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Introduction: Galactose-deficient IgA1 (GdIgA1) is critical in the formation of

immunodeposits in IgA nephropathy (IgAN), whereas the origin of GdIgA1 is

unknown. We focused on the immune response to fecal microbiota in patients

with IgAN.

Methods: By running 16S ribosomal RNA gene sequencing, we compared IgAN

samples to the control samples from household-matched or non-related

individuals. Levels of plasma GdIgA1 and poly-IgA complexes were measured,

and candidate microbes that can either incite IgA-directed antibody response or

degrade IgA through specific IgA protease activities were identified.

Results: The IgAN group showed a distinct composition of fecal microbiota as

compared to healthy controls. Particularly, high abundance of Escherichia-

Shigella was associated with the disease group based on analyses using

receiver operating characteristic (area under curve, 0.837; 95% CI, 0.738–

0.914), principle coordinates, and the linear discriminant analysis effect size

algorithm (linear discriminant analysis score, 4.56; p < 0.001). Accordingly, the

bacterial levels directly correlated with high titers of plasma GdIgA1(r = 0.36, p <

0.001), and patients had higher IgA1 against stx2(2.88 ± 0.46 IU/mL vs. 1.34 ±

0.35 IU/mL, p = 0.03), the main antigen of Escherichia-Shigella. Conversely, the

healthy controls showed relatively higher abundance of the commensal bacteria

that produce IgA-degrading proteases. Particularly, the abundance of some

intestinal bacteria expressing IgA proteases showed an inverse correlation with

the levels of plasma GdIgA1 in IgAN.
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Conclusion: Our data suggest that mucosal IgA production, including those of

GdIgA1, is potentially linked to the humoral response to gut Escherichia-Shigella

as one of the sources of plasma GdIgA1. Conversely, the IgA protease-producing

microbiota in the gut are suppressed in patients with IgAN.
KEYWORDS
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Introduction

IgA nephropathy (IgAN) is the most common primary

glomerulonephritis worldwide and a leading cause of end-stage

kidney disease (1, 2). Deposition of predominant IgA1 in the

glomerular mesangial region is the diagnostic hallmark in kidney

biopsy. At the molecular level, IgA1 with poorly glycosylated hinge

segment of the heavy chain [referred to as galactose-deficient IgA1

(GdIgA1)] is particularly prone to deposition and is believed to have

a major role in the pathogenesis of IgAN (3, 4). However, the

underlying mechanisms for the production of GdIgA1 are

incompletely understood. Evidence suggests that GdIgA1 is

systemically produced, and there is a high recurrence rate of

IgAN in the graft kidney following transplantation (5, 6).

Accordingly, when kidney grafts from IgAN donors are

transplanted to non-IgAN recipients, the original IgA deposits in

the donor kidney may gradually disappear over time.

Regarding the site of GdIgA1-producing plasma cells, the

significant role of aberrant mucosal immune responses in the

pathogenesis of IgAN has been highlighted. In the absence of

timely biopsy data, gross hematuria is often the first attack

symptom of IgAN 12–24 h following mucosal infection (7).

Frequent mucosal infection is also a risk factor of IgAN flare and

progression, and topical corticosteroid budesonide for treating

inflammatory conditions of the ileal gut-associated lymphoid

system is a targeted therapy for IgAN (8). Additionally, genome-

wide association studies identified susceptibility genes for IgAN

with functions in intestinal immunity (9). Numerous studies

demonstrated that mucosal-derived antigens stimulate the

differentiation of B cells into IgA-secreting plasma cells, through

T-cell–independent or T-cell–dependent pathways, inducing an

immunoglobulin class switching from IgG/IgM to IgA (10, 11).

Studies also showed that the mucosal plasma B cells tend to secrete

GdIgA1 (12), and limited literature supported the hypothesis that

the mucosae-derived GdIgA1+ plasma cells mis-home to the bone

marrow during lymphocyte trafficking (11, 13) or retrotranscytosis

of mucosal GdIgA1 across human epithelium to circulating system

(14, 15). Meanwhile, long-lived plasma cells can also travel between

mucosal sites and the bone marrow (16, 17).
02
Gut microbiotas are known to play an important role in

improving the production of IgA. Recent studies have focused on

the alterations of the intestinal microbiota and intestinal mucosal

hyperresponsiveness in association with high GdIgA1 production in

IgAN (14, 18–21). In a genetic model with the overexpression of B-

cell activation factor, McCarthy and colleagues showed that high

levels of IgA antibody response to the intestinal bacteria can lead to

mouse phenotypes reminiscent of IgAN (22). Challenged by

microbes in conventional environment, humanized IgA1

transgenic mice had more IgA deposition than those in a specific

pathogen– f ree environment (23) . Furthermore , feca l

transplantation from patients with IgAN to humanized IgA

transgenic mice can also cause IgAN-like phenotypes (24), and

depleting the intestinal microbiota with antibiotics could make the

disease curable in a humanized mouse model of IgAN (25).

