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Background: Hepatocellular carcinoma (HCC) patients exhibiting portal vein

tumor thrombosis (PVTT) face a high risk of rapidmalignant progression and poor

outcomes, with this issue being compounded by a lack of effective treatment

options. The integration of bulk RNA-sequencing (RNA-seq) and single-cell

RNA-seq (scRNA-seq) datasets focused on samples from HCC patients with

PVTT has the potential to yield unprecedented insight into the dynamic changes

in the tumor microenvironment (TME) and associated immunological

characteristics in these patients, providing an invaluable tool for the reliable

prediction of disease progression and treatment responses.

Methods: scRNA-seq data from both primary tumor (PT) and PVTT cells were

downloaded from the Gene Expression Omnibus (GEO) database, while the

International Cancer Genome Consortium (ICGC) and Cancer Genome Atlas

(TCGA) databases were used to access bulk RNA-seq datasets. scRNA-seq,

clustering, GSVA enrichment, mutational profi l ing, and predictive

immunotherapeutic treatment analyses were conducted using these data with

the goal of systematically assessing the heterogeneity of PT and PVTT cells and

establishing a model capable of predicting immunotherapeutic and prognostic

outcomes in patients with HCC.

Results: These analyses revealed that PVTT cells exhibited patterns of tumor

proliferation, stromal activation, and low levels of immune cell infiltration,

presenting with immune desert and immune rejection-like phenotypes. PT

cells, in contrast, were found to exhibit a pattern of immunoinflammatory

activity. Core PVTT-associated genes were clustered into three patterns
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consistent with the tumor immune rejection and immune desert phenotypes. An

established clustering model was capable of predicting tumor inflammatory

stage, subtype, TME stromal activity, and patient outcomes. PVTT signature

genes were further used to establish a risk model, with the risk scores derived

from this model providing a tool to evaluate patient clinicopathological features

including clinical stage, tumor differentiation, histological subtype, microsatellite

instability status, and tumor mutational burden. These risk scores were also able

to serve as an independent predictor of patient survival outcomes, responses to

adjuvant chemotherapy, and responses to immunotherapy. In vitro experiments

were used to partially validate the biological prediction results.

Conclusion: These results offer new insight into the biological and

immunological landscape of PVTT in HCC patients, By utilizing individual

patient risk scores, providing an opportunity to guide more effective

immunotherapeutic interventional efforts.
KEYWORDS

single-cell RNA-seq, hepatocellular carcinoma, portal vein tumor thrombosis, immune
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Introduction

Primary liver cancers are frequently diagnosed throughout the

globe, with hepatocellular carcinoma (HCC) being the most

common pathological subtype of thereof, accounting for 75-85%

of all cases (1, 2). In the early stages of tumorigenesis, HCC

generally does not present with any distinct clinical symptoms

such that 80% of HCC patients are only diagnosed when the tumor

is already relatively advanced. As there are no reliable treatments

available for advanced liver cancer, affected patients generally

survive for 10-24 months after diagnosis (3, 4). The liver exhibits

unique anatomical and biological characteristics that can facilitate

the frequent invasion of the intrahepatic portal vein system by HCC

tumors, leading to portal vein tumor thrombosis (PVTT) (5, 6). The

incidence of HCC combined with PVTT has been reported to be up

to 10-40% on initial diagnosis (7) and 44.0-62.2% on autopsy in

Japan (8), and these patients face worse prognostic outcomes as

compared to HCC patients unaffected by PVTT (9). These adverse

outcomes include high rates of tumor invasion, portal hypertension

resulting from PVTT, and insufficient hepatic reserve functionality

(10). In patients with untreated PVTT, the median survival

duration is just 4.0 months (6).

At present, the American and European guidelines for HCC

patients exhibiting PVTT only recommend the use of targeted drug

treatment (11, 12), whereas supplementary local therapy is

recommended under Asian HCC patient guidelines. Recommended

supplementary treatment options for these PVTT patients include

hepatectomy, local radiotherapy, TACE, or hepatic arterial infusion

chemotherapy (HAIC) (13–15). Despite the growing array of treatment
02
options available to these HCC patients with PVTT, clinical data

suggest that they continue to experience very poor survival outcomes

(16–18). A high degree of heterogeneity is observed with respect to

HCC patient responses to treatment owing to factors including the

complexity of the tumormicroenvironment, epigenetic differences, and

the heterogeneous nature of the tumors themselves (17, 19, 20). This

patient-specific heterogeneity needs to be taken into account to select

the optimal treatment approach for each patient. Molecular biomarkers

based on the genomic characteristics of a given tumor can offer insight

into the dynamic changes in immune responses and tumor

microenvironment composition within cancer patients, providing an

invaluable resource for the production of disease progression and

treatment responses (21, 22).

Advances in cancer genomics have led to the generation of

extensive bulk transcriptomic sequencing (bulk RNA-seq) datasets

that can provide insight into average levels of gene expression

within a given sample. In contrast, single-cell RNA-seq (scRNA-

seq) datasets can yield nuanced information regarding

transcriptomic heterogeneity at the cellular level, allowing

researchers to better understand gene expression distributions

(23, 24). These unique advantages have prompted many

researchers to explore HCC-associated biomarkers through the

integration of bulk RNA-seq and scRNA-seq analyses, allowing

for precise patient selection and stratification. Here, scRNA-seq and

bulk RNA-seq data were leveraged to conduct systematic analyses

exploring the immunological landscape of PVTT with the goal of

clarifying the differences between primary tumor (PT) and PVTT

tissue samples. Characteristic PVTT-associated genes were

identified through a screening strategy and used to construct a
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model capable of predicting HCC patient prognosis, with two

external validation cohorts then being used to successfully

confirm the ability of this model to stratify patients based on risk.

The association between this risk model and immune cell

infiltration was also assessed, while the ability of risk score values

to predict the progression of disease or HCC patient responses to

treatment was also assessed. The corresponding molecular biology

experiments were used to evaluate the bioinformatics findings. In

vitro assays have proved that the prediction results of

bioinformatics analysis are reliable. Together, the results of these

analyses provide new information that may benefit future efforts to

manage HCC patients in clinical settings.
Materials and methods

Data selection and preparation

The LIHC GSE149614 scRNA-seq dataset was obtained from

the GEO (https://www.ncbi.nlm.nih.gov/) database. This dataset

was comprised of PT tissue samples from 10 patients with LIHC,

and PVTT tissue samples from 2 patients with LIHC. The scRNA-

seq analyses were conducted with the R Seurat package (v 4.2.0)

(25), transforming raw data into Seurat objects. The R Harmony

package was employed to correct for batch effects. Any cells

exhibiting the expression of more than 8,000 genes or less than

500 genes were excluded, as were cells in which more than 20% of

the UMIs were derived from the mitochondrial genome. A linear

regression model was used for the normalization of core cell gene

expression, while ANOVAs were used to screen the top 2000 genes

exhibiting a high degree of variability. Single-cell samples were

subjected to principal component analysis (PCA), selecting the top

20 principal components (PCs) for further analyses. Overall

dimensionality reduction analyses for the top 20 PC pairs were

achieved with the “tSNE” and “UMAP” algorithms. The R singleR

(26) package was used for the preliminary identification of cell

types, with further cell type annotation being achieved with the

CellMarker database (http://xteam.xbio.top) (27) and cell surface

marker-related data. Cellular characteristics and core gene

expression profiles in PVTT samples were not corrected for the

effect of the cell cycle.

