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Type I conventional dendritic
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favorable clinical outcome of
head and neck squamous cell
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Head and neck squamous cell carcinoma (HNSCC) is one of the most common

tumor entities worldwide, with human papillomavirus (HPV) infection

contributing to cancer development. Conventional therapies achieve only

limited efficiency, especially in recurrent or metastatic HNSCC. As the immune

landscape decisively impacts the survival of patients and treatment efficacy, this

s tudy comprehens ive ly inves t iga ted the immunolog ica l tumor

microenvironment (TME) and its association with patient outcome, with special

focus on several dendritic cell (DC) and T lymphocyte subpopulations. Therefore,

formalin-fixed paraffin-embedded tumor samples of 56 HNSCC patients, who

have undergone resection and adjuvant radiotherapy, were analyzed bymultiplex

immunohistochemistry focusing on the detailed phenotypic characterization

and spatial distribution of DCs, CD8+ T cells, and T-helper cell subsets in

different tumor compartments. Immune cell densities and proportions were

correlated with clinical characteristics of the whole HNSCC cohort and

different HPV- or hypoxia-associated subcohorts. Tumor stroma was highly

infiltrated by plasmacytoid DCs and T lymphocytes. Among the T-helper cells

and CD8+ T cells, stromal regulatory T cells and intraepithelial exhausted CD8+ T

cells expressing programmed cell death protein-1 (PD-1+) and/or lymphocyte-

activation gene-3 (LAG-3+) were the predominant phenotypes, indicating an

immunosuppressive TME. HPV-associated tumors showed significantly higher

infiltration of type I and type II conventional DCs (cDC1, cDC2) as well as several

CD8+ T cell phenotypes including exhausted, activated, and proliferating T cells.

On the contrary, tumors with hypoxia-associated gene signatures exhibited

reduced infiltration for these immune cells. By multivariate Cox regression,

immune-related prognostic factors were identified. Patient clusters defined by

high infiltration of DCs and T lymphocytes combined with HPV positivity or low
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hypoxia showed significantly prolonged survival. Thereby, cDC1 and CD8+ T cells

emerged as independent prognostic factors for local and distant recurrence.

These results might contribute to the implementation of an immune cell

infiltration score predicting HNSCC patients’ survival and such patient

stratification might improve the design of future individualized radiochemo-

(immuno)therapies.
KEYWORDS

dendritic cells, head and neck squamous cell carcinoma, human papilloma virus,
hypoxia, multiplex imaging, spatial biology, T cells, tumor microenvironment
1 Introduction

With estimated 880,000 new cases and 450,000 deaths

worldwide in 2020, head and neck squamous cell carcinoma

(HNSCC) is the sixth most common tumor entity and incidences

continue to rise, with a growing proportion of human

papillomavirus (HPV)-infection driven tumors over the last

decades (1). HNSCC includes tumors located in the oral cavity,

oropharynx, hypopharynx, and larynx. Besides some well-known

risk factors, such as extensive consumption of tobacco and alcohol,

the infection with HPV (primarily genotype 16) causes

carcinogenesis in roughly 25% of HNSCC, particularly in the

oropharynx (> 70%), hence representing a major leading factor

for HNSCC development (2).

Despite the advanced treatment regimen consisting of radical

resection and adjuvant high-dose radio(chemo)therapy (R(C)Tx) or

definite R(C)Tx in locally advanced HNSCC, the 5-year overall

survival (OS) rate of 50-69% still can be improved (3). Moreover,

limited prognosis also results from frequent local relapse occurring

in up to 60% of HNSCC patients (4). The implementation of

immunotherapy approaches, such as anti-programmed cell death

protein-1 (anti-PD-1) antibodies, was intended to improve survival

outcomes. However, this was noticeable only in 15-30% of HNSCC

patients with recurrent or metastatic disease (5, 6). Several studies

highlighted that HPV-associated (HPV+) oropharyngeal tumors are

generally linked to an improved clinical outcome following R(C)Tx,

compared to the HPV-negative (HPV-) ones. Hence, these HPV+

tumors constitute a distinct cancer entity (7, 8), with p16

upregulation being used as their corresponding marker in the 8th

edition of tumor, node, metastasis (TNM) classification, even

though the use of p16 overexpression alone as a prognostic and

diagnostic marker needs further validation (9). Other parameters,

including the combination of HPV-DNA/RNA and p16, hypoxia

and hypoxia-induced gene expression, high expression of cancer

stem cell markers, tumor volume, solute carrier family 3 member 2

(SLC3A2) and CD44 protein expression, have also been described as

prognostic factors for local relapse after R(C)Tx in HNSCC (10). For

instance, hypoxia-associated gene signatures or a hypoxic tumor
02
microenvironment (TME) are associated with reduced therapeutic

efficacy and poor prognosis (11, 12).

Despite the utility of tumor localization, p16 status, and hypoxia in

subgrouping HNSCC patients and predicting clinical outcome, there is

still a high variability in treatment response. Therefore, novel

biomarkers as well as improved tools to predict therapeutic success

and individualize treatment modalities are urgently needed to optimize

therapy efficacy, properly adjust therapeutic regimens, and prevent

over- or under-treatment with side effects or treatment failure (13).

HNSCC is known to be an immunogenic tumor entity including

a high tumor infiltration of myeloid and lymphoid cells (14).

However, tumor cells generate an immunosuppressive

microenvironment resulting, for instance, in enhanced infiltration

of activated regulatory T cells (Tregs) and generation of exhausted T

cells (5). Thus, the tumor immune contexture comprising the

frequency, spatial distribution, orientation, and functional

characteristics of tumor-infiltrating immune cells plays a critical

role for the clinical outcome of cancer patients (15, 16). A positive

correlation between high densities of tumor-infiltrating T cell subsets,

in particular CD8+ T cells, and improved prognosis has been reported

for various cancer entities, including HNSCC (15, 17). Additionally,

dendritic cells (DCs) are known as key players of innate and adaptive

immunity (18). DCs are clinically relevant, as demonstrated in

various cancer entities (19, 20), and may also significantly impact

the outcome of HNSCC patients (21). The function of cancer-

infiltrating immune cells is dual and context-dependent, as they

can either favor anticancer immunity or promote tumor tolerance.

Hence, their role has to be described individually for each cancer

entity and immune cell subtype (22). For instance, plasmacytoid DCs

(pDCs), described as the main producers of type I interferon upon

stimulation, can either participate in antitumor immunity and

favorably impact clinical outcome (20), or they may adopt a

tolerogenic phenotype and thereby contribute to poor prognosis

(23). Other studies investigating the tumor immune architecture

revealed that infiltrating T cells also significantly influenced the

clinical efficacy of various treatments, including R(C)Tx (24, 25).

In HNSCC, the role of the immunological TME is subject of

ongoing research. However, there are limited investigations

exploring the tumor immune landscape in detail. So far, most
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studies have focused on detecting the presence of T cells using

immunohistochemistry or bulk gene expression profiles of tumor

samples (26–29). Several groups reported a positive impact of high

densities of CD8+ T cells on the survival and relapse of HNSCC

patients (5, 27). Nonetheless, these previous studies generally lack a

more detailed phenotypic description of infiltrating CD8+ T

lymphocytes in terms of their phenotype orientation, for instance

by assessing the (co-)expression of activating and/or inhibitory

markers, their localization relative to the tumor cells, and whether

their spatial distribution impacts survival. Moreover, little is known

about the infiltration pattern and clinical influence of distinct DC

and T-helper (TH) subsets in HNSCC.

