary Figures 2B, D, F).
3.3 Correlation between DRLs signature
and clinicopathological features in
HCC patients

To explore the association between the 5-DRLs signature and

disulfidptosis, we compared the expression levels of 10 DRGs

between the low-risk and high-risk groups. The results indicated

that the majority of DRGs expression exhibited distinct differences

with significant p-values (Supplementary Figure 3). We further

analyzed the connections in clinicopathological parameters between

the two risk groups (Figure 4A). Significant variations were

analyzed in factors such as Survival Status (p<0.001), gender

(p<0.01), grade (p<0.05), T stage (p<0.05), stage (p<0.01) and

AFP level (p<0.05) between the low- and high-risk groups and

the differences were shown in Supplementary Figure 4. In addition,

the 5-DRLs exhibited different distributions. AC009283.1 and

SLC25A30-AS1 had higher expression levels in the low-risk

group, while FOXD2-AS1, LINC01063, and TMCC1-AS1 showed

the opposite trend. To further validate the performance of the 5-

DRLs prognostic signature, we constructed ROC curves to

demonstrate its superiority in terms of predictive accuracy

compared to other clinicopathological parameters (Figures 4B-D).

The results revealed that our risk signature exhibited excellent

predictive performance, with AUC values of 0.782, 0.798, and

0.762 for the total, train, and test groups, respectively, which were

significantly higher than those of other clinical univariate variables.

In addition, patients with HCC were categorized into different

groups based on their age, gender, AFP level, tumor grade, TNM

stage, and vascular invasion to verify whether our predictive model

could be an effective supplement to the current staging system. For

each group, the overall survival of the high-risk patients was

remarkably lower than that of the low-risk group (Figures 4E–P).

Model validation in different clinical subgroups indicated that the

performance and predictive capability of the prognostic signature

remained stable and effective under specific clinical conditions.

However, if the model excels in a particular clinical subgroup, it

may suggest that patients in that subgroup are more suitable for our

predictive signature. For instance, our prognostic signature showed

superior predictive performance in patients with advanced HCC

(stages II-IV) compared to those in the early stage (p<0.001 vs.

p=0.015) (Figures 4K, L), indicating its suitability for advanced

HCC patients. In summary, validation of our novel signature in

clinical subgroups is a pivotal step, ensuring the reliability of

research outcomes and providing profound insights for the

practical application of the model in clinical practice.
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FIGURE 3

Construction and validation of prognostic DRLs signature in HCC. (A, B) Cvfit and lambda curves showed LASSO regression, constructed by the
10-fold cross-validation. (C-E) The distribution and median risk scores in the overall, train and test cohorts. (F-H) The distribution of overall survival
status, survival time, and risk score in each cohort. (I-K) The Kaplan-Meier curves depicted the survival status and survival time of the overall, train
and test cohorts. (L-N) PCA analysis showed a significant distinction in each cohort. (O-Q) AUC of the time-dependent ROC curves illustrated the
ability of the signature consisting of DRLs to predict the 1-, 3- and 5-year OS in each cohort. lncRNAs, long noncoding RNAs; ROC, receiver
operating characteristic; AUC, area under the curve; OS, overall survival.
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FIGURE 4

Correlation between DRLs signature and clinicopathological features in HCC patients. (A) The heatmap showed the distribution of ten specific
clinicopathological characteristics and the corresponding risk score for the individual patient based on the predictive signature. Clinicopathological
features highlighted in red indicated significant distinction in distribution between the high- and low-risk groups. (B-D) The ROC curves were
performed to compare the prognostic accuracy of the signature and other prognostic parameters in overall, train and test cohorts. (E-P) Kaplan-
Meier survival curves based on age, gender, grade classification, TNM stage, AFP and vascular invasive for high-risk and low-risk patient groups.
*p < 0.05, **p < 0.01 and ***p < 0.001.
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3.4 The predictive value evaluation of the
5-DRLs signature, and the construction
and validation of the predictive nomogram

Univariate and multivariate Cox regression analyses were used

to explore whether the risk score calculated by the predictive

signature could be an independent prognostic indicator for

predicting the outcomes of HCC patients. Univariate Cox

regression analysis showed that the risk score (hazard ratio [HR]

= 1.349, 95%CI = 1.215-1.496, p < 0.001) was a prominent predictor

of patients’ prognosis. In addition, gender, grade, stage, T stage, and
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M stage were all related to prognosis by univariate Cox regression

analysis (Figure 5A). However, in the multivariate Cox regression

analysis, only grade (HR=2.117, 95%CI=1.216-3.686, p< 0.008) and

risk score (HR=1.277, 95%CI=1.142-1.148, p< 0.001) were

significant predictors of patients’ prognosis (Figure 5B). The C-

index was used to evaluate the discrimination ability of our

predictive model. The risk score calculated by our signature

exhibited a higher C-index than other clinical variables,

underscoring the superiority of our signature (Figure 5C).