The TCGA database (https://portal.gdc.cancer.gov/) was

accessed to obtain bulk RNA-seq data, clinical data, and SNP site

data from the TCGA-LIHC cohort, which consisted of 374 LIHC

samples together with 50 samples of normal tissue. Samples were

excluded if they did not have complete survival information such

that 370 LIHC samples were retained for the final analysis. Bulk

RNA-seq data, clinical information, and SNP mutation site data of

TCGA-LIHC were downloaded from the TCGA database. In

addition, the ICGC database (https://dcc.icgc.org/) was accessed

to obtain bulk RNA-seq data and corresponding clinical data for the

ICGC-(LIRI-JP) cohort consisting of 243 LIHC tissue samples and
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202 samples of normal tissue. ICGC data were utilized as an

external dataset for model validation.
Identification of PVTT-associated
characteristic genes, pseudotime trajectory
analyses, and correlation analyses

Characteristic genes in PVTT cell clusters and other clusters were

detected with the Seurat package “FindAllMarkers” function through

Wilcoxon rank sum tests, selecting marker genes for each cluster

based on the following parameters: logFC=0.25, P<0.05. The R

Monocle2 package (v2.8.0) was employed for pseudotime analyses

of HCC cells, with the original processed count matrix data from

Seurat serving as the input for this analysis. An expression family

object was created with the Cell Data Set function, setting the lower

limit of detection to 0.5. Cell developmental trajectories were explored

through an unsupervised approach based on highly variable genes that

were selected byMonocle. All parameters were set to the default values

with the exception of the dispersion empirical parameter, which was

set at 1. An unsupervised nonparametric gene set variation analysis

(GSVA) (28) algorithm was conducted to assess pathway activity

within PVTT cell clusters in comparison to other cell clusters. The

Hallmark gene set was used for GSVA enrichment analyses, with the

gene set generated by Luo et al (29). being used to analyze differences

in biological processes when comparing the PVTT cell clusters to

other clusters. This gene set included AT2, angiogenesis, epithelial-

mesenchymal transition (EMT) markers, inflammation score, anti-

inflammatory score, and antigen presentation. In addition, a gene set

established by Chen et al. (30) associated with forms of cell death

including necroptosis, ferroptosis, and autophagy was utilized. Genes

associated with biological processes were stored, and the links between

PVTT features and biological pathways of interest were probed

through correlation analyses.
Candidate gene screening and core
gene selection

The R limma package was used to screen for differentially

expressed genes (DEGs) in the TCGA and ICGC cohorts (p <

0.05 and |Log2FC|> 1), with candidate genes from these datasets

being used to screen for characteristic prognosis-related genes

through univariate Cox proportional risk regression analyses. The

overlap between the characteristic PVTT-related genes from

scRNA-seq analyses and the prognostic genes identified in the

TCGA and ICGC datasets was established as the candidate gene

set. ROC curves for these candidate genes in the TCGA and ICGC

datasets were plotted with the R survROC (31) package to assess the

ability of these candidate genes to predict the overall survival (OS)

of patients with HCC. All genes with ROC values > 0.7 in the TCGA

and ICGC datasets were selected, with the resultant gene list serving

as the core gene list for predictive model development.
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Unsupervised core gene clustering and
TME cell infiltration analyses

Patients were classified according to patterns of core gene

expression based on an unsupervised clustering approach, with a

consensus clustering algorithm being used to determine cluster

numbers and stability with the ConsensuClusterPlus package and

1,000 repetitions to ensure classification stability (32). The R GSVA

package was used to conduct GSVA enrichment analyses aimed at

observing differences in biological processes when comparing

established clustering models (28). GSVA analyses were performed

with the Hallmark gene set, using an FDR < 0.05 as the cut-off.

The CIBERSORT package was used to assess the tumor

immune microenvironment associated with different clusters,

yielding insight into the infiltration status for 22 different

immune cell types for each TCGA-LIHC patient sample.

Correlations between immune cell infiltration and the core genes

of interest were assessed based on Pearson correlation coefficients.

Differences in immune cell infiltration, immune circulation scores,

and tumor stroma scores were also assessed across different clusters

with the IOBR package (33).
Prognostic model development
and validation

Regression coefficients (b) and expression levels for core genes

were used to establish a prognostic risk scoringmodel for HCC patients

with PVTT through a multivariate Cox regression approach as follows:

HCC with PVTT. Risk score = gene exp1×b1+ gene exp2×b2+ gene

exp3×b3. The optimal cut-off value was used to classify patients as low-

risk or high-risk, and the survminer package was then used to compare

the survival curves for patients in these two risk groups. ROC curves

and area under the curve (AUC) values were used to assess model

specificity and sensitivity based on the prediction of HCC patient OS at

1, 2, and 3 years. Wilcoxon or Kruskal-Wallist tests were used to assess

the relationship between clinicopathological features and survival, with

the TCGA and ICGC datasets respectively being used for training and

validation. Samples in different subgroups were analyzed based on the

following classifications: age (≤ 60 or > 60 years), gender (male, female),

grade (grade 1-2, grade 3-4), stage (stage 1-2, stage 3-4), T stage (T1-2,

T3-4). To gain greater insight into the relationship between

clinicopathological features and the survival of patients, stratified

survival analyses of the low- and high-risk patients were conducted

for these different clinicopathological subgroups. Multiple patient

clinical features and risk scores were included in this effort, and the

R cph function was used to generate a nomogram capable of predicting

patient 1-, 2-, and 3-year OS. Calibration curves were employed for

model validation.
Predictive analyses of immunotherapy and
chemotherapy sensitivity

The GEO database was accessed to download four

immunotherapy-related datasets containing transcriptomic data
Frontiers in Immunology 04
and corresponding information regarding patient immunotherapy

responses. The analyzed therapies in these datasets included the

treatment of metastatic melanoma with pembrolizumab (GSE78220)

(34), the treatment of advanced urothelial carcinoma with

atezolizumab urothelial carcinoma (IMvigor210 cohort) (35), the

treatment of renal cell carcinoma with nivolumab (GSE67501) (36),

and pan-cancer tumor responses to the combination of PD-1 and

CTLA-4-targeting therapies derived from the TCIA database (https://

tcia.at/) (37). The oncoPredict package was also used to examine the

potential relevance of risk scores to chemotherapy responses,

yielding IC50 values for drugs included in the Genomics of Drug

Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/) (38)

and the Cancer Treatment Response Portal (CTRP). Correlations

between risk scores and the IC50 values for different drugs were

employed for drug screening, after which differences in IC50 values

for these drugs were compared between the low- and high-risk

patient groups. The top 10 drugs exhibiting the highest sensitivity in

the high-risk group were then extracted, and the results were

presented with the R ggplot2 package.
Cell lines and cell culture

Human hepatocellular carcinoma cell lines HepG2, Huh7 and

Human Hepatic Stellate Cell line LX-2 were obtained from Pricella

Life Science and Technology Co., Ltd. (#CL-0103, #CL-0120, #CL-

0560, Wuhan, China). HCC-LM3 cell line was obtained from

Haixing Biosciences Co., Ltd. (#TCH-C456, Suzhou, China). PLC/

PRF/5 and MHCC-97-H cell lines were obtained from Ubigene

Biosciences Co., Ltd. (#YC-C125 and #YC-A028, Guangzhou,

China). All cell lines were cultured in DMEM medium

(#PM150210) supplemented with 10% fetal bovine serum

(#PM150210), and penicillin-streptomycin mix(#P1400) (all from

Pricella Life Science and Technology Co., Ltd, Wuhan, China) at 37°

C in a humidified incubator with 5% CO2.
HCC patient samples
and immunohistochemistry

The HCC tissues and para-tumor tissues (adjacent normal

tissues; >2 cm from the tumors’ edges) were procured from the

different three individuals undergoing liver cancer resection at the

Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated

to Guangxi University of Traditional Chinese Medicine between

December 2022 and October 2023.The studies were approved by

the Ethics Committees of Ruikang Hospital Affiliated to Guangxi

University of Traditional Chinese Medicine. The assigned ethical

review approval number: KY2022-045 (Supplementary Figure 4).