Here, we aimed to explore these unresolved issues by

comprehensively investigating the presence and role of several

tumor-infiltrating T cell subpopulations, two conventional DC

subtypes (cDC1 and cDC2), as well as pDCs in more detail,

characterizing their phenotype and spatial distribution in distinct

compartments of HNSCC tissue samples by multiplex

immunohistochemistry (mIHC). We correlated the densities and

proportions of various immune cell subsets with clinical

characteristics of the whole HNSCC cohort and different HPV- or

hypoxia-associated subcohorts. In addition, we used survival

parameters and clinicopathological characteristics of the patient

cohort to identify immune cell types with an independent

prognostic value. Thereby, we provide a more comprehensive

picture of the HNSCC immune architecture supporting the

identification of novel prognostic biomarkers for this cancer entity.
2 Materials and methods

2.1 Patients and study design

HNSCC patients were enrolled after the Ethics Committee of

Technische Universität Dresden approved this retrospective

analysis of clinical and biological data (No EK 397102014).

Informed consent was given by patients before treatment. Eligible

patients (n = 56) had histologically proven squamous cell

carcinoma of the oral cavity or oropharynx in an advanced stage.

All patients were treated with curatively intended radical R0

resection followed by adjuvant RTx between 09/2005 and 10/2016

with a total dose of 60-66 Gy, covering the tumor region and

regional lymph nodes and including a boost to the tumor region

and to positive lymph node levels according to standard protocols.

Patients with p16+ tumors were included if they were also HPV-

DNA or HPV-RNA positive, according to a method evaluated and

described before (30). Clinicopathological characteristics of the

patient cohort were summarized in Supplementary Table 1.
2.2 Biomarker analysis and
immunohistochemical stainings

To assess clinicopathological parameters of the patient cohort,

immunohistochemical staining of p16, DNA extraction and PCR-

array based analyses of HPV status, as well as NanoString RNA
Frontiers in Immunology 03
analyses were conducted similar to other German Cancer

Consortium (DKTK) cohorts, as described previously (10).

Briefly, p16 overexpression (also called p16 positivity) was

defined as ≥ 70% intense tumor stain ing us ing the

immunohistochemical CINtec Histology kit (Roche mtm

laboratories AG, Basel, Switzerland). Negative controls were

included to confirm the positive stainings. HPV-DNA analysis

was performed with the LCD-Array HPV 3.5 kit (CHIPRON

GmbH, Berlin, Germany) following DNA extraction from 5 µm

formalin-fixed paraffin-embedded (FFPE) sections with QIAamp

DNA FFPE tissue kit (QIAGEN N.V., Venlo, Netherlands).

Hypoxia status was determined by gene expression analysis, using

the NanoString Elements technology (NanoString Technologies,

Seattle, Washington, USA) and the previously established 15-gene

hypoxia-associated signature (Hypox15) (31).
2.3 Multiplex immunohistochemistry

To detect tumor-infiltrating immune cell populations, mIHC of

3-5 µm FFPE tumor sections was performed using the tyramide

signal amplification-based OPAL technology (Akoya Biosciences,

Marlborough, Massachusetts, USA) on the Ventana Ultra

Instrument (Ventana Medical Systems, Basel, Switzerland) as

described before (32, 33). First, tissue sections were deparaffinized

and rehydrated for 24 min at 69°C in EZ Prep solution (Ventana

Medical Systems). Subsequently, heat-mediated antigen retrieval

was performed for 32 min at 95°C in Cell Conditioning solution 1

(Ventana Medical Systems). Tissue sections were incubated with

primary antibodies for 32 min (blood dendritic cell antigen-2

[BDCA-2], interferon regulatory factor 7 [IRF7], C-type lectin

domain family 9 member A [CLEC9A], C‐type lectin domain

family 10 member A [CLEC10A], CD1c, CD3, CD8, granzyme B

[GrzB], Ki67, forkhead box P3 [FoxP3], T-box expressed in T cells

[T-bet], GATA binding protein 3 [GATA3], pan-cytokeratin

[PanCK]) or 60 min (PD-1, LAG-3, RAR-related orphan receptor

gamma [RORgT]) at 36°C. Next, anti-species secondary antibodies
(OmniMAP HRP anti-rabbit, OmniMAP HRP anti-mouse,

DISCOVERY anti-mouse HQ, Ventana Medical Systems) and

optionally tertiary antibodies (DISCOVERY anti-HQ HRP) were

added to the tissues for 12 min at 36°C. Finally, tissues were

incubated with Opal fluorophores (Akoya Biosciences) for 8 min

at room temperature. Antibodies were stripped by heating the

samples in Cell Conditioning solution 2 (Ventana Medical

Systems) for 24 min at 100°C (8 min for PanCK in the DC

panel). Antibody incubation was repeated sequentially for all

antibodies of the panel. Staining procedure was finalized by

counterstaining with DAPI (Merck KGaA, Darmstadt, Germany).

Tissues were mounted in Fluoromount-G® medium

(SouthernBiotech, Birmingham, Alabama, USA).

In total, three different antibody panels were stained

allowing for the detection of five distinct immune cell marker in

addition to the tumor marker PanCK and DAPI nuclear stain

(Supplementary Table 2). To assess the phenotype and frequency of

DCs, a panel consisting of CLEC9A (cDC1), CD1c and CLEC10A

(both for cDC2), BDCA-2 (pDCs), and the transcription factor (TF)
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IRF7 (activation marker for pDC, nuclear expression) was stained.

To differentiate several functional phenotypes of cytotoxic T cells,

the second mIHC panel comprised the lineage marker CD8, the

inhibitory immune checkpoints LAG-3 and PD-1, the activation

marker GrzB, and the proliferation marker Ki67. Lastly, to analyze

the proportion of TH subtypes a panel with the lineage marker

CD3 and the TFs T-bet (TH1 cells), GATA3 (TH2 cells),

RORgT (TH17 cells), and FoxP3 (Tregs) was stained. Detailed

information about the antibody panels are summarized in

Supplementary Table 2.
2.4 Image analysis and cell quantification

Images were acquired by the Vectra 3.0 Automated Imaging

System (Akoya Biosciences). Randomly set multiplex images were

taken at 200× magnification in a 25% coverage of the whole tumor

area (WTA, Supplementary Figure 1). Image data was processed with

the inForm® software (Akoya Biosciences) using a semi-automatic

approach. Algorithms were trained to differentiate tissue from non-

tissue, and epithelial from stromal tissue based on PanCK positivity

(Supplementary Figure 2A). Cells were segmented based on DAPI

staining and phenotyped based on the signal intensity of the

respective marker (Supplementary Figures 2B–D). Reliable

performance of the trained algorithms was tested and validated on

separate sets of randomly selected images. Raw data was processed

and prepared for subsequent statistical analysis using RStudio and

R v4.3.2 (34) with the packages phenoptr (35) and phenoptrReports

(36). Immune cells were quantified by calculating cell densities

(cells/mm2) and resultant proportions. For the DC subtypes as well

as CD3+ and CD8+ T cells, the cell density was used for analysis, while

functional CD8+ T cell phenotypes and TH subtypes were analyzed as

percentage of all CD8+ T cells and TF+ CD3+ T cells, respectively.