Additionally, decision curve analysis (DCA) was employed to

validate the performance of the prognostic signature. The positive
FIGURE 5

The predictive value evaluation of the 5-DRLs signature, and the construction and validation of the predictive nomogram. (A, B) The univariate cox
and the multivariate cox regression analysis between risk score and other clinicopathological variables in HCC patients. (C) The concordance index
of five indicators for OS in patients with HCC. (D) Decision‐curve analysis for five indicators for OS in patients with HCC. (E) A nomogram combined
risk score with other clinicopathologic variables (age, gender, grade, pathological tumor stage, T stage, M stage and N stage and vascular invasion) to
predict overall survival time in HCC patients. (F-H) Nomogram-predicted probability of 1, 3, 5-year OS.
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clinical net benefit interval of the risk scores surpassed others in the

risk threshold range of 0.1-0.2, which also indicated the superior

performance of our five DRLs signature (Figure 5D).

A nomogram, a common tool to estimate the personal

prognosis of tumors, was able to create an individual numerical

probability of a clinical event by calculating many prognostic and

crucial factors (31). To simplify our model into an easy numerical

estimate of the probability of 1-, 3-, and 5-year OS of HCC, a

nomogram based on age, gender, grade, stage, T stage, M stage, N

stage, vascular invasion, and risk score was established (Figure 5E)

(25). The 1-, 3-, and 5-year calibration curves revealed that the

predictive outcome was close to the actual OS rate, suggesting a

notable predictive value of our signature (Figures 5F-H).
3.5 5-DRLs prognostic signature for
immune microenvironment and
immunotherapy response discrimination
in HCC

Besides the crucial roles of gene mutations and epigenetic

alterations in cancer, further investigations have found that the

tumor immune microenvironment (TME) play an increasingly

pivotal role in tumor physiology (32). The different characteristics

of tumors were determined by distinctive stromal cell types and

various sub-cell types (33). To explore the correlation between the

5-DRLs signature and TME, the CIBERSORT algorithm, which can

estimate the abundance of immune cell types, was used (34). It

could be found in the heatmap that various immune cells were

significantly distinguished between the low-risk group and the high-

risk group (Figure 6A). Specifically, M0 macrophages (p < 0.05), M2

macrophages (p < 0.001), and neutrophils (p < 0.01) were more

abundant in the high-risk group, whereas CD8+ T cells (p < 0.01),

activated mast cells (p < 0.01), and monocytes (p < 0.05) were more

percentage in the low-risk group (Figure 6D). Spearman’s

correlation test was used to determine the relationship between

the immune score and risk score (R=0.05, p=0.36) and between the

stromal score and risk score (R=0.037, p=0.49). However, neither

had an apparent relationship (Figures 6B, C).

The expression levels of CD200R1, CD200, TNFSF4, CD80,

VTCN1, CD276, LGALS9, HHLA2, TNFRSF18, CD86, HAVCR2,

TNFSF15, and LAIR1 were all significantly higher in the high-risk

group, with the exception of ADORA2A (Figure 6E). Remarkably, the

expression of CD276 was considerably higher in the high-risk group

than in the low-risk group (p < 0.001). Simultaneously,

immunophenoscore (IPS), a score based on immunogenicity to

predict immunotherapy potential, was used to assess the potential

effects of two common immune treatment targets, CTLA-4 and PD-1

(35). As shown in the violin plot, IPS, IPS-CTLA4, IPS-PD1, and IPS-

PD1+CTLA4+ were all significantly higher in the low-risk group than

in the high-risk group. (P< 0.01) (Figures 6F-I). Therefore, the 5-DRLs

signature established in this study has potential immunotherapy

predictive value for clinical HCC treatment.
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3.6 Correlation between 5-DRLs signature
and TMB, and predictive analysis of
drug sensitivity