Immunohistochemistry (IHC) was performed according to

standard protocols using PRR11, KIF11, RACGAP1, YY1,

CREB1and SUZ12 antibodies. The information of antibodies are

shown in Supplementary Table 1. Finally, the prepared liver tissue

sections were photographed under a microscope (#BX53, Olympus,

Shanghai, China) to evaluate the target staining and overall

tissue morphology.
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Migration and Matrigel invasion assays

Matrigel matrix glue (#40183ES08, Yeasen Biotechnology,

Shanghai, China) was diluted in a serum-free medium at 1:6, and

50ul was evenly spread into the upper chamber of Transwell

chamber (#353097, BD Medical, Shanghai, China). The chamber

was placed in a 24-well plate and incubated at 37°C for 4h to allow it

to gelatinize. The cell density was adjusted to 2×105 cells/mL, and

100mL per well was inoculated into the upper chamber of transwell

chamber. The cells in the upper chamber were removed after 24h,

fixed with methanol and 0.1% crystal violet (#G1063, Solarbio,

Beijing, China) for 20min, stained for 10min, and washed twice

with PBS. The cells were then counted under an inverted optical

microscope (#BX53, Olympus, Shanghai, China).
Cell viability assays

MTT Cell Proliferation and Cytotoxicity Assay Kit (S4025,

Warbio, Nanjing, China) was used to measure the viability of

transfected LM3 and HepG2 cells. Then cells were plated into 96-

well plates(#1014000-T4, SAINING, Suzhou, China) at a density of

1×104 cells per well and thereafter incubated for 24h, 48h and 72h,

respectively. MTT solution (10 µL) was added to each well at the

designated time intervals and incubated at 37°C for 2h. The

absorbance at 570 nm was measured using a microplate reader

(Infinite 200 PRO, Shanghai, China).
Colony formation assay

HepG2 and LM3 cell suspension was prepared once the cell

growth was in the logarithmic phase. The cells were then seeded

into the six-well plates (#1010000-T4, SAINING, Suzhou, China)

and incubated at 37°C, 5% CO2 and saturated humidity for two

weeks. The culture was terminated if the clones visible to the naked

eyes appeared in the dish. Afterward, the cells were rinsed with PBS

twice and fixed with 5 mL of pure methanol (#BL539A, Ranjeck,

Beijing, China) for 15 min. The methanol was then removed, and

crystal violet ammonium oxalate solution (#G1063, Solarbio,

Beijing, China) was added and incubated for 30 min. The staining

solution was removed, and the sample was dried in air. Clones with

more than 10 cells were counted using a light microscope (#BX53,

Olympus, Shanghai, China). The colony formation rate was

calculated by using the formula (number of clones)/(number of

inoculated cells) × 100%.
Western blotting analysis

HCC cells and tissues were lysed in radioimmunoprecipitation

assay (RIPA) buffer (#R0020, Solarbio, Beijing, China) containing

protease suppressors for 30 min. The protein concentration was

quantified using a bicinchoninic acid (BCA) kit (#P0010S, Beyotime,

Shanghai, China) in accordance with the manufacturer’s protocol.
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The total protein was subjected to heating at 95°C for 5 min.

Thereafter, identical quantities of protein were separated by sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

(#P001A, Beyotime, Shanghai, China). The separated proteins were

transferred to polyvinylidene fluoride (PVDF) (#FFP28, Beyotime,

Shanghai, China) membranes after which electrometastasis was

applied and then blocked with 5% skimmed milk at the room

temperature for 60 min. The membranes were then stored

overnight at 4°C with an appropriate primary antibody. The panel

of antibodies used was shown in Supplementary Table 1. After

washing 3 times in TBST buffer, the membranes were incubated at

the room temperature for 1h with rabbit horseradish peroxidase

(HRP)-conjugated secondary antibody (Goat, 1:10000,

#BA12163708, Bioss, Beijing, China), then washed with the

blocking solution and visualized by enhanced chemiluminescence

(#6100, Clinx Science, Shanghai, China). Finally, quantity One gel

analysis software was used to detect the signal intensity of each

membrane. The intensity was measured relative to that of GAPDH.
qRT-PCR

Total RNA was extracted from CRC cell lines using Monzol™

Reagent kit (#MI20201S, Mona, Suzhou, China) following the

manufacturer’s instructions. cDNA was synthesized using a reverse

transcription kit (#EG15133S, BestEnzymes, Lianyungang, China). The

samples Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was

used as an endogenous control. Each sample was prepared in triplicate.

mRNA expression levels were calculated by comparing Ct method.

qRT-PCR primers sequences were listed in Supplementary Table 2.
Co-immunoprecipitation (Co-IP) assays

HepG2 and LM3 cells were first lysed according to the lysis

method of adherent cells. After removal of non-specific binding, the

samples were centrifuged at 2500rpm for 5 min, and the

supernatant was used for subsequent immunoprecipitation. 2ug

primary antibody used for immunoprecipitation was added and

slowly shaken overnight at 4°C 20ul Protein A+G Agarose was

added and slowly arose at 4°C for 1 h. The cells were centrifuged at

2500rpm for 5 min. Carefully remove the supernatant. Wash and

precipitate with PBS for 5 times. 40ul of 1x SDS-PAGE

electrophoresis buffer Vortex was added and the mixtures were

obtained by high-speed centrifugation. Co-IP assays were

performed according to Immunoprecipitation Kit with Protein A

+G Agarose Gel (#P2197M, Beyotime, Shanghai, China)

standard protocols.
Establishment of transient transfected
cell lines

The cells were transiently transfected with siRNAs, plasmids

using Lipofectamine™ 3000 Transfection Reagent (#2773051,
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Thermo Fisher Scientific, Shanghai, China) according to the

manufacturer’s instructions. PRR11, KIF11, RACGAP1, YY1,

CREB1, SUZ12 cDNA were synthesized and cloned them into the

pcDNA3.1(+) empty vectors by the GenePharma Technology Corp.,

The forward primer and reverse primer of KIF11, RACGAP1, PRR11,

CREB1, YY1 and SUZ12 are shown in Supplementary Table 4. and

sequencing was performed to verify the DNA sequence. The siRNA

sequence of PRR11, KIF11, RACGAP1, YY1, CREB1, SUZ12 are

shown in Supplementary Table 3.
Statistical analysis

All experiments were performed in triplicates. Data are

presented as the mean ± standard deviation. Statistical

significance was determined using t-test for comparisons between

two groups. R v 4.2.1 was used to conduct all statistical analyses,

with P < 0.05 and FDR q-values < 0.05 being regarded as significant.
Results

scRNA-seq analyses of PVTT samples

For an overview of the analytical approach for this study, see

Figure 1. After acquiring data from the study performed by Lu et al

(39). from the GEO database, scRNA-seq data for the included 10

PT and 2 PVTT tissue samples from the included HCC patients

were analyzed. Following quality control screening, 40,384 cells

were retained for analysis. Marker genes from the CellMarker

database and source study were used to annotate cell types

(Figure 2A), ultimately leading to the annotation of eight types of

cells including hepatocytes, B cells, T cells, NK cells, endothelial

cells, fibroblasts, monocytes, and macrophages (Figure 2B).

Further analyses of the hepatocyte cell subset were next

conducted, with Copykat being used to conduct cellular CNV

analyses of these hepatocytes, revealing that all hepatocytes in this

CNV analysis were malignant tumor cells. Further analysis of the

proportion of cell types indicated that PVTT contained a higher

proportion of malignant hepatocytes. Compared with PT, the

proportion of T cells, NK cells, endothelial cells, B cells and

fibroblasts was decreased in PVTT. This indicated that the

proliferation of malignant hepatocytes in PVTT is obvious, but it

is also accompanied by the inhibition of tumor immunity and

matrix activation (Figure 2C).