Multi-channel TIFFs of representative images were processed by

applying arithmetic point operations using the ImageJ software (37).
2.5 Statistical analysis

Immune cell infiltrates were assessed for the spatial

compartments tumor stroma (TS), intraepithelial PanCK+ tumor

(IET) and WTA, which combines both, TS and IET. To assess

significant differences between immune cell frequencies and

proportions of the TS and IET compartments, the Mann-

Whitney-U test was used. For all analyses performed, p-values

< 0.05 were considered statistically significant. Furthermore,

immune cell infiltrates were compared between patient subgroups

stratified by clinicopathological characteristics (tumor grading, p16

status, hypoxia) for the whole HNSCC cohort, as well as for HPV-,

and hypoxia-associated subcohorts (clinical characteristics of

subcohorts in Supplementary Tables 3, 4). Statistical differences

between subgroups were assessed by performing the Mann-

Whitney-U test. Resulting p-values were visualized with a

heatmap using a color code from faint (non-significant) to

intensely colored (significant, p-value < 0.05), with red

representing a higher infiltration in tissues classified as grading 3
Frontiers in Immunology 04
(G3), p16+, or hypoxiahigh and blue encoding the opposite. As the

heatmap gives no information about the data distribution,

significant correlations were visualized as scatter dot plots

(median with 95% confidence interval [CI]) separately. Potential

clinical impact of HNSCC-infiltrating DCs, CD8+ T cells, and TH

subsets on OS, locoregional control (LRC), and control of

locoregional recurrence and distant metastasis (LDMC) was

explored for each of the three spatial compartments using

Kaplan-Meier analysis with Log-rank test. Clinical endpoints OS,

LRC, and LDMC were defined as the time interval between the first

day of radiotherapy and the date of the event or last follow up

(10, 30). The median density of each cell phenotype was used as

cutoff between high (≥ median) and low infiltration (< median)

subgroups. Log-rank p-values of Kaplan-Meier analysis were

visualized using a heatmap that depicts the significant p-values

(p < 0.05) in intense colors, where red represents that high

infiltration improves the considered endpoint and blue encodes

the opposite. For significant associations, Kaplan-Meier graphs are

shown in addition to the heatmaps. Furthermore, immune cell

populations and clinical parameters (tumor localization, p16 status,

T stage) being significant in univariate setting were analyzed by

multivariate Cox regression. All statistical analyses and visualization

of the heatmaps were performed with Python 3.7.10 (Wilmington,

Delaware, USA) using the lifelines and matplotlib packages. For

visualization of scatter dot plots and Kaplan-Meier graphs,

GraphPad Prism 9.4.1 (Boston, Massachusetts, USA) was used.

Forest plots were created using the package forplo (38) with RStudio

and R v4.3.2 (34).
3 Results

3.1 pDCs, Tregs, PD-1
+CD8+, and

LAG-3+CD8+ T cells dominate immune
landscape of HNSCC

For the phenotypic and spatial characterization of HNSCC-

infiltrating immune cell populations, mIHC was applied to a cohort

of 56 primary HNSCC patients that have undergone resection and

adjuvant RTx. FFPE tissue slices were stained with three antibody

panels to detect different DC subsets (cDC1, cDC2, pDCs),

functional CD8+ T cell phenotypes (activated, proliferative,

exhausted), and TH subtypes based on the TFs T-bet (TH1 cells),

GATA3 (TH2 cells), RORgT (TH17 cells), and FoxP3 (Tregs).

Representative images of these antibody panels are depicted in

Figures 1A–C.

As the immunohistochemical staining allows to detect immune

cells in their physical position within the original specimen, we

compared the frequency of all infiltrated immune cell populations

that are retrievable from the stained panels (Figure 2A) between the

TS and the IET of all 56 HNSCC patients. The TS is defined as

PanCK- tissue regions in between the PanCK+ tumor bed termed as

IET (Figure 1). Immune cell frequencies in the WTA (TS and IET

combined) are shown in Supplementary Figure 3. In the DC

population, pDCs represent the prevailing DC subtype in the

WTA and the TS with a cell number of 39.1 cells/mm2 and
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79.8 cells/mm2, respectively (Figure 2B; Supplementary Figure 3).

Hence, pDCs were at least 4- or 6-times more abundant than cDC1

or cDC2. Comparing the densities of total pDCs, activated pDCs

(nuclear IRF7+), and cDC1 between TS and IET, a significantly

higher infiltration of the TS was observed for all three phenotypes,

while cDC2 showed no difference between both tissue regions

(Figure 2B). Furthermore, both CD3+ and CD8+ T cells were
Frontiers in Immunology 05
found in the TS (1696.9 CD3+ cells/mm2 and 765.3 CD8+

cells/mm2) in significantly higher numbers compared to the IET

(353.6 CD3+ cells/mm2 and 184.2 CD8+ cells/mm2, Figure 2C).

Regarding the TH cell composition, Tregs accounted for the largest

proportion of total TF+ CD3+ T cells in both tumor regions with

79.5% in the TS and 66.3% in the IET. Comparing the spatial

distribution of TH cells, a significantly higher proportion of TH1
B

C

A

FIGURE 1

Multiparameter immunohistochemical stainings of tumor infiltrating immune cell populations. Representative images of (A) DCs (pDC: BDCA-2+,
active pDC: IRF7+BDCA-2+, cDC1: CLEC9A+, cDC2: CLEC10A+CD1c+), (B) CD8+ T cell subtypes (inhibitory markers: LAG-3 and PD-1, cytotoxic
marker: GrzB, proliferation marker: Ki67), and (C) T-helper cell subtypes (Treg: FoxP3+CD3+, TH1: T-bet

+CD3+, TH2: GATA3+CD3+, TH17:
RORgT+CD3+). Intraepithelial tumor cells and nuclei are visualized by PanCK and DAPI staining, respectively. White dashed line indicates separation
of tumor stroma (TS) and intraepithelial tumor (IET) compartments. Scale bars indicate 30 µm.
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cells was observed in the IET, while Tregs, TH2 cells, and TH17 cells

infiltrated the TS in a higher density (Figure 2D). Regarding

functional CD8+ phenotypes, LAG-3+CD8+ T cells represented

the highest proportion in both tumor regions with 22.2% in the

TS and 45.2% in the IET (Figure 2E), followed by PD-1+CD8+,

proliferative Ki67+CD8+, and potentially impaired/exhausted (PD-

1+LAG-3+CD8+) T cells. We further examined the ratio of CD8+ T

cells to Tregs with values > 1 indicating a higher CD8+ T cell

infiltration. This ratio gives a simplified insight whether potential

cytotoxic or immunosuppressive T cells prevail in the TME.

However, we observed no significant difference between TS and

IET while the CD8:Treg ratio tended to be higher in the IET

(Figure 2F). Taking together, the immunological TME of HNSCC

is characterized by high frequencies of pDCs, Tregs, and CD8+ T
Frontiers in Immunology 06
cells in the stromal compartment, whereby CD8+ T cells exhibited

an exhausted phenotype (PD-1+ and/or LAG-3+) predominantly in

the IET.
3.2 p16+ HNSCC exhibit high immune
infiltration while hypoxic conditions reveal
reduced immune cell infiltration

To assess a potential link between immune infiltrates and

clinical parameters, we analyzed the frequency of HNSCC-

infiltrating DCs and T cells with regard to tumor grading (G2 vs.