Tumor mutation burden (TMB), which is based on the

generation of immunogenic neoantigens from tumor gene

mutations, had been regarded as a predictive biomarker for the

response to immune checkpoint blockade (ICB) (36). Therefore, we

analyzed the correlation between the 5-DRLs signature and TMB

and found that their mutative frequencies were similar (high-risk

group, 83.04%; low-risk group, 80.25%). Specifically, TP53 (39%),

TTN (25%), CTNNB1(18%), MUC16(13%), and PCLO (13%) were

the five most frequently mutated genes in the high-risk group,

whereas CTNNB1(33%), TTN (20%), MUC16 (19%), TP53 (14%),

and ALB (12%) were the top five genes in the low-risk group

(Figures 7A, B). Meanwhile, we explored the OS rates between the

high-TMB and low-TMB groups and further explored them by

considering different risk scores separately. As depicted in

Figures 7C, D, the high-TMB group had a relatively more

unfavorable outcome (P<0.025) (Figure 7C). In addition, the low-

TMB plus low-risk group was the most favorable one among the

four groups (P<0.001) (Figure 7D).

To predict the potential for medical treatment and achieve

precise individualized oncology therapy, drug-sensitivity analysis

based on the different risk groups was performed. The IC50 values

of Elesclomol, Docetaxel and Vinblastine were lower in the low-risk

group than in the high-risk group, which indicated that they were

probably more sensitive to low-risk HCC patients (Figures 7E-G).

Conversely, the IC50 values for Sunitinib, Gemcitabine and

Paclitaxel were higher in the low-risk group, suggesting a higher

likelihood of obtaining better responses in the high-risk group

(Figures 7H-J).
3.7 Pathway and functional enrichment
analyses of DEGs

To elucidate the potentially different mechanisms in the high-

and low-risk groups, we selected differentially expressed genes

(DEGs). KEGG pathway enrichment and GO functional

annotation analyses were conducted based on the DEGs between

the low- and high-risk groups. In KEGG pathway enrichment,

many signaling pathways were significantly enriched, and the top 20

involved pathways, including pathways in cancer, cellular

senescence, PPAR signaling pathway, and ECM-receptor

interaction pathway, were depicted (Figure 8A). The top 100

pathways in the KEGG analysis of the DEGs were shown in

Supplementary Table 5. The top 20 pathways enriched by GO

functional annotation analysis of DEGs were shown in Figure 8B,

which show that pathways such as extracellular matrix

organization, nucleus, and identical protein binding were

enriched. The top 100 pathways in the GO analysis of the DEGs

were shown in Supplementary Table 6.
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Furthermore, GSEA was performed to reveal potential

biological processes and mechanistic pathways between the

different risk groups. The top 100 pathways in the GSEA-KEGG

and GSEA-GO analyses between the high- and low-risk groups

were shown in Supplementary Table 7. Surprisingly, it was revealed

that the regulation of the actin cytoskelet.
Frontiers in Immunology 13
on and microtubule motor activity were enriched in the high-

risk group (Figures 8C, D). Previous studies had demonstrated that

actin, microtubules, and intermediate filaments were integral

components of the cytoskeleton. The formation of disulfide bonds

in actin cytoskeleton proteins that led to F-actin collapse and

generation of forces within cells, ultimately inducing disulfidptosis
FIGURE 6

5-DRLs prognostic signature for immune microenvironment and immunotherapy response discrimination in HCC. (A) Relative proportion of 22 different
immune cells based on CIBERSORT in the low-risk group and the high-risk group. Immune cells in red indicated that there was a significant difference
between two groups. (B) The relationship between the risk score and immune Score. (C) The relationship between the risk score and Stromal Score.
(D) The proportion of M0 macrophages, M2 macrophages, activated mast cell, monocyte, neutrophil, and CD8+ T cell in the low-risk group and the
high-risk group. (E) Differential expressions of immune checkpoint genes between high- and low-risk groups. (F-I) Immunophenoscore predicts
response to immunotherapy with CTLA-4 and PD-1 blockers. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 7