As cells of other subtypes beyond those found in PT samples may

be present in PVTT samples, the cells in these PVTT samples were

screened through two clustering and grouping strategies. Initially, all

HCC cells were clustered and grouped, followed by the preliminary

screening of the cell clusters from PVTT samples (Figure 2D). These

screened clusters were then subjected to another round of clustering

and grouping to identify those cell clusters consistent with PVTT-

associated biological characteristics. This second round of clustering

revealed that these cells were further stratified into three sub-clusters

numbered 0, 1, and 2 (Figure 2E). Those cells in cluster 0 were

derived from PVTT samples, whereas those from cluster 1 were
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PVTT and PT samples (Figure 2F). More specifically, cells in cluster 0

were primarily derived from samples T8, T9, and T10, together with

low levels of input from samples T1-4 and T7. In contrast, cells in

cluster 1 were primarily from samples T1-7 and T9-10. Cells in

cluster 2 were primarily derived from samples T2-3 and T6-10

(Figure 2I). Cell cycle distribution analyses indicated that all three

clusters contained cells in the S, G1, and G2M phases, with HCC cells

in the G2M stage clustering at the junction of cells in clusters 0 and 1

(Figure 2G). Based on pathological staging data, patients in clusters 0

and 2 exhibited stage IIIB and IV disease, whereas cells in cluster 1

were associated with patients with disease stages spanning from I-IV

(Figure 2H). These data suggest that while PVTT primarily developed

in patients with advanced (stage IIIB-IV) HCC, tumor cells with

PVTT-like characteristics are evident within PT tissue samples even

when collected from patients with early-stage primary HCC.

Pseudotime analysis trajectories revealed three different HCC

cell developmental trajectories numbers states 1-3 (Figure 3A). The

HCC cells from patients with stage I-IIIA disease underwent

differentiation from state 1 to state 2, whereas those from patients

with stage IIIB disease underwent differentiation from state 1 to

states 2 and 3, and those from stage IV patients underwent

differentiation from state 1 to state 3 (Figure 3B). The

differentiation trajectories of HCC cells also varied as a function

of clinical malignancy, with cells in clusters 1 and 2 exhibiting

trajectories similar to those of pathological stage IIIB HCC cells,

while cells in cluster 0 exhibited trajectories consistent with those of

pathological stage IV HCC (Figure 3C). These findings suggested

that PVTT cells exhibit greater malignancy, with developmental

trajectories significantly distinct from those of HCC cells in earlier

stages of pathological development.

In GSVA enrichment analyses exploring differences in the

biological characteristics of cells in the three established clusters,

cluster 0 exhibited enrichment for the DNA repair, Myc targets V1,

E2F targets, G2M checkpoint, mitotic spindle, and other pathways.

Cluster 1 exhibited enrichment for the coagulation, complement,

interferon-gamma response, bile acid metabolism, and other

pathways associated with tumor matrix activation and

inflammatory activity. Cluster 2 exhibited enrichment for the IL6

JAK STAT3 signaling, TNFA signaling via NFkB, allograft rejection,

IL2 STAT5 signaling, and other immunosuppression and immune

inflammation-related pathways (Figure 3D). GSVA analyses of 10

tumor activation-related pathways further demonstrated that cells

from cluster 0 were enriched in 8 pathways including the cell cycle,

Wnt, Hippo, and TGF-b pathways, whereas cluster 1 cells were

enriched in the PI3K and TP53 pathways, and cluster 2 cells were

enriched in the Wnt, Hippo, Notch, and TEG-b pathways, albeit

with weak expression (Figure 3E). The biological process-associated

gene set was used to score cells in these three clusters, revealing that

cluster 0 cells presented with higher AT2, EMT, and angiogenesis

scores relative to cluster 1 cells, together with lower inflammatory

response, anti-inflammatory response, and antigen presentation

scores. With respect to types of cell death, the autophagy scores

in cluster 0 were higher than those in cluster 1, whereas cluster 1

cells exhibited higher necroptosis and ferroptosis scores relative to

cluster 0 (Figures 3F–N). These data together suggest that PVTT
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cells are primarily represented by cells in cluster 0, which exhibited

characteristics including tumor cell proliferation, the activation of

the tumor stroma, and lower levels of immune infiltration

consistent with an immune desert and immune rejection. In
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contrast, PT samples were represented by the cells in cluster 1,

which exhibited evidence of inflammatory activity The mixed PT

and PVTT cells present in cluster 2 presented with a phenotype

consistent with f immune rejection.
FIGURE 1

Study flowchart.
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FIGURE 2

PVTT single-cell sources and distributions. (A) Marker genes were used to annotate cell types. (B) Eight cell types were identified in this dataset.
(C) Proportion composition of cell types of in the PT and PVTT. (D)The clustering and grouping results for HCC cells. (E) The clustering and grouping
results for the combination of PT and PVTT cells. (F) Clustering and grouping of the mixed PT and PVTT cells were performed to identify their
sources and distributions. (G) The cell cycle phase for the mixed cells cluster from PT and PVTT samples; (H) The pathological stage for the mixed
cells cluster from PT and PVTT samples; (I) The sample source stratification for the mixed cells cluster from PT and PVTT samples.
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Core PVTT gene selection
and characterization

Using the R FindAllMarkers function, the marker genes

associated with each of these established cell clusters were
Frontiers in Immunology 09
identified (Supplementary Figure 1A), yielding 6,364 marker

genes characteristic of the cells in cluster 0. Next, bulk RNA-seq

datasets from the TCGA and ICGC databases were downloaded,

and comparisons of the HCC and normal liver tissue samples in

these datasets were used to identify DEGs, after which DEGs
FIGURE 3

PVTT cell characteristics. (A) Pseudotime analyses were conducted for the mixed population of PT and PVTT cells. (B) HCC cell developmental
trajectories were assessed for different pathological stages. (C) HCC cell developmental trajectories were assessed for different clusters. (D) GSVA
enrichment analyses were performed for cells in clusters 0, 1, and 2. (E) GSVA analyses of pathways associated with tumor activation were
conducted for cells in clusters 0, 1, and 2. (F-N) AT2, angiogenesis, EMT, inflammatory response, anti-inflammatory response, antigen presentation,
autophagy, ferroptosis, and necroptosis scores were generated for cells in clusters 0, 1, and 2.
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significantly associated with patient OS were screened with

univariate Cox regression analyses.

Ultimately, 36 candidate genes were obtained based on the

overlap between the 6,365 cluster 0 marker genes and those genes

significantly related to the OS of patients in the TCGA and ICGC
Frontiers in Immunology 10
data sets (Figure 4A). In order to facilitate subsequent model

development, ROC curves for each of these 36 candidate genes

were used to assess their prognostic performance in the TCGA and

ICGC datasets. Those genes with ROC values > 0.7 in these datasets

were then selected, yielding 9 overlapping genes defined as core
FIGURE 4

Core PVTT-associated gene screening and characterization. (A) 36 candidate genes characteristic of PVTT were identified through screening.
(B) AUC values were calculated for the 9 core genes to assess their prognostic performance in HCC patients. (C) Screening of the overlap between
the 9 core genes and PVTT-associated characteristic genes. (D) Analyses of the differential expression of the 9 core genes in HCC and normal liver
tissue samples from the TCGA and ICGC datasets. (E) The relationship between the expression levels of 9 genes and HCC patient survival for
individuals in the TCGA cohort. (F) Univariate Cox regression analyses of the expression of 9 genes and the survival of patients with HCC in the
TCGA and ICGC cohorts. ***P<0.001.
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genes of interest for further analyses (Figures 4B, C). These genes

included MYBL2, PRR11, MCM2, PLK1, TUBA1B, TRIP13,

LMNB1, RACGAP1, and KIF11. All 9 of these genes were

expressed at higher levels in HCC tissue samples relative to

normal liver tissue in the TCGA and ICGC cohorts (Figure 4D),

and the elevated expression of all 9 genes was related to shorter

HCC patient OS (Figure 4E; Supplementary Figure 1B). Univariate

Cox regression analyses were performed to assess the expression of

these genes in the TCGA and ICGC datasets and their relationship
Frontiers in Immunology 11
with patient survival status, confirming that high levels of all 9 of

these genes were independently predictive of HCC patient

OS (Figure 4F).