G3), p16 positivity (p16 negative vs. p16 positive), and hypoxia (low

vs. high expression of Hypox15 gene signature). We examined the
B

C D

E

A

F

FIGURE 2

Quantified immune cell infiltration of tumor stroma (TS) and intraepithelial tumor (IET) compartments of the whole HNSCC cohort. (A) Biomarker
classification used to identify several immune cells and subpopulations according to additional functional markers. Frequency of (B) DCs and (C)
CD3+ (left) and CD8+ T cells (right). (D) Proportion of TH subpopulations on total T cells expressing any transcription factor (TF). (E) Proportion of
CD8 subpopulations expression further functional markers on total CD8+ T cells. Median with 95% confidence interval (CI), median values shown
below dots, Mann-Whitney test, ***p < 0.001, **p < 0.01, *p < 0.05.
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whole cohort of 56 HNSCC patients (Figure 3) and additionally

compared the p16-/p16+ subcohorts (Figure 4) and the

Hypox15low/Hypox15high subcohorts (Figure 5).

In the whole cohort, only TH17 cells (RORgT+CD3+) in the TS

correlated positively with a higher tumor grading, which was not
Frontiers in Immunology 07
observed in the IET (Figures 3A, B). Regarding the biomarker

analysis, p16 positivity was largely associated with a higher

immune infiltration. In both locations, TS and IET, the density of

cDC1, CD3+, and CD8+ T cells as well as the proportion of TH2 cells

(GATA3+CD3+) and the CD8:Treg ratio was significantly increased in
B

A

FIGURE 3

Quantified immune cell infiltration of tumor stroma (TS) and intraepithelial tumor (IET) compartments with respect to certain clinical parameters of
the whole HNSCC cohort. (A) Calculated p-values (Mann-Whitney test) are depicted in the heatmap (red indicates higher immune cell frequencies in
G3/p16+/Hypoxia high subcohorts; blue indicates higher immune cell frequencies in G2/p16-/Hypoxia low subcohorts; color intensity indicates
significance level) and (B) in case of a significant difference in at least one compartment, TS and IET data were shown in separate dot plots (median
with 95% confidence interval [CI], significant p-values [p < 0.05] printed in bold; TF, transcription factor).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1414298
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kirchner et al. 10.3389/fimmu.2024.1414298
p16+ HNSCC. In addition, several functional CD8+ T cell

subpopulations showed a significantly higher proportion in the TS

of p16+ tumors (PD-1+CD8+, PD-1+LAG-3+CD8+, PD-

1+GrzB+CD8+, PD-1+Ki67+CD8+), while cDC2 were positively

correlated to p16 overexpression only in the IET (Figures 3A, B). A

high expression of hypoxia-related genes was associated with a

significantly decreased cDC1 infiltration in the IET and a

significantly smaller proportion of functional CD8+ subtypes

(GrzB+CD8+, LAG-3+GrzB+ CD8+, GrzB+Ki67+CD8+) in the TS

(Figures 3A, B).

Analyzing the p16+ and the p16- subcohorts, we found that the

clinicopathological parameters tumor grading or hypoxia status

seem to have no significant effect on the frequencies of DCs and T

cells in the TS and IET compartments of p16- tumors (Figure 4A).

In contrast, in the WTA of the p16- subcohort, activated

GrzB+CD8+ and proliferating Ki67+CD8+ T cells with or without

the expression of LAG-3 showed a significantly lower proportion in

Hypox15high tumors (Supplementary Figure 5). In the p16+

subcohort, a significantly higher proportion of TH17 cells

(RORgT+CD3+) was observed in the TS of G3 compared to G2

HNSCC (Figures 4A, B). Additionally, a high hypoxia-related gene
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expression was associated with less infiltrates of cDC1, CD3+, and

CD8+ T cells as well as a decreased proportion of LAG-

3+GrzB+CD8+ T cells in both tumor areas (Figures 4A, B).

Interestingly, under hypoxic conditions, p16+ tumors exhibited a

significantly decreased proportion of TH1 cells (T-bet+CD3+)

combined with increased numbers of immunosuppressive Tregs

(FoxP3+CD3+). In line with this observation, the CD8:Treg ratio

was lower in Hypox15high tumors (Figures 4A, B).

Comparing the hypoxia-stratified subcohorts, clinicopathological

parameters (tumor grading and p16 status) had a greater influence on

the immune cell infiltrate in tumors with a low compared to tumors

with a high Hypox15 gene cluster expression (Figure 5A).While tumor

grading had no significant effect in the Hypox15high subcohort, G3

HNSCC were significantly associated with increased proportions of

PD-1+LAG-3+CD8+ T cells in the IET and TH17 cells (RORgT+CD3+)
in the TS of the Hypox15low cohort (Figures 5A, B). Furthermore,

Hypox15low p16+ tumors exhibited an increased infiltration of cDC1,

CD3+, and CD8+ T cells and had significantly higher proportions of

PD-1+CD8+, PD-1+LAG-3+CD8+, and PD-1+GrzB+CD8+ T cells in the

TS. Additionally, these tumors were characterized by high proportions

of TH2 cells (GATA3
+CD3+) and a high CD8:Treg ratio (Figures 5A, B).
B

A

FIGURE 4

Quantified immune cell infiltration of tumor stroma (TS) and intraepithelial tumor (IET) compartments with respect to certain clinical parameters of
p16+ and p16- subcohorts. (A) Calculated p-values (Mann-Whitney test) are depicted in the heatmap (red indicates higher immune cell frequencies
in G3/Hypoxia high subcohorts; blue indicates higher immune cell frequencies in G2/Hypoxia low subcohorts; color intensity indicates significance
level) and (B) in case of a significant difference in at least one compartment, TS and IET data were shown in separate dot plots (median with 95%
confidence interval [CI], significant p-values [p < 0.05] printed in bold; TF, transcription factor).
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In contrast, Hypox15high p16+ tumors exhibited a significantly

decreased amount of TH1 cells (T-bet+CD3+), while few functional

CD8+ phenotypes showed significantly higher values in these tumors

(Ki67+CD8+ T cells in IET, PD-1+Ki67+CD8+ T cells in TS, Figures 5A,

C). In general, p16 positivity was associated with increased frequencies

of several DC and T cell subpopulations, whereas hypoxia correlated

with opposite effects. These infiltration patterns were not only

recognizable in the whole cohort but also in p16+ and

Hypox15low subcohorts.
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3.3 Prognostic association of immune cells
is dependent on biomarker subgrouping

To specifically determine the influence of HNSCC-infiltrating

DC and T cell subpopulations on clinical outcome, we evaluated

different clinical parameters (OS, LRC, LDMC) in the whole cohort

of 56 HNSCC patients (Figure 6) as well as in subcohorts stratified

by p16 overexpression and hypoxia-related gene expression

(Figures 7, 8).
B

C

A

FIGURE 5

Quantified immune cell infiltration of tumor stroma (TS) and intraepithelial tumor (IET) compartments with respect to certain clinical parameters of
Hypox15 high and Hypox15 low subcohorts. (A) Calculated p-values (Mann-Whitney test) are depicted in the heatmap (red indicates higher immune cell
frequencies in G3/p16+ subcohorts; blue indicates higher immune cell frequencies in G2/p16- subcohorts; color intensity indicates significance level)
and in case of a significant difference in at least one compartment, TS and IET data were shown in separate dot plots (median with 95% confidence
interval [CI], significant p-values [p < 0.05] printed in bold) for (B) Hypox15 low and (C) Hypox15 high subcohorts (TF, transcription factor).
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In the whole cohort, a significant positive correlation with OS

was observed only for LAG-3+GrzB+CD8+ T cells (Figures 6A, B).