Correlation between 5-DRLs signature and TMB and drug sensitivity analysis. (A, B) Waterfall plot of the TMB in the high- and low-groups revealed
the top 15 most frequent mutation genes. (C) The Kaplan–Meier curve for survival status and survival time in the high-and low-TMB groups. (D) The
Kaplan–Meier curve for survival status and survival time in the high-TMB + high-risk, low-TMB + high-risk, high-TMB + low-risk and low-TMB +
low-risk groups. (E-J) IC50 of elesclomol, docetaxel, vinblastine, sunitinib, gemcitabine and, paclitaxel between the two risk groups. TMB, tumor
mutational burden; IC50, half-maximal inhibitory concentration.
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(17, 37). Hence, it could be inferred that the 5-DRLs signature is

closely associated with disulfidptosis.
3.8 Verification of 5 DRLs expressions in
HCC cell lines and tissues

According to the data presented in Figure 9A, there were

significantly higher expression levels of the five DRLs in HCC

tissues than in normal tissues from TCGA database. To further

verify this finding, we conducted experiments using a normal liver

cell line MIHA and four distinct liver cancer cell lines: HA22T,

JHH-7, HCCLM3, and HepG2. Subsequently, we extracted RNA

from each cell line and used RT-qPCR to confirm the expression

levels of these lncRNAs. The results demonstrated that the five

DRLs exhibited higher expression levels in HCC cells than in

normal liver cells (Figures 9B-F). For further corroboration, we

collected 16 pairs of HCC tissues and adjacent normal tissues from
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patients with HCC who had undergone surgical resection. Similar

results were observed in these clinical samples, indicating higher

expression levels of the aforementioned lncRNAs in HCC tissues,

except SLC25A30-AS1 (Figures 9G-K).
3.9 Validation of disulfidptosis phenotype
in HCC cell lines

To verify the phenomenon of disulfidptosis could be repeated in

HCC, we induced disulfidoptosis in selected HCC cell lines through

glucose deprivation. Initially, we compared the expression levels of

SLC7A11 gene among different liver cell lines and HCC cell lines in

mRNA level and protein level. The result revealed that all of HCC

cell lines exhibited higher expression levels than the normal liver

cell line MIHA. Among the HCC cell lines, HepG2 and HCCLM3

displayed significantly elevated expression, whereas HA22T and

JHH-7 had relatively lower levels (Figures 10A, B). Subsequently,
FIGURE 8

Pathway and functional enrichment analyses of DEGs between high- and low- risk group. (A) KEGG pathway enrichment of DEGs between high-
and low- risk group. (B) GO functional annotation analysis of DEGs between high- and low- risk group. (C, D) Gene set enrichment analysis between
high- and low- risk group.
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we selected HepG2, characterized by high SLC7A11 expression

level, and JHH-7, characterized by low SLC7A11 expression level, to

validate the disulfidoptosis phenotype in HCC. The cell viability

curve indicated that HepG2 was more sensitive to disulfidoptosis

(Figure 10C). Besides, after exposing both cell lines in glucose

deprivation for 12 hours, we fixed those cells in 4% formaldehyde
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and stained them with phalloidin. HepG2 cells exhibited

substantially morphological changes, including intensified

cytoskeletal staining. Compared with normal cells, treated cells

displayed contraction, actin filament accumulation and reduced

cell volume (Figure 10D). Relatively lesser changes were observed in

JHH-7 cells (Figure 10E).
FIGURE 9

Verification of 5 DRLs expressions in HCC cell lines and tissues. (A) The heatmap of the expression of 5 DRLs in HCC tissues and adjacent tissues
from TCGA database. (B-F) 5 lncRNAs’ (FOXD2-AS1, LINC01063, TMCC1-AS1, SLC25A30-AS1, AC009283.1) expression levels in liver cell lines and
different HCC cell lines including MIHA, HA22T, HCCLM3, JHH-7, HepG2 (n=3) (One-way ANOVA). (G-K) 5 lncRNAs’ expression levels in HCC
tissues and adjacent normal tissues (T-test). *p < 0.05, **p < 0.01, ***p < 0.001 and ****p<0.0001. ns, no significance.
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FIGURE 10