These 9 genes were expressed across all 8 cell types included in

these single-cell analyses (Figure 5A). In the extracted PVTT samples,

the PRR11, PLK1, and RACGAP1 core genes were primarily found at

the junction between the cells in clusters 0 and 1, with this area

essentially overlapping with the distribution of cells in the G2M phase

of the cell cycle (Figure 5B). Pseudotime analyses of these 9 genes
FIGURE 5

PVTT core gene expression profiles. (A) The expression of the 9 core genes across different cell types in single-cell analyses. (B) The distribution of
the 9 core genes in cells from clusters 0 and 1. (C) The results of a pseudotime analysis of these 9 core genes.
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revealed slight fluctuations in LMNB1 expression early during HCC

cell development, whereas the remaining 8 genes presented relatively

stable patterns of expression over the course of HCC development

(Figure 5C). This suggests that the core PVTT-related genes

identified herein exhibit biological characteristics consistent with

rapid HCC cell proliferation and division.
Core gene functional enrichment, protein
interaction, and genetic variation analyses

Next, these 9 core genes were subjected to GO and KEGG

enrichment analyses, revealing that they were primarily enriched in

proliferation-related biological processes including the cell cycle,

mitotic cell cycle, and mitotic spindle assembly. They were also

enriched for cellular components including microtubules,

polymeric cytoskeletal fibers, and supramolecular fibers. They

were further enriched in molecular functions including tubulin

binding, microtubuline binding, and purine ribonucleoside

triphosphate binding (Figure 6A). Lastly, they were enriched in

the apoptosis, cell cycle, DNA replication, and pathogenic

Escherichia coli infection KEGG pathways (Figure 6B).

Correlation analyses of the expression of these 9 core genes

revealed that their expression patterns were significantly related to

one another, with correlation coefficients from 0.7-0.86 (P<0.001)

(Figure 6C). All of the proteins encoded by these core genes other

than PRR11 were predicted to interact with one another (Figure 6D).

Specifically, KIF11 presented with 7 interacting relationships,

exhibiting the most weight, followed by RACGAP1 with 5

interactions. In contrast, PRR11 exhibited the least weight as it was

not predicted to interact with any of these other proteins (Figure 6E).

How KIF11, RACGAP1, and RPR11 impacted the expression of other

genes was assessed, revealing that changes in the expression of any of

these three genes would result in significant, comparable changes in the

expression of the remaining 8 genes (Supplementary Figure 1D). These

evidences suggested that the 9 core genes may share common

transcriptional regulators, and the changes in the expression of the

transcriptional regulators can simultaneously affect the expression of

the 9 core genes, resulting in obvious biological effects. Through the

online website hTFtarget (wchscu.cn), the transcription factors of 9

core genes in liver tissues were retrieved, and the obtained data were

overlapped to obtain a total of 7 intersection genes (Figure 6F). The 7

transcription factors are FOXA2, CREB1, GABPA, MAX, POLR2A,

YY1 and SUZ12. Correlation analysis of 7 transcription factors and 9

core genes revealed that the top 3 transcription factors with the highest

correlation with 9 core gene were CREB1, YY1 and SUZ12 in TCGA

and ICGC databases (Figure 6G). In addition, there was also protein

interaction among 7 transcription factors ( Supplementary Figure 2A),

and the top 3 transcription factors with the closest interaction were

YY1, CREB1 and POLR2A (Supplementary Figure 2A).

Copy number variation (CNV) and somatic mutation incidence

in these 9 core PVTT-associated genes were next analyzed. High

CNV frequencies were observed in these genes, with MYBL2, PLK1,

TUBA1B, TRIP13, LMNB1, RACGAP1, and PRR11 generally

exhibiting copy number amplifications whereas KIF11 and

MCM2 more frequently exhibited copy number deletions
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(Figure 6H). To determine whether these genetic variants

impacted the expression of these 9 core genes in patients with

PVTT, their expression patterns in HCC and normal tissue samples

were examined, revealing that the alterations of CNV could be the

prominent factors resulting in perturbations on the PVTT core

genes expression. With respect to somatic mutations across 364

samples, just 11 samples presented with mutations in these 9 core

genes (3.02%), with the highest mutation frequencies being evident

for RACGAP1, MYBL2, and MCM2, while missense mutations

were the most common type of mutation. No somatic mutations

were observed in PR11 or TUBA1B across the analyzed samples

(Figure 6I). These results emphasize the highly heterogeneous

nature of the genomic and expression landscapes characterizing

these core PVTT-related genes, suggesting that their dysregulated

expression likely plays a central role in the onset and progression

of PVTT.
The relationships between core gene
expression, patient prognosis, and
immune infiltration

After extracting the expression matrix corresponding to these 9

core genes from the TCGA database, HCC patients were classified

according to the expression patterns for these genes using the R

ConsensusClusterPlus package through an unsupervised approach

that ultimately assigned 111, 207, and 52 cases to clusters A, B, and C,

respectively (Figure 7A). Prognostic analyses of these clusters

demonstrated that the cluster B expression pattern was associated

with a pronounced survival advantage, whereas the cluster C pattern

was linked to markedly worse survival (Figure 7B). The relationships

between the expression levels for these 9 core genes and their

clustering patterns revealed that their expression levels rose

progressively from cluster B to cluster A to cluster C (Figure 7C).

These findings suggested that changes in the expression of core genes

will result in altered clustering patterns that may be relevant to

patient prognosis.

To better understand biological behaviors associated with these

clustering patterns, GSVA enrichment analyses were conducted.

Cluster B presented with the pronounced enrichment of pathways

associated with matrix activation including the EMT, angiogenesis,

and bile acid metabolism pathways, as well as inflammatory

pathways including the KRAS signaling and coagulation

pathways. Cluster C presented with the marked enrichment of

oncogenic activation pathways including the mitotic spindle, DNA

repair, G2M checkpoint, and E2F target pathways. Cluster A

exhibited clear inflammatory activation pathway enrichment and

the enrichment of matrix activation pathways including the

complement, angiogenesis, bile acid metabolism, and KRAS

signaling pathways (Figures 7D, E).

Differences in immune cell infiltration across these three

patterns of clustering were next probed with the ESTIMATE

algorithm, revealing that only StromalScore values differed

significantly among these three clusters, with clusters B and C

respectively exhibiting the highest and lowest StromalScore values

(Figure 8A). This suggests that cluster B was associated with
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significant activation of the tumor stroma. Using the CIBERSORT

method, immune cell infiltration was next analyzed across these

three clustering patterns. Through this approach, cluster B was

found to exhibit greater monocyte infiltration, whereas cluster A

presented with more pronounced neutrophil and plasma cell

infiltration, and cluster C exhibited greater infiltration by M0
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macrophages and activated memory CD4 T cells (Figure 8C).

Given that these three clustering patterns were closely associated

with the expression patterns for these 9 core genes, correlations

between core gene expression and immune cell infiltration were

assessed, revealing that the expression of these 9 core genes was

positively correlated with infiltration by Tregs, Tfh cells, activated
FIGURE 6

Core gene functional enrichment, protein interaction, and genetic variation analyses. (A, B) The 9 core genes were subjected to GO and KEGG
enrichment analyses. (C) Correlation analyses were performed assessing the expression of the 9 core genes. (D) Protein interactions were assessed
for the 9 core genes. (E) Weighting analyses of protein interactions were conducted among these 9 core genes. (F) The transcription factors that
regulate the 9 core genes are intersected. (G) Correlation analysis of 7 common transcription factors with 9 core genes in TCGA and ICGC datasets.
(H, I) These 9 core genes were assessed for copy number variations and somatic mutations.
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memory CD4 T cells, and M0 macrophages, whereas it was

negatively correlated with infiltration by monocytes, M2

macrophages, and resting mast cells (Figure 8B). This suggests

that the enhanced expression of these 9 core genes was related to

reduced infiltration by immunoinflammatory effectors cells

together with enhanced infiltration by immunosuppressive cells

and the decrease of immunoinflammatory cells. Based on these

results, clusters A and B were classified as exhibiting an immune-

excluded phenotype characterized by stromal activation and

infiltration by innate immune cells, while cluster C was classified

as exhibiting an immune desert phenotype consistent with

immune suppression.