In addition, a high CD8:Treg ratio was associated with a decreased

risk of local recurrence and distant metastases (LRC and LDMC) of

HNSCC (Figures 6A, B). Of note, these prognostic correlations were

only observed in the TS, while immune cells in the IET had no

prognostic value in the whole cohort (Figure 6A). In contrast, when

considering TS and IET compartments together (WTA), high

infiltration of T cells (CD3+ and CD8+) as well as cDC1 were

significantly associated with a longer recurrence-free period (LRC

and LDMC, Supplementary Figure 4). Moreover, high numbers of

PD-1+LAG-3+CD8+ T cells correlated significantly with a longer OS

(Supplementary Figure 4).

p16+ HNSCC and tumors located in the oropharynx are

generally associated with better treatment response (8, 9). The

comparison of p16- and p16+ subcohorts revealed that the

analyzed immune cells in TS or IET compartments of the p16+

cohort had less significant prognostic associations than the p16-
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cohort (Figure 7A). In the p16- cohort, HNSCC with high CD8+ T

cell infiltrates in the IET displayed significantly lower LDMC, which

was observed as a trend for LRC (Figures 7A, B). Furthermore, p16-

HNSCC with a high stromal proportion of activated GrzB+CD8+ T

cells and LAG-3+GrzB+CD8+ T cells showed a significant negative

correlation with disease progression (LRC and LDMC) and a higher

frequency of TH17 cells (RORgT+CD3+) was associated with longer

OS and LDMC in these tumors (Figures 7A, B). In addition, Tregs

also showed a positive correlation with longer OS in the WTA

(Supplementary Figure 5). In contrast, in p16+ HNSCC only

increased proportions of proliferating Ki67+CD8+ T cells in the

IET were significantly associated with shorter OS (Figures 7A, C).

Regarding the hypoxia-subcohorts, a high frequency of

activated pDCs (IRF7+ pDCs) in the TS was significantly

associated with a shorter OS and LDMC in the Hypox15low

subcohort (Figures 8A, B). Additionally, Hypox15low tumors with

high proportions of PD-1+GrzB+CD8+ T cells and LAG-3+GrzB+ T

cells in the IET showed positive outcomes regarding OS/LRC and
B

A

FIGURE 6

Quantified immune cell infiltration of tumor stroma (TS) and intraepithelial tumor (IET) compartments with respect to survival parameters of the
whole HNSCC cohort. (A) Calculated p-values (Log-rank test) are depicted in the heatmap (red indicates a positive association of survival
probabilities with tumor infiltration; blue indicates a negative association of survival probabilities with tumor infiltration; color intensity indicates
significance level) and (B) in case of a significant difference in at least one compartment, TS and IET data were shown in separate Kaplan-Meier
curves (significant p-values [p < 0.05] printed in bold).
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OS, respectively (Figures 8A, B). Moreover, a high CD8:Treg ratio in

the IET compartment of these tumors was indicative for a

significantly higher LRC (Figures 8A, B), which was also observed

when analyzing the WTA (Supplementary Figure 6). Likewise, the

negative association between activated pDCs (IRF7+ pDCs) and

LDMC persist for the WTA, while also high pDC numbers were
Frontiers in Immunology 11
significantly associated with a shorter OS (Supplementary Figure 6).

In contrast, high cDC1, CD3+, and CD8+ T cell infiltration were

prognostic for a significantly longer recurrence-free period in the

WTA of Hypox15low tumors (LRC and LDMC, Supplementary

Figure 6). In Hypox15high HNSCC, several CD8+ T cell phenotypes

were significantly associated with worse prognosis. A high
B

C

A

FIGURE 7

Quantified immune cell infiltration of tumor stroma (TS) and intraepithelial tumor (IET) compartments with respect to survival parameters of p16+
and p16- subcohorts. (A) Calculated p-values (Log-rank test) are depicted in the heatmap (red indicates a positive association of survival probabilities
with tumor infiltration; blue indicates a negative association of survival probabilities with tumor infiltration; color intensity indicates significance level)
and in case of a significant difference in at least one compartment, TS and IET data were shown in separate Kaplan-Meier curves for (B) p16- and (C)
p16+ subcohorts (significant p-values [p < 0.05] printed in bold).
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proportion of activated GrzB+CD8+ T cells in the TS was associated

with a higher risk of recurrence (LRC and LDMC, Figures 8A, C).

For LRC, this was also observed for PD-1+GrzB+ T cells and LAG-

3+GrzB+CD8+ T cells in the IET. Only LAG-3+GrzB+CD8+ T cells

in the TS were additionally predictive for shorter OS in Hypox15high

cohort (Figures 8A, C). In addition to T cells, high frequencies of

cDC2 were predictive of a high LDMC when analyzing the whole

tumor of Hypox15high HNSCC (Supplementary Figure 6).
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After analyzing whether p16 or hypoxia status of HNSCC

patients has an influence on the infiltration of individual immune

cells in several tumor compartments and whether this has an impact

on the clinical outcome, the influence of several DC subsets in

combination with T cells on patient survival was examined. This

allows a more detailed patient classification and provides possible

starting points for further research aiming at novel therapeutic

approaches. Therefore, we clustered the subcohorts stratified by p16
B

A

C

FIGURE 8

Quantified immune cell infiltration of tumor stroma (TS) and intraepithelial tumor (IET) compartments with respect to survival parameters of Hypox15
high and Hypox15 low subcohorts. (A) Calculated p-values (Log-rank test) are depicted in the heatmap (red indicates a positive association of
survival probabilities with tumor infiltration; blue indicates a negative association of survival probabilities with tumor infiltration; color intensity
indicates significance level) and in case of a significant difference in at least one compartment, TS and IET data were shown in Kaplan-Meier curves
for (B) Hypox15 low and (C) Hypox15 high subcohorts (significant p-values [p < 0.05] printed in bold).
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positivity and hypoxia-related gene expression separately according

to high or low immune cell infiltrate generating four different

clusters for each subcohort (Figures 9A, C). In order to

encompass several immune cell types, the clustering was based on

densities of pDCs, cDC1, cDC2, CD3+, and CD8+ T cells in WTA
Frontiers in Immunology 13
(TS and IET together). Patients with p16+ HNSCC having

significantly improved clinical outcome compared to patients

with p16- tumors (Supplementary Figure 7), showed these

favorable clinical results especially in combination with high

immune cell infiltrate (Figure 9B). In comparison to both p16-
B

C

D

A

FIGURE 9

Combined p16/immune- and Hypox15/immune-phenotypes for HNSCC patient stratification in terms of clinical outcome. (A) Heatmaps of
p16- (left) and p16+ (right) subcohorts clustering in two groups each according to low (blue) or high (red) immune cell infiltration by pDCs, cDC1,
cDC2, CD3+, and CD8+ T cells. (B) Kaplan-Meier curves depict clinical outcome (OS, LRC, LDMC) for HNSCC patients with p16+/immunehigh,
p16+/immunelow, p16-/immunehigh, or p16-/immunelow phenotypes. (C) Heatmaps of Hypox15low (left) and Hypox15high (right) subcohorts clustering
in two groups each according to low (blue) or high (red) immune cell infiltration by pDCs, cDC1, cDC2, CD3+, and CD8+ T cells. (D) Kaplan-Meier
curves depict clinical outcome (OS, LRC, LDMC) for HNSCC patients with Hypox15high/immunehigh, Hypox15high/immunelow, Hypox15low/immunehigh,
or Hypox15low/immunelow phenotypes. p-values calculated by Log-rank test and adjusted using Benjamini-Hochberg method, significant p-values
shown in bold print.
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clusters, significant differences were visible for p16+/immunehigh,

but not for p16+/immunelow. In terms of combined hypoxia/

immune phenotypes, it became obvious that particularly patients

with Hypox15low tumors and a high immune cell infiltrate depict

the best survival and, in turn, patients with Hypox15high/

immunelow-classified tumors showed the worst outcomes

(Figure 9D). Although patients with Hypox15low tumors have a

significantly prolonged OS compared to patients with Hypox15high

tumors (Supplementary Figure 7), the additional inclusion of

immune cell infiltrate for further subclassification shows a trend

towards improved clinical outcome by high immune cell infiltrate.
3.4 cDC1 and CD8+ T cells independently
predict outcome of HNSCC patients