Validation of disulfidptosis phenotype between HCC cell lines. (A) The expression levels of SLC7A11 gene in 5 cell lines (n=3) (One-way ANOVA).
(B)The Western blot bands of SLC7A11 and GAPDH protein in 5 cell lines (n=3) (One-way ANOVA). (C) Cell viability curve of HepG2 and JHH-7 about
6, 12, 18 and 24 h after glucose starvation treatment, respectively (Two-way ANOVA). (D, E) F-actin staining by phalloidin of HepG2 and JHH-7.
(F, G) The rescue effect of cell death inhibitors in HepG2 and JHH-7 undergoing disulfidptosis for 12 hours was explored through CCK8 assay
(One-way ANOVA). ZVF, Z-VAD-FMK; Fer-1, ferrostatin-1; Nec-1, necrostatin-1; NAC, N-acetyl cysteine; TTM, Tetra thiomolybdate; TCEP,
Tris(2-carboxyethyl) phosphine. * p < 0.05, **p < 0.01, and ****p < 0.0001. ##p<0.01, ####p<0.0001. (*means compared with group Ctrl; #means
compared with group -GLC).
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We also explored the expression of ten disulfidptosis-related

genes in the TCGA database and in 16 HCC patients. As shown in

Supplementary Figures 5 and 6, we presented the expression of

these ten genes in TCGA and HCC patients, respectively. It was

observed that most of the disulfidptosis-related genes were more

highly expressed in HCC tissues compared to normal tissues. This

indicates that these genes could potentially be targeted to induce

disulfidptosis and serve as treatment targets for HCC in future.

To further confirm that cell death induced by glucose deficiency

was not caused by other forms of cell death, we introduced various

cell death inhibitors, such as Ferrostatin-1 (Fer-1, a ferroptosis

inhibitor), Necrostatin-1 (Nec-1, a necroptosis inhibitor), Z-VAD-

FMK (ZVF, an apoptosis inhibitor), N-acetyl cysteine (NAC, an

antioxidant), Tetra thiomolybdate (TTM, a cuproptosis inhibitor)

to the treatment groups during the 12-hour glucose starvation and

detected the cell viability. However, these inhibitors did not alleviate

cells death. Surprisingly, the addition of Tris(2-carboxyethyl)

phosphine (TCEP), a non-thiol reducing agent, resulted in a

remarkable rescue in cell death (Figures 10F, G). In summary,

our study conclusively showed that glucose deprivation could

trigger disulfidptosis in HCC. The extent of this novel cell death

was directly correlated with the expression level of the SLC7A11

gene. Besides, this cellular damage resulting from sulfide

accumulation could be mitigated by TCEP.
3.10 Disulfidptosis regulated by LINC01063
and FOXD2-AS1

According to the disulfidptosis-related lncRNA signature, five

lncRNAs (AC009283.1, SLC25A30-AS1, FOXD2-AS1, LINC01063,

and TMCC1-AS1) were identified as central components within

this network, suggesting their potential significance in the

disulfidptosis of HCC.

We selected two lncRNAs, FOXD2-AS1 and LINC01063, for

further investigation. Initially, we designed silencing RNAs to knock

down the expression of FOXD2-AS1 and LINC01063 in the HepG2

cell line. The knockdown efficiency was confirmed via RT-qPCR,

revealing that LIN010613 siRNA1 and FOXD2-AS1 siRNA2

achieved greater than 70% knockdown efficiency (Figures 11A, D).

Subsequent cell viability assays demonstrated that the depletion of

FOXD2-AS1 and LINC01063 sensitized HCC cells to disulfidptosis

(Figures 11B, E). After 24 hours of glucose starvation, cells with

LINC01063 and FOXD2-AS1 knockdown showed significantly lower

viability compared to the control group. Additionally, fluorescence

microscopy with F-actin staining further demonstrated that, after 12

hours of glucose starvation, cells with LINC01063 and FOXD2-AS1

knockdowns displayed more markedly abnormal cell morphology

(Figures 11C, F). Specifically, these HepG2 cells exhibited substantial

morphological changes, including intensified cytoskeletal staining,

pronounced cytoskeletal shrinkage, actin filament accumulation, and

reduced cell volume (Figures 11G, H).

These findings corroborate our bioinformatics analysis, which

indicated that the lncRNAs within the prognostic signature play a

regulatory role in disulfidptosis. Specifically, the downregulation of

lncRNAs such as LINC01063 and FOXD2-AS1 enhances the
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sensitivity of HCC cells to disulfidptosis. The precise regulatory