Specific correlations between infiltration by immune cells and

patterns of clustering were further assessed with the IOBR package.
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Through this approach, cluster B was found to exhibit significantly

greater enrichment in infiltration by innate immune cell

populations including cytotoxic cells, dendritic cells, mast cells,

neutrophils, neutrophils, and NK cells. In contrast, cluster A

presented with significantly greater enrichment of exhausted T

cells, probe T cells, and Th1 cells, while cluster C presented with

more enriched infiltration by macrophages, MDSCs, and T helper

cells (Figure 8D). Tumor stroma scores were also compared across

these three clustering patterns, revealing that cluster B was

positively associated with certain signals of tumor stroma

activation including the type I IFN response, cytokine receptors,

and TGF-b family member receptors. Cluster C, in contrast,

exhibited positive correlations with certain signals associated with

oncogenic activation including the cell cycle, mismatch repair,
FIGURE 7

Associations between core gene expression and clustering patterns. (A) Consensus matrices for the TCGA dataset at k values from 2-4. (B) The
effect of these three patterns of clustering on patient prognostic outcomes. (C) Analyses of differences in core gene expression for each clustering
pattern. (D, E) Pairwise GSVA enrichment analyses for the three established patterns of clustering. ***P<0.001.
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homologous recombination, and DNA replication (Figure 8E).

These results are consistent with the previous analysis, indicating

that cluster A and cluster B were classified as exhibiting an immune-

excluded phenotype, and cluster C cluster was classified as

exhibiting an immune desert phenotype.
Frontiers in Immunology 15
Analyses of differences in the tumor-immune cycle across these

three clusters revealed that cluster A was positively associated with

TIP Cancer antigen presentation, TIP Priming and activation, TIP

Recognition of cancer cells by T cells, Antigen Processing and

Presentation, Cytokines, and Cytokine Receptors. This suggests that
FIGURE 8

The characteristics of TME cell infiltration for different clustering patterns. (A) TME scores for the indicated clustering patterns. (B) Correlations
between the expression of the 9 core genes and immune cell infiltration. (C) TME-infiltrating cell abundance for each of the indicated clustering
patterns. (D) The IOBR package was used to assess the abundance of TME-infiltrating cells across the indicated clustering patterns. (E) Differences in
tumor stroma scores and the tumor-immune cycle were assessed across the indicated clustering patterns. *P<0.05, **P<0.01, ***P<0.001.
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cluster A samples are more likely to undergo immune-mediated

recognition and the consequent engagement of an antitumor

immune response (Figure 8E).
Development of a core gene-based
prognostic model

To better define the features of TME cell infiltration in HCC in

the presence or absence of PVTT, multivariate Cox regression

analyses were used to develop a prognostic model incorporating

three of the nine core genes (PRR11, KIF11, and RACGAP1) with

the following formula: risk score = KIF11*-0.194635376203241

+PRR11*0.232461703663777+RACGAP1* 0.112717648336317.

Correlation analyses of the relationships between core genes or

clustering patterns and risk scores indicated that the expression of

the 9 core genes was positively associated with risk score values

(Figure 9A). Moreover, significantly higher risk scores were

observed in cluster C relative to the other clusters, whereas cluster

B exhibited lower risk scores (Figure 9B). Median risk scores were

then used to separate patients into low-risk (LR) and high-risk (HR)

groups to compare prognostic outcomes for these two sets of

patients (Figure 9C). Kaplan-Meier curves indicated that patients

in the LR group presented with a significant survival advantage.

ROC curves were further used to predict patient 1-, 2-, and 3-year

OS, yielding respective AUC values of 0.74, 0.694, and 0.665 in the

TCGA-LIHC cohort (Figure 9D). Consistently, the LR group

exhibited clear survival advantages in the ICGC-LIHC cohort

(Supplementary Figure 1C), with respective AUCs of 0.764, 0.756,

and 0.776 (Figure 9E). In univariate and multivariate analyses of

risk scores and patient clinicopathological characteristics including

age, gender, tumor grade, clinical stage, and survival status, risk

scores remained significantly independently associated with HCC

patients OS (Figures 9F, G). Risk scores also exhibited AUC values

(0.761) superior to those of tumor stage or grade in terms of

predictive value in the TCGA cohort, suggesting that this risk

scoring can be used to more effectively predict the prognostic

outcomes of patients with HCC (Figure 9H). The model also

offered value for the prognostic assessment of the patients

included in the ICGC dataset (Figure 9I).

Analyses of intragroup differences and clinical characteristics

revealed significant differences in risk scores among patients with

different pathological grades, pathological stages, and T stages in both

the TCGA (Figure 10A) and ICGC cohorts (Figure 10B). Risk scores

rose with increasing pathological grade, pathological stage, and T stage.

When HCC patients were stratified into subgroups based on their

clinical characteristics, risk score values were found to offer utility for

the identification of patient age (≤65 vs. >65 years) (Figure 10C),

gender (female vs. male) (Figure 10D), pathological grade (GI-II vs.

GIII-IV) (Figure 10E), pathological stage (SI-II vs. SIII-IV)

(Figure 10F), and T stage (T1-2 vs. T3-4) (Figure 10G). The same

was true in the ICGC validation cohort (Supplementary Figure 2B),

suggesting that this model offers a high degree of sensitivity for the

prediction of prognostic outcomes for patients with HCC.

Associations between risk score values, clustering patterns, and

patient prognostic outcomes were also assessed, revealing that the LR
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group was primarily comprised of cluster B and small amounts of

cluster A, whereas most of clusters A and C were included in the HR

group (Figure 10H). With respect to prognostic outcomes, most

patients from cluster C and some from cluster B were dead, while

most patients in cluster A remained alive despite their high risk score

values. These findings, together with the tumor-immune cycle results

for these different clusters, may suggest that tumors from patients in

cluster A can be more readily recognized by the immune system,

activating the antitumor immune response. To better aid efforts to

evaluate patient prognostic outcomes based on these parameters, a

nomogram was developed incorporating risk score, patient age, sex,

pathological stage, pathological grade, and other variables (Figure 10I).

Multivariate ROC analyses indicated that the developed prognostic

variable was able to effectively predict HCC patient 1-year

(AUC=0.807), 2-year (AUC=0.793), and 3-year (AUC=0.816) OS,

with curve fitting exhibiting good reliability (Figure 10I).
Risk score, immunotherapy, and drug
sensitivity analyses

Correlations between risk scores and both pro-tumor factors

and stem cell indices were next assessed, revealing that risk scores

and the 9 core genes were all strongly positively correlated with

MIK67, CTNNB1, KRAS, TP53, and RNAsi, whereas they were not

correlated with IDH1 or DNAsi (Figure 11A). This is consistent

with higher levels of pro-tumor factor activity in the HR group.

Correlations between risk scores and immune checkpoints also

supported an association between high risk scores and immune

checkpoint expression (Figure 11B), consistent with higher levels of

checkpoint-mediated suppression in the HR group.

In tumor mutational burden (TMB) analyses, a higher level of

TMB in HCC patients was associated with significant survival

disadvantages, with HR patients exhibiting a higher TMB

(Figure 11C), and a positive correlation between TMB and risk

scores (Figure 11D). HCC patients exhibiting high levels of

microsatellite instability (MSI) also presented with a clear survival

disadvantage relative to those with low MSI scores (Figure 11F).

High-risk patients also presented with higher MSI scores

(Figure 11E), and there was a positive correlation between risk

scores and MSI scores (Figure 11F).