Additionally, DC and T cell subpopulations were tested in a

multivariate setting to obtain immune markers that can serve as

independent prognostic factors for HNSCC. Therefore, Cox

regression was used to evaluate the prognosis of infiltrating

immune cells in relation to different clinical parameters

(Figure 10A; Supplementary Figures 8, 9; Supplementary Table 5).

The clinical parameters and immune cell subtypes used for

multivariate analysis were chosen based on a significant prognosis

in the univariate setting. As the establishment of new prognostic

biomarkers should be easily transferable into clinical procedures, we

performed the multivariate analysis for theWTA as a differentiation

into TS and IET may not be feasible in routine diagnostics. We

observed that a high density of cDC1 is a prognostic factor for

higher LRC and LDMC in the whole cohort, independent of tumor

location (oropharynx vs. oral cavity), p16 positivity, and tumor

stage (T1/T2 vs. T3/T4 according to TNM staging, Figure 10A;

Supplementary Figure 8). Analyzing the T cell subpopulations, a

high density of CD8+ T cells was independently associated with a

longer recurrence-free period (LRC and LDMC) in the whole

HNSCC cohort (Figure 10A; Supplementary Figure 8).

Furthermore, the proportion of activated GrzB+CD8+ T cells was

significantly associated with a higher risk of recurrence (LRC and

LDMC) in patients with p16- HNSCC, independent of tumor

staging (Supplementary Figure 9). In HNSCC with high hypoxia-

related gene expression, a high proportion of PD-1+GrzB+CD8+ T

cells correlated significantly with a shorter OS and LDMC,

independent o f tumor loca t ion and tumor s tag ing

(Supplementary Figure 9). In addition, the ratio of CD8+ T cells

to Tregs seemed to has an independent prognostic value, as a higher

CD8:Treg ratio was significantly associated with a decreased risk of

local and distant recurrence (LDMC) in the whole cohort and the

Hypox15low subcohort (Figure 10A; Supplementary Figure 9).

Since two immune cell types, in particular cDC1 and CD8+ T

cells, stood out in their favorable prognosis for the whole HNSCC

cohort, we developed an immune cell infiltration score (ICIS) based

on the frequency of both cell types in the WTA (Figure 10B). To

generate the ICIS, a binary code was applied to each cell type that

was based on the median cell density (density ≥median = 1, density

< median = 0). By summarizing the binary code for both cell types, a

classification system was obtained that consisted of three stages: 0 –
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cell density of both markers is below median, 1 – cell density of only

one marker is above median, 2 – both cell densities are above

median. When stratifying the patient cohort according to the ICIS

(0 vs. 1/2) we observed that an ICIS of 1 to 2, reflecting a high

infiltration of cDC1 and/or CD8+ T cells, was significantly

associated with a higher LRC and highly significant in predicting

a high LDMC (Figure 10B). Furthermore, a higher ICIS showed a

strong trend for the prediction of prolonged OS (Figure 10B).
4 Discussion

The significant influence of the immune landscape on tumor

development, progression, as well as on therapeutic outcome, has

been described for many solid cancers, including HNSCC. By using

conventional hematoxylin and eosin (H&E) whole slide stainings,

Ribbat-Idle et al. showed that the immune infiltration pattern is an

independent prognostic factor for OS of HNSCC patients, with

“cold” tumors being significantly associated with worse clinical

outcome in comparison to “hot” and “excluded” tumors (39).

Whereas CD8+ T cell infiltration in general indicates a positive

prognosis in HNSCC, TH subpopulations, DC subtypes, and CD8+

T cells expressing further co-stimulatory/-inhibitory marker

proteins lack prognostic evaluation, so far (40, 41).

In our study, we investigated the tumor infiltration pattern of

several immune cell subpopulations in different tumor

compartments. Regarding DC subtypes, predominant pDCs were

significantly more abundant in TS than in IET tissue compartment,

whereby only minor frequencies of mature and/or activated pDCs

(IRF7+ pDCs) were identified. In general, HNSCC samples

exhibited eightfold higher pDC infiltration in comparison to

primary resected colon cancer and pancreatic ductal

adenocarcinoma samples in our previous studies using similar

BDCA-2 staining procedures (23, 42). Especially in HNSCC, the

hypoxic TME seems to inhibit pDC maturation (43). Koucký et al.

demonstrated a colocalization of functionally impaired pDCs with

Tregs in TS and reported a selective pDC-fostered Treg expansion

(44). When looking at T cell subpopulations in our HNSCC cohort,

Tregs represented the major TH cell subset, with their predominant

stromal distribution confirming current literature (45) and may

contributing to the mentioned relation of pDCs and Tregs. With

respect to further TH subsets, TH1 cells were more common than

TH2 cells or TH17 cells and significantly more frequent in IET than

in TS. Although the development of HNSCC is thought to be

accompanied by a switch from TH1- to TH2-cytokines (46), a CD8
+-

rich TME seems to be linked to a TH1-dominated immune response

(47). Using The Cancer Genome Atlas (TCGA) datasets of HNSCC

patients, Lu et al. found an increased level of TH1 cells in a

subcohort with a high abundance of gdT cells, being in turn

associated with a longer OS (48). Due to the limited number of

marker molecules that can be simultaneously analyzed in one

staining panel using our mIHC method, we have chosen CD3 for

T cell detection and various major TFs (T-bet, GATA3, RORgT, and
FoxP3) for evaluating the proportion of the most common TH

subsets (TH1 cells, TH2 cells, TH17 cells, Tregs). Therefore, rare

CD8+ T cells (TC1, TC2, TC17) expressing one of these TFs may
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contribute to the proportion of positively stained TF-expressing