mechanisms underlying this effect warrant further investigation.
4 Discussion

HCC is the sixth most common cancer worldwide and is known

for its high mortality rate and aggressiveness (38). Therefore,

understanding the pathogenesis of HCC and exploring new

diagnostic and prognostic markers are crucial. Meanwhile,

disulfidptosis has provided a new theoretical foundation for the

development of innovative antitumor treatments (17). In this study,

we conducted a comprehensive analysis of the transcriptional

expression of 10 disulfidptosis-related genes (DRGs) in HCC

patients based on the TCGA database. Subsequently, we identified

the co-expressed lncRNAs associated with these DRGs and

developed a novel scoring system based on five co-expressed

prognostic-related lncRNAs (FOXD2-AS1, SLC25A30-AS1,

TMCC1-AS1, LINC01063, and AC009283.1). ROC, C-index, and

DCA analyses revealed that the risk signature had high accuracy

and excellent sensitivity. Moreover, univariate and multivariate Cox

analyses confirmed it to be an independent prognostic factor for

patients according to univariate and multivariate Cox analyses. In

addition, we created a nomogram by combining the risk score with

other clinicopathological features. This nomogram provided an

intuitive and quick individualized risk assessment for patients

with HCC. We established a signature of lncRNAs associated

with disulfidptosis, providing a potential strategy for guiding

individualized treatment and contributing to the prediction of

prognosis and immune response in HCC patients. Finally, we

validated the relative expression of the five lncRNAs in both cell

lines and HCC tissues and verified the disulfidptosis phenotype of

HCC under glucose deprivation.

The five DRLs, components of our signature, were identified as

potentially associated with HCC and disulfidptosis in the existing

literature. We discovered that these lncRNAs had been previously

studied in various types of cancers. For instance, Miranda’s research

indicated that lncRNA AC009283.1 may be causally related to

carcinogenesis. It has been suggested that AC009283.1,

contributes to the malignant phenotype of the HER2-rich subtype

of breast cancer, leading to an upregulation of tumor cell

proliferation capacity and resistance to apoptosis (39). However,

in our risk signature, AC009283.1 exhibited higher expression levels

in the lower-risk group (Figure 4A). The heterogeneity of tumors

may be responsible for this inconsistency. For LINC01063, Xu’s al.

reported that it acted as an oncogene in melanoma by functioning

as a sponge for miR-5194, leading to increased cancer cell

proliferation, migration, invasion, and epithelial-mesenchymal

transition (40). TMCC1-AS1 has also been implicated as a tumor

promoter; its suppression led to increased E-cadherin expression

and decreased proliferating cell nuclear antigen Ki67 expression in

HCC cells (41). Mechanistic insights into FOXD2-AS1 have been

extensively explored in gastric cancer, colorectal cancer, breast

cancer, and other malignancies, primarily focusing on its cancer-

promoting properties. For example, Xu et al. revealed that the

knockdown of FOXD2-AS1 reduced transmembrane protein 9
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(TMEM9) expression and increased the sensitivity of HCC cells to

sorafenib (42). In addition, SLC25A30-AS1 showed a lower

expression level in the high-risk group of our risk signature,

which correlated with poor prognosis (Figure 4A). Hence, further

experiments are required to elucidate how SLC25A30-AS1 regulates

the malignant behavior of HCC.

TMB, associated with neoantigens present on the surface of

cancerous cells, complements conventional biomarkers for

predicting the effectiveness of ICB (43). Previous studies have

reported that patients with high TMB tend to have poorer survival
Frontiers in Immunology 19
and better response to ICB (44). In this study, there was a significant

disparity in TP53 and CTNNB1 gene mutations between the two

groups: the high-risk group exhibited a higher frequency of TP53

gene mutations, whereas the low-risk group showed an elevated

frequency of CTNNB1 gene mutations. CTNNB1-mutated HCC has

been proven to be a homogeneous subtype of non-proliferative

tumors with well-differentiated characteristics such as an intact

tumor capsule, cholestasis, microtrabecular, and pseudoglandular

architectural patterns (45, 46). Conversely, TP53-mutated tumors

were poorly differentiated, with a compact pattern, multinucleated
FIGURE 11

LINC01063 and FOXD2-AS knockdown increases susceptibility to disulfidptosis in HepG2 cells. (A, D) The expression levels of LINC01063 and
FOXD2-AS lncRNAs in HepG2 cells, with or without siRNA treatment, are shown (n=3) (One-way ANOVA). (B, E) HepG2 cells with or without
LINC01063 and FOXD2-AS knockdown were subjected to glucose starvation for 0, 6, 12, 18, and 24 hours, followed by assessment using the CCK8
reagent (Two-way ANOVA). (C, F) The proportion of abnormal cells in different groups was quantified using F-actin staining images obtained with a
fluorescence microscope (T-test). (G, H) Representative fluorescence images of F-actin staining after 12 hours of glucose starvation are shown for
HepG2 cells with or without LINC01063 and FOXD2-AS knockdown. **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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and pleomorphic cells, and vascular invasion (46). Additionally,