To clarify the responses of low- and high-risk patients to

immunotherapy, extant immunotherapy cohort data from The

Cancer Immunome Atlas (TCIA) cohort study (Figure 11H) and

the Urothelial Cancer Treatment Study (IMvigor) (Figure 11G)

were utilized. This approach revealed that high-risk patients were

more likely to respond to PD-1 or CTLA-4 targeting therapies when

provided alone or in combination with one another. In contrast, the

Melanoma Treatment study (GSE78220), and Renal Cancer

Treatment Study (GSE67501) datasets revealed no apparent

positive treatment responses for patients in the low- or high-risk

groups (Supplementary Figure 2C).

Next, GDSC (Genomics of Drug Sensitivity in Cancer) data

were leveraged to screen for chemotherapeutic drugs that may offer

value for high-risk patient treatment. The 10 drugs with the highest

levels of sensitivity were Afatinib, AZD7762, Fulvestrant, GDC0810,
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I-BRD9, Ipatasertib, MK-8776, Osimertinib, Wee1 Inhibitor, YK-4-

279 (Figure 11I).
PRR11, KIF11, RACGAP1, YY1 and CREB1 is
highly expressed in HCC tissue

To validate the bioinformatics findings, HCC tissues and para-

tumor tissues were collected. Immunohistochemical staining and
Frontiers in Immunology 17
Western blotting were used to observe the expression of risk model

factors PRR11, KIF11, RACGAP1 as well as the potential common

transcription factors YY1, CREB1 and SUZ12 in HCC tissues and

para-tumor tissues (Figures 12A, B). IHC score indicated that

PRR11, KIF11, RACGAP1, YY1, CREB1 expression was

significantly increased in HCC tissues compared to adjacent para-

tumor tissues (Supplementary Figure 2D). However, the protein

expression of SUZ12 in HCC tissues was lower than that in adjacent

para-tumor tissues (Figure 12B).
FIGURE 9

Prognostic model development and evaluation. (A) Analysis of correlations between risk scores and core genes. (B) Analyses of differences in risk
scores in different clusters. (C) The survival status of patients in different risk groups in the TCGA cohort. (D, E) The association between risk scores
and prognostic outcomes for TCGA and ICGC patients. (F, G) Univariate and multivariate Cox analyses of patient risk score values and clinical
characteristics. (H, I) AUC values for risk scores and other clinicopathological characteristics as predictors of the prognostic outcomes for TCGA and
ICGC patients.
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FIGURE 10

Assessment of prognostic model predictive performance. (A) The associations between risk scores and pathological grade, pathological stage, and T
stage in the TCGA cohorts. (B) The associations between risk scores and pathological grade, pathological stage in ICGC cohorts. (C-G) Risk score
distributions for different patient subsets within the TCGA cohort. (H) A Sankey diagram corresponding to clustering patterns and survival outcomes.
(I) Nomogram construction.
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FIGURE 11

The relationship between risk scores and patient immunotherapy or drug sensitivity. (A) Correlation analyses of the relationships between pro-tumor
factors, stem cell indices, and risk score values. (B) Correlation analyses of the relationship between risk scores and immune checkpoints.
(C, D) Correlation analyses of the relationship between TMB and risk scores. (E, F) Correlation analyses of the relationship between MSI and risk
scores. (G) Analysis of ICB responses for patients with low and high risk scores. (H) Sensitivity analyses of patients with low and high risk scores to
chemotherapeutic agents in the GDSC2 database. (I) Screening chemotherapy drugs with potential therapeutic value for high-risk patients. *P<0.05,
**P<0.01, ***P<0.001.
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FIGURE 12

PRR11, KIF11, RACGAP1, YY1 and CREB1 is highly expressed in HCC tissue and HCC cell lines. (A, B) Immunohistochemical staining and Western
blotting analysis of PRR11, KIF11, RACGAP1, YY1, CREB1 and SUZ12 in HCC tissues and para-tumor tissues. (C-E) The mRNA and protein expression
of PRR11, KIF11, RACGAP1, YY1, CREB1 and SUZ12 in Cells line (LX2, HepG2, HCC-LM3, Huh-7, PLC/PRF/5 and MHCC97H). (F, G) Cell viability and
colony formation assay shows the effect of PRR11, KIF11, RACGAP1 expression levels on cell viability and colony formation abilities of HepG2 and
HCC-LM3 cells. *P<0.05, **P<0.01, ***P<0.001.
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High expression of PRR11, KIF11, RACGAP1,
YY1 and CREB1 promotes tumorigenic
properties of HCC cells

To investigate the potential roles of PRR11, KIF11, RACGAP1,

YY1, CREB1 and SUZ12 in the development of HCC. Human

Hepatic Stellate Cells line (LX2) and five HCC cell lines (HepG2,

HCC-LM3, Huh-7, PLC/PRF/5, MHCC97H) were used to detect

the mRNA and protein expression of PRR11, KIF11, RACGAP1,

YY1, CREB1 and SUZ12 (Figures 12C–E). The results indicated

that there was no statistical difference in protein expression of

SUZ12 between HCC cell lines and LX2 cell line, and the mRNA

and protein expressions of PRR11, KIF11, RACGAP1, YY1, CREB1

were significantly higher than those of LX-2 cell line, especially

HepG2 and HCC-LM3 cell lines (Figures 12D, E). Therefore,

HepG2 and HCC-LM3 cell lines with highest expression of model

factors were selected for subsequent experiments.

Transient transfection was used to detect the effect of model

factors on the phenotype of HCC cells. Overexpression of PRR11,

KIF11 and RACGAP1 was found to promote cell viability of HepG2

and HCC-LM3 cell lines at 48 h and 72h. The cell viability of

silencing group of PRR11, KIF11 and RACGAP1 was shown to be

significantly lower than that of control group at 48 h and 72h.

PRR11, KIF11 and RACGAP1 silencing was found to reduce the

number of clones of HepG2 and HCC-LM3 cell lines compared to

those of the control groups (Figure 12F). And overexpression of

PRR11, KIF11 and RACGAP1 was found to increase the number of

clones of HepG2 and HCC-LM3 cell lines compared to those of the

control groups (Figure 12G).

Transwell assays were performed to investigate the effects of

PRR11, KIF11 and RACGAP1 on the invasion and migration of

HCC cells. Our results revealed that overexpression of PRR11,

KIF11 and RACGAP1 can enhance the invasion and migration of

HepG2 and HCC-LM3 cells. Silencing PRR11, KIF11 and

RACGAP1 attenuated the invasion and migration ability of

HepG2 and HCC-LM3 cell (Figures 13A, B). These results

confirmed the role of PRR11, KIF11 and RACGAP1 in promoting

proliferation, invasion and migration of hepatocellular carcinoma.

CO-IP was used to confirm the protein association between

KIF11 and RACGAP1 in HepG2 and HCC-LM3 cells (Figure 13C).

Previous speculation was confirmed by the CO-IP results, which

indicated that a close relationship exists between model factors. And

this close relationship plays a synergistic role in promoting the

development of PVTT.

Considering the low protein expression of SUZ12 in HCC

tissues and HCC cell lines. Transcription factors YY1 and CREB1

were selected for subsequent experiments. After transient

overexpression and silencing of YY1 and CREB1, the changes of

model factors PRR11, KIF11 and RACGAP1 were detected. The

results indicated that overexpression of YY1 and CREB1 could up-

regulate the mRNA expression of PRR11, KIF11 and RACGAP1,

while YY1 and CREB1 silencing could decrease the mRNA

expression of PRR11, KIF11 and RACGAP1 (Figure 13D). This

result validated our hypothesis that core factors share common

transcription factors.
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Discussion

The present study entailed the systematic characterization of

PVTT-associated biological characteristics in patients with HCC

through the integration of scRNA-seq and bulk RNA-seq datasets.

These approaches revealed that PVTT cells were characterized by

stromal activation, tumor proliferation, and lower levels of immune

cell infiltration, thus presenting with immune desert and immune

rejection-related phenotypes.

Genes differentially expressed between PT and PVTT samples

have previously been compared, revealing that the differences

between these sample types are associated with cancer stem cells,

extracellular stroma tissues, and immune cell disorders within the

TME (40–42). Here, PVTT cells were found to exhibit the activation

of processes such as the DNA repair, E2F target, mitotic spindle,

G2M checkpoint, cell cycle, Hippo, Wnt, and TGF-b pathways.