CD3+ T cells in our study. In this context, TC1, TC2, and TC17 cells

have been found in peripheral blood (49) or tumor draining lymph

nodes (50) of HNSCC patients by flow cytometry. These studies

discriminated the subpopulations based on the cytokine expression

profiles without analyzing TF expression. However, CD8+ TC
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subsets were less frequent than CD4+ TH subsets. In addition to

abT cells, gdT cells expressing the mentioned TFs may also make

up a proportion of our positively stained CD3+ T cells. IL17-

producing gdT cells, termed gdT17, were found in several tumor

entities, including HNSCC (51, 52). In further studies, we explored

the frequency and phenotype of HNSCC-infiltrating T cells. In
B

A

FIGURE 10

Multivariate Cox Regression and immune cell infiltration score (ICIS). (A) Forest plots visualizing Cox regression for cDC1, CD8+ T-cells, and CD8:
Treg ratio with respect to LDMC and clinicopathological characteristics of the whole HNSCC cohort (localization, p16 positivity, T stage). Hazard
ratio (HR) with 95% CI (confidence Interval). Significant p-values (p < 0.05) printed in bold. (B) ICIS combining high (≥ median) or low (< median)
infiltration of cDC1 and CD8+ immune cells. Heatmap shows ICIS for each patient included within the study and Kaplan-Meier curves depict clinical
outcome (OS, LRC, LDMC) for patients with ICIS = 0 vs. ICIS = 1 or ICIS = 2 (p-values calculated by Log-rank test, significant p-values [p < 0.05]
printed in bold).
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comparison to a previous study on soft tissue sarcomas, that utilized

a similar T cell staining procedure, HNSCC samples featured an

obviously higher T cell infiltration (32). The investigated CD8+ T

cells showed significantly higher frequencies in TS. This finding is in

line with the literature reporting a higher frequencies of stromal T

lymphocytes compared to IET-lying ones (53). However,

significantly greater proportions of CD8+ T cell subpopulations,

expressing further co-stimulatory and/or co-inhibitory marker

proteins, were present in the IET compartment. In particular, a

high expression of the co-inhibitory receptors PD-1 and LAG-3 by

CD8+ T cells, either alone or in combination, became obvious

underlining the described loss of effector function and exhaustion

state of tumor-infiltrated CD8+ T cells (5).

Following previous approaches, we incorporated several

clinicopathological parameters in our analysis that appear

important for the progression of HNSCC and treatment response,

such as tumor grading, p16 status, and hypoxia, and assessed them

in conjunction with immune cell infiltrate patterns. First, we

explored the relationship between the immune landscape and

tumor grading. While Boucek et al. described a positive

association between tumor histological grading and elevated

CD8+ T cell levels in the blood of HNSCC patients at diagnosis

(54), we observed a positive correlation between tumor grading and

exhausted CD8+ T cells (PD-1+LAG-3+CD8+) within the IET

compartment of the Hypox15low subcohort. This finding is in line

with the literature describing a correlation of high LAG-3

expression and high pathological grade (55). Further, a higher

grading (G3) was frequently accompanied by a higher proportion

of stromal RORgT+ TH17 cells. A high infiltration of TH17 cells in

HNSCC was confirmed by others, hypothesizing on a contribution

to cancer progression (21).

Growing evidence has shown that two factors, namely tumor

localization and HPV status, split HNSCC into greatly different

subentities, characterized by distinct clinical and therapeutic

outcomes (7). Recognition of HPV-related HNSCC as a distinct

entity from the HPV-unrelated cases emerged from differences

observed in their molecular profiles, tumor development process,

clinical presentation, and outcome. This led to a novel staging

system for the HPV+ oropharyngeal squamous cell carcinoma in

the latest edition of the TNM classification of the Union for

International Cancer Control (UICC) (56). The immune

contexture, which differs among HNSCC localizations and

between HPV+ and HPV- tumors, might represent a pivotal

player in shaping these differences. Multiple groups have reported

an enhanced infiltration of CD8+ T lymphocytes in p16+ HNSCC,

that correlated positively with clinical outcome (14, 24, 47, 57, 58).

In addition to high CD3+ and CD8+ T cell densities as well as CD8:

Treg ratio in HPV+ tumors shaping a less immunosuppressive TME

as detected in multiple studies (41), we showed that both cDC

subtypes (cDC1 and cDC2) had significantly higher frequencies in

p16+ vs. p16- tumor samples, primarily in the IET compartment.

Similarly, researchers reported a higher infiltration of HPV+

oropharyngeal tumors by a specific CD11c+ cDC population

compared to the HPV- counterparts (59). Using the TCGA

database, Gameiro et al. observed that activated DC transcript

levels tend to be higher in HPV+ vs. HPV- tumors, but without
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reaching significance (60). However, also contradictory results are

reported being not able to draw a link between DC frequencies and

HPV status or even detecting lower DC amounts in HPV-related

tumors (41, 59). Additionally, increased proportions of exhausted T

cells (PD-1+CD8+, PD-1+LAG-3+CD8+), cytotoxic T cells (PD-

1+GrzB+CD8+), proliferating T cells (PD-1+Ki67+CD8+), and

GATA3+ TH2 cells in TS of patients with p16+ tumors were

observed. Similarly to our quantified stainings, HPV-related

HNSCC are ascertained to exhibit high expression levels of

checkpoint receptors, including PD-1 and LAG-3, underlining a

linkage of HPV infection and T cell exhaustion (53, 61, 62). Further,

Kansy et al. reported significantly increased fractions of cytotoxic T

cells (GrzB+CD8+) and proliferating T cells (Ki67+CD8+) in the TS

of 27 HPV+ oropharyngeal tumor patients analyzed by multi-color

immunofluorescence (63).

Hypoxia is a major factor that shapes the TME and also the

response of HNSCC to radiotherapy by regulating i) the survival,

proliferation, differentiation, and antitumor capacity of T cells; ii)

the survival, migration, antigen presentation, and differentiation of

DCs; or iii) the macrophage polarization and tumor development,

among others (64, 65). In HNSCC, Kim et al. observed that the level

of hypoxia varies across anatomical locations, with tumors in the

larynx being less hypoxic than those in the oral cavity, and those in

the oropharynx being the most hypoxic ones (66). In our HNSCC

cohort, significant lower infiltration of cDC1 cells (IET) and

cytotoxic GrzB+CD8+ T cells (TS) in tumors with hypoxia-

associated gene signatures was measurable. According to the

literature, hypoxia might diminish the infiltration and activity of

DCs as well as T lymphocytes (67, 68) confirming our results.

Especially in the p16+ subcohort, additional significant differences

were noticeable, as these patients exhibited also a lower proportion

of T-bet+ TH1 cells and a concomitantly higher infiltration of Tregs

in Hypox15high tumors being independent of the investigated tumor

compartment. It is reported that immunosuppressive immune cells,

like Tregs, infiltrate hypoxic regions in HNSCC supporting our

results (69).

Besides correlating immune cell infiltrate patterns with clinical

parameters, the association of immune cell populations and patient

survival was a major research objective of this study. By means of

TCGA datasets, Mito et al. showed a lymphocyte gene expression

signature that predicts prolonged OS, whereas a myeloid/DC

signature indicated lower survival propabilites (5). This suggests

that the myeloid compartment favors immune suppression and

tumor growth in HNSCC, but its role has not been clearly dissected

so far. In our cohort, patients with Hypox15low HNSCC and a high

stromal infiltration of IRF7+ pDCs displayed significantly shortened

OS and LDMC. The correlation of pDC abundancy and poor

prognosis is described for many cancer entities including HNSCC

(41, 43). In other studies, pDC infiltration correlated with a high

expression of FoxP3 and co-inhibitory markers (PD-1 and LAG-3)

setting up an immunosuppressive TME and promoting tumor

progression (70, 71). Additionally, positive correlations of

especially cDC1 infiltration and, to a lesser extent, cDC2

frequency with favorable LDMC surfaced in our investigation.