previous studies have shown that TP53 could inhibit the expression

of SLC7A11 (a key component of the cystine/glutamate antiporter),

reducing the uptake of cystine and synthesis of cysteine-dependent

glutathione (GSH), destroying cellular antioxidant defenses,

ultimately accelerating ROS accumulation, and inducing ferroptosis

(15, 47). However, high expression of SLC7A11 combined with

glucose starvation could result in disulfidptosis (47, 48). Therefore,

the cellular and molecular mechanism of how TP53 regulated the

disulfidptosis and the balance between disulfidptosis and ferroptosis

require further exploration.

Tumor cells under continuous evolution driven by constant

selection and mutual interaction within the entire cellular ecosystem,

ultimately giving rise to adaptive cellular phenotypes within the tumor

microenvironment (TME) (49, 50). In our study, M2 macrophages

were highly recruited to the high-risk group. Macrophages, which are

versatile and heterogeneous innate immune cells, possessed plasticity

that allows them to interact with a wide range of cell type including

tumor cells, T lymphocytes, endothelial cells (ECs), and fibroblasts.

This interaction can subsequently promote tumor tolerance and

progression (51). Recent research has revealed a correlation between

an unfavorable prognosis and M0 macrophages in HCC (52). In

addition, there were two distinct types of polarized macrophages.

Type 1-polarized macrophages (M1), identified by the expression of

CD80, CD86, MHC II, iNOS, and CD68, were phagocytic and could

impede tumor progression. In contrast, type 2-polarized macrophages

(M2), induced under the influence of IL-4, IL-13, IL-10, and M-CSF,

were immunosuppressive cells characterized by the expression of

CD206, CD204, VEGF, CD163, and Arg-1. These actions can

suppress the anti-cancer immune response (32, 53). Therefore, the

high-risk group with higher recruitment of M2 macrophages in our

study may have a relatively worse anticancer immune response,

highlighting the predictive value of the prognostic signature in

the TME.

In recent years, immune checkpoint inhibitors have been

vigorously developed for cancer therapy. Atezolizumab plus

Bevacizumab and Tremelimumab plus Durvalumab have been

widely approved as standard-of-care first-line therapies for HCC

(54). Tremelimumab, an anti-CTLA-4 antibody, inhibit the

interaction between CTLA-4 and B7-1 (CD80) and CTLA-4 and

B7-2 (CD86), reactivating T lymphocytes (55). As illustrated in

Figure 6E, the gene expression of CD80 and CD86 was higher in the

high-risk group, suggesting that Tremelimumab may be more

effective in this group. In addition, the expression of CD276 (B7-

H3) was significantly higher in the high-risk group. CD276, which is

selectively expressed in tumor and immune cells, was associated

with tumor cell proliferation, metastasis, and therapeutic resistance

(56). Therefore, our 5-DRLs signature may have the potential to

predict the expression of immune checkpoint genes and related

immunotherapeutic responses.

However, this study remained several limitations. Firstly, our

analysis relied on retrospective patient information available from

public datasets. No external database was available to validate the

reliability of the signature in terms of lncRNA expression and

clinical prognostic data. Additional verification using prospective

multicenter real-world data is required for this risk signature.
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Secondly, we only verified the differential expression of five

lncRNAs in HCC compared to normal subjects using a small

sample size. Thirdly, we only confirmed that disulfidptosis could

be induced in HCC, without further investigation into the

mechanisms and applications of this signature. Therefore, further

studies are needed to thoroughly elucidate the function of

disulfidptosis-related lncRNAs in HCC in future research.
5 Conclusion

In summary, we developed a novel 5-DRLs signature with

excellent specificity and sensitivity, serving as a reliable prognostic

indicator for patients with HCC. The nomogram, which includes

age, clinical TNM staging, and risk scores, provides a

straightforward tool for predicting the survival period of patients

with HCC. Additionally, our signature has the potential to predict

the effectiveness of immunotherapy and targeted therapies. We

believe that our signature can build a bridge between HCC and

disulfidptosis, ultimately serving as a clinically applicable diagnostic

and therapeutic tool.
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