Core PVTT genes were closely associated with cells in the G2M

phase of the cell cycle, and a positive correlation between the

expression of these genes and RNAsi was observed. Together,

these results suggest that PVTT cells present with active tumor

proliferation closely associated with tumor stem cell function. There

were also findings consistent with stromal activation including

angiogenesis, EMT, and low levels of immunoinflammatory

features including low inflammatory scores, low anti-

inflammatory scores, and low antigen presentation scores in these

PVTT samples. These results align well with past results. PT

samples in cluster 1, in contrast, presented with an inflammatory

pattern that was characterized by the activation of immune-

inflammatory biological processes, including the complement,

coagulation, and interferon-gamma pathways, together with

higher ferroptosis, necroptosis, antigen presentation, and anti-

inflammatory scores.

While PVTT primarily occurs in advanced HCC patients with

clinical stage IIIB-IV disease, these analyses revealed that tumor

cells with PVTT-like characteristics were present even in PT

samples from individuals with early-stage HCC (clinical Stage I-

II). This may account for the fact that some patients with HCC

develop portal metastases even though they present with earlier

clinical staging. PVTT-derived tumor cell developmental

trajectories also exhibited some overlap with tumor cells with

higher clinical staging, and there were significant differences from

those of tumor cells with lower clinical staging, supporting the

greater malignancy of PVTT tumor cells.

In past studies, PVTT patients have been separated into non-

proliferative and proliferative types based on genomic profiling

results (43), the mutational landscape, and key pathways associated

with HCC development and progression. HBV-associated tumors

tended to exhibit aggressive growth, more frequent vascular

invasion, poor differentiation, and higher grades. Tumors of this

type were characterized by greater chromosomal instability and

enriched abnormal epigenetic signatures. These results align well

with the present findings that core PVTT-associated genes were

related to higher levels of CNV and somatic mutations, with high

TMB and MSI scores being linked to the elevated expression of

these core factors. This is particularly relevant as the analyzed
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PVTT samples were from Chinese patients, and most HCC patients

in China are infected with HBV. Non-proliferative PVTT, in

contrast, is less frequent in China and tends to be HCV- or

alcohol-related, with lower AFP levels, better cell differentiation,

and lower levels of aggression (44).

To determine how characteristic PVTT-related genes influence

the biology of PVTT, 9 core genes were screened. These genes were

found to include a transcription factor (MYBL2), cell cycle regulator

(PRR11), cell division-related proteins (TUBA1B), kinases (PLK1,

TRIP13), and RNA-binding proteins (MCM2, LMNB1, RACGAP1,

KIF11). Through single-cell analyses, these genes were found to be

expressed in eight cell types that included hepatocytes, fibroblasts, T

cells, macrophages, and endothelial cells. These characteristic PVTT-

related genes may influence the proliferation and invasivity of HCC
Frontiers in Immunology 22
cells, while also regulating these other cell types to control immunity

and activate the tumor-associated stroma. Protein interactions for

these core genes revealed that 8 of the genes exhibited interactive

relationships, reflecting the closely associated roles that these core

genes play in the promotion of HCC progression.

Patients were further clustered according to the expression

patterns for 9 core genes, ultimately yielding three clustering

patterns. In prognostic patterns, cluster B was associated with a

pronounced survival advantage, whereas cluster C was linked to

worse survival outcomes. GSVA and immune infiltration analyses

revealed that these clusters were associated with distinct TME cell

infiltration characteristics. Specifically, clusters A and B exhibited

immune exclusion phenotypes with stromal activation and

infiltration by innate immune cells, while cluster C exhibited an
FIGURE 13

High expression of PRR11, KIF11, RACGAP1, YY1 and CREB1 promotes tumorigenic properties of HCC cells. (A, B) Migration and Matrigel invasion
assays shows the effect of PRR11, KIF11, RACGAP1 expression levels on invasion and migration abilities of HepG2 and HCC-LM3 cells. Scale bar 50
µm. (C) The interaction between KIF11 and RACGAP1 was detected by immunoprecipitation in HepG2 and HCC-LM3 cells. (D) Effects of
overexpression and silencing of YY1 and CREB1 on mRNA expression levels of PRR11, KIF11 and RACGAP1 in HepG2 and HCC-LM3 cells.
*P<0.05, **P<0.01, ***P<0.001.
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immune desert phenotype with characteristic immunosuppression.

This aligns well with the results of prior studies in which immune

characteristics were associated with patient prognosis (45, 46). This

also suggests that expression differences for these core genes in

PVTT patients play an important role in shaping TME

heterogeneity at the individual level. While patients in cluster A

exhibiting the immune rejection phenotype and survival

disadvantages ultimately survived, most cluster B patients

exhibiting pronounced survival advantages died. Additional

analyses suggested that cluster A tumors may be more readily

recognized by the immune system, activating more effective

antitumor immunity, potentially accounting for the better

prognostic outcomes for these patients.

In an effort to better account for the heterogeneous features of

HCC patients, a scoring system was devised to assess the genetic

characteristics of different patients with HCC. These analyses

revealed that the cluster C pattern, which was characterized by

immunosuppressive phenotypes, also presented with higher risk

scores as compared to clusters A and B, which were instead

characterized by immune exclusion phenotypes. These risk scores

offered value as a tool to assess patient clinicopathological

characteristics including tumor differentiation, clinical stage,

histological subtype, molecular subtype, genetic variation, MSI

status, and tumor mutation load. Strikingly, these risk scores were

independent predictors of patient survival and could be used to

predict adjuvant chemotherapy efficacy and patient responses to PD-

1/CTLA4 immunotherapy. In summary, these risk scores can be

utilized for the comprehensive evaluation of the risk of PVTT

formation and associated changes in the infiltration of the TME in

patients with HCC while providing further insight into tumor

immunophenotyping that can more effectively guide clinical practice.

The results of MTT, colony formation assay, invasion and

migration assay indicated that the model factors PRR11, KIF11

and RACGAP1 played an important role in promoting the

progression of HCC. CO-IP assay was used to confirm the

protein-protein interaction between KIF11 and RACGAP1. In

addition, the common transcription factors YY1 and CREB1

predicted by bioinformatics methods were overexpressed and

silencing, the mRNA expressions of model factors PRR11, KI and

RACGAP1 were also observed to have corresponding changes. This

result confirms the synergistic role of model candidate factors and

transcription factors as a whole in promoting HCC progression.
Conclusion

These analyses offer detailed insights into the biological features

of PVTT in patients with HCC and the corresponding changes in

the TME associated with this complication. Differences in key genes

associated with PVTT were found to be closely associated with the

heterogeneity and complexity of the TME in individual patients.

Comprehensive analyses of patterns of gene expression such as this

will provide detailed insight into cellular infiltration of the TME in

patients with HCC, thereby guiding the design of more effective

approaches to immunotherapy.
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SUPPLEMENTARY FIGURE 1

(A) Expression patterns for the top 30 marker genes in the three indicated cell
clusters. (B) The relationship between the expression levels for 9 genes and

the survival of HCC patients. (C) Survival risk plots for patients in the ICGC

dataset. (D)The relationship between the levels of KIF11, RACGAP1, or RPR11
expression and the expression of other genes.
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SUPPLEMENTARY FIGURE 2

(A) Protein interactions and weight relationships among 7 transcription
factors. (B) Risk score distributions for different clinical subtypes of patients

included in the ICGC cohort. (C) Responses to immunotherapy for patients

with the indicated risk scores from the Melanoma Treatment study
(GSE78220) and the Renal Cancer Treatment Study (GSE67501). (D) Bar

graph of IHC scores of PRR11, KIF11, RACGAP1, YY1, CREB1, and SUZ12 in
HCC tissues and adjacent para-tumor tissues.
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Electrophoretic gels and blots of Western blotting
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