This fits and adds to the existing knowledge on cDC1s forming

clusters with CD8+ T cells in the TS compartment of HNSCC
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patients and, thus, being capable to induce CD8+ T cell-mediated

antitumoral responses, which in turn correlated with high LDMC in

these patients (72). However, we report the positive role of cDC1s in

HNSCC by detecting the subset-specific CLEC9A molecule at

protein level. Our findings on cDC2s are in line with current

literature describing an association of cytokine-producing

CD163+ cDC2 cells or cDC2, expressing programmed cell death

ligand-1 (PD-L1)high and inducible T cell co-stimulator ligand

(ICOSL)low, with favorable survival (73, 74).

Regarding an association of T cell subpopulations with clinical

outcome, studies resulted in contradictory findings. On the one

hand, CD4+ T cells were significantly associated with longer OS and

disease-specific survival (75), but on the other hand most research

did not observe significant correlations of CD4+ infiltration and

patient prognosis (41, 61). In our p16- subcohort, the infiltration of

RORgT+ TH17 cells and FoxP3+ Tregs were linked to favorable OS/

LDMC and OS, respectively. While TH17 infiltration was associated

with an improved prognosis of patients with HPV+ HNSCC (21),

the current literature is balanced between studies reporting positive

and negative impacts of Treg infiltration on survival. Thereby,

contradictory reports exist for both different HNSCC locations

and for HPV-dependencies (41, 76, 77). Nevertheless, studies

agreed on the relation of high CD8+ T cell infiltration and a

positive impact on HNSCC patients’ survival (61, 78). Likewise, a

higher frequency of CD8+ T lymphocytes as well as an elevated

CD8:Treg ratio correlated significantly with higher LRC and LDMC

in our study. However, regarding the relation of CD8:Treg ratio and

survival properties of HNSCC patients, contradictory studies exist

mentioning an adverse association (41, 79), no association or a

favorable association (80, 81). A possible explanation for the

inconclusive study situation was provided by Echarti et al. (82).

In their investigation, the authors found a high Treg infiltration to

diminish OS in “immune desert” and “immune excluded” HNSCC,

but a prolonged OS was seen in high Treg-infiltrated “inflamed”

tumors. When assessing CD8+ subpopulations and their association

with survival parameters of our cohort, cytotoxic GrzB+CD8+ T

cells are unfavorable concerning clinical outcome for patients with

Hypox15high tumors, whereas for patients with Hypox15low tumors

the infiltration of active cytotoxic T cells seems to be linked to good

survival. It is known that the hypoxic TME evades immune cell-

mediated killing mechanisms by activating autophagy, forming

autophagosomes, and neutralizing/degrading cytotoxic mediators,

like GrzB (83). Additionally, whole tumor infiltration of PD-

1+CD8+ T cells was associated with prolonged OS in the

Hypox15low subcohort and displaying a similar trend in the whole

cohort, too. According to the literature, a high frequency of PD-

1+CD8+ T cells was linked to favorable OS in patients with HPV-

HNSCC, whereby the 25th lowest percentile of these immune cell

infiltrate pattern was used for grouping the patients (84).

When evaluating the clinical outcome of HNSCC patients

according to p16 status in combination with immune cell infiltrate

pattern of pDCs, cDC1, cDC2, CD3+, and CD8+ T cells, four

subgroups can be classified: p16+/immunehigh, p16+/immunelow,

p16-/immunehigh, and p16-/immunelow. In our investigation,

especially patients with p16+ HNSCC and high immune cell

infiltrate exhibited significantly better clinical outcomes in
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comparison to both p16- subgroups and tendentially prolonged

survival compared to patients with p16+ HNSCC and low immune

cell infiltrate. In literature, patients with HPV+ HNSCC and high

infiltration of CD8+ T cells showed most favorable survival

parameters (85) fitting our observations. Similarly, in terms of

combined hypoxia/immune phenotype profiles different subgroups

might be distinguished: hypoxialow/immunehigh, hypoxiahigh/

immunelow, hypoxialow/immunelow, and hypoxiahigh/immunehigh.

The last two phenotypes mentioned are also referred as a mixed or

intermediate phenotype. In this regard, different investigators showed

that the hypoxialow/immunehigh phenotype was indicative of

enhanced survival rates based on hypoxia- and immune response-

related gene expression analysis of TCGA datasets or

immunohistochemical staining of T cell (CD3) and hypoxia

markers (carbonic anhydrase IX) (11, 86–88). In our study, we

confirmed the positive association of the hypoxialow/immunehigh

phenotype with favorable clinical outcome of HNSCC patients.

Though, different from the studies mentioned above, our phenotype

clustering based on Hypox15 gene signature to determine the hypoxia

status as well as on multiplex immunohistochemical staining

combined with semi-automatic quantification of DCs and T cells at

protein level to identify the immune cell infiltrate. In sum, favorable

survival of patients with p16+ or Hypox15low HNSCC seems to be

particularly associated with a high infiltration of DCs and T cells.

Thus, patients with p16+/immunelow and Hypox15low/immunelow

HNSCC might benefit from therapeutically increased immune

cell infiltrate.

Moreover, the infiltration of CLEC9A+ cDC1 and CD8+ T cells

emerged as independent prognostic markers for improved clinical

outcome besides clinicopathological parameters, like T stage, p16

status, and tumor localization, as shown in the multivariate Cox

regression and our developed ICIS. By using a TCGA dataset of 497

HNSCC tissue samples, Liu et al. identified a significant association

of CLEC9A gene and OS (univariate hazard ratio [HR]: 0.876,

multivariate HR: 0.906) (89). Moreover, Furgiuele et al. reported

CD8+ density to be an independent prognostic marker and an

deduced ICIS, comprising tumor infiltration of T lymphocytes

(CD8+, Tregs) and macrophages (CD68+), improved HNSCC

patients’ prognosis (90). Therefore, in the context of the still

ongoing implementation of an ICIS for HNSCC (90, 91), cDC1

and CD8+ T cells are promising candidates for an ICIS to predict

the clinical outcome of HNSCC patients.
5 Conclusion

In our study, we comprehensively investigated HNSCC

infiltration patterns of several DC subtypes and T cell

subpopulations, with respect to their phenotype and spatial

distribution. The stromal tumor compartment is highly infiltrated

by pDCs and T lymphocytes, with Tregs and exhausted CD8+ T cells

be ing the predominant phenotypes and shaping an

immunosuppressive tumor immune architecture. HPV-associated

tumors showed significantly higher infiltration of several investigated

immune cell populations, whereby tumors with hypoxia-associated

gene signatures exhibited reduced infiltration. Furthermore, our
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study contributes to the identification of novel prognostic

biomarkers for HNSCC, as especially cDC1 and CD8+ T cells were

independent prognostic factors for clinical outcome and potentially

contribute to the evaluation of a novel and more precise ICIS. These

parameters may help to further stratify patient subgroups in need of

treatment escalation. If confirmed in a validation cohort, combined

treatment approaches with enhancing tumor perfusion (using

hyperthermia, irradiation, potentially particle therapy) and

immune checkpoint inhibitor therapy in high-risk tumors may be

subject of future investigations. In patients with HNSCC receiving

primary R(C)Tx, pretherapeutic diagnostic approaches with

functional imaging such as 18F-fluoromisonidazol positron

emission tomography (18F-FMISO PET) to detect hypoxic tumor

areas and combining these findings with an ICIS based on the

analysis of biopsy material could add prognostic information and

lead to further individualized treatment strategies. This might

improve the design of future radiochemo(immuno)therapy.
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