However, very few studies elucidated the precise gut microbiota

and the conditions that can incite the production of GdIgA1 to

cause IgAN. In this study, we analyzed the composition of fecal

microbiome in patients with IgAN and discovered an imbalance

between GdIgA1-stimulating and mucosal IgA–degrading bacterial

activities in disease.
Materials and methods

Study subjects

A total of 146 participants, including 77 cases with IgAN, 22

household-matched healthy controls (HM-HCs) for 22

corresponding patients with IgAN, and 47 non-related healthy

controls (HCs), were recruited from the First Affiliated Hospital

of Xi’an Jiaotong University. Patients with IgAN were all diagnosed

by renal biopsy with predominance of IgA deposits in the

glomerular mesangium. Patients younger than 18 years old, with

gastrointestinal diseases, having secondary IgAN, or having other

autoimmune diseases or diabetes were excluded. Other exclusion

criteria include the use of probiotics, antibiotics, glucocorticoid, or

other immunosuppressants within 2 months. Twenty-two HM-

HCs were selected for addressing confounding factors such as
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dietary habits and environmental factors. Participants between

groups were matched for age and sex. Patients’ clinical

characteristics, including age, sex, blood pressure, 24-h urine

protein excretion, serum albumin, creatinine, estimated

glomerular filtration rate (eGFR), and pathologic scores of Oxford

Classification for IgAN were documented. This study was

performed in adherence to the Declaration of Helsinki and was

approved by the medical ethics committee at the First Affiliated

Hospital of Xi’an Jiaotong University. Plasma and stool samples

from all patients with IgAN were collected at the time of renal

biopsy, and all samples were stored at −80°C within 2 h

of collection.
Detection of plasma IgA1, GdIgA1, IgG
anti-glycan antibodies, poly-IgA
complexes, and anti-stx2 IgA1 by ELISA

Plasma IgA1 was measured using standard enzyme-linked

immunosorbent assay (ELISA) as previously described (26).

Plasma GdIgA1 levels were quantified using the GdIgA1 assay kit

(IBL, Naka, Japan) following the manufacturer’s standard protocol.

Method for detecting anti-glycan antibodies against GdIgA1

was described previously (26). Briefly, IgA1 F(ab)2 plus the hinge

region [F(ab)2-HR] was isolated following IgA protease digestion of

purified IgA1 from plasma. Following protein-L column

purification of the F(ab)2 fragment, 5 mg/mL was used to coat

ELISA plates as antigen. After blocking with 1% bovine serum

albumin (BSA) in phosphate-buffered saline (PBS) for 1 h at 37°C,

100 times diluted plasma samples and standards were added to the

assigned wells and incubated for 1 h at 37°C. Finally, alkaline

phosphatase–conjugated goat anti-human IgG monoclonal

antibody (Sigma, United States) was used for detection.

The method of using recombinant CD89 (rCD89) to capture

poly-IgA complexes in the plasma was reported previously (27).

Briefly, rCD89 (5 mg/mL; SinoBiological, China) as a capturing

agent was used to coat the ELISA plate, after blocking with 1% BSA/

PBS buffer for 2 h at 37°C, and diluted plasma samples (1:1,000)

were added and incubated for 3 h at 37°C. Then, horseradish

peroxidase (HRP)-labeled mouse anti-human IgA mAb (Abcam,

Cambridge, United Kingdom) diluted 1:1,000 in blocking buffer was

added to the wells for 1 h at 37°C. Lastly, results were developed

using 3,39,5,59-tetramethylbenzidine liquid substrate, and the

reactions were stopped with the addition of 1 M sulfuric acid.

For detecting anti-Shiga toxin 2 (stx2) antibody/IgA1 in plasma,

recombinant stx2 (5 mg/mL; SinoBiological, China) was used as an

antigen to coat the ELISA plate. BSA was used as the control

antigen. After blocking, all plasma samples at 1:50 dilution and one

sample in a two-fold dilution series as the standards were added to

the wells. After 1-h incubation at 37°C and subsequent washing

steps, HRP-conjugated mouse anti-human IgA1 antibody (1:2,000

dilution, ThermoFisher) was added to the wells for 1 h at 37°C. The

results for total CD89-captured poly-IgA complexes and anti-stx2

IgA1 were expressed as units per milliliter.
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16S ribosomal RNA gene sequencing and
data preprocessing

Microbial DNA was extracted from the fecal samples using a

HiPure Soil DNA-extraction kit (Magen, Guangzhou, China) following

the manufacturer’s standard protocol. The V3-V4 hypervariable region

of the 16S ribosomal RNA (rRNA) genes was amplified by PCR using

primer pair 341F (5′-CCTACGGGNGGCWGCAG-3′) and 806R (5′-
GGACTACHVGGGTATCTAAT-3′). Then, the amplified 16S rRNA

PCR fragments were sequenced using Illumina Nova SP (PE250) at

Gene Denovo Biotechnology Co., Ltd. (Guangzhou, China). To further

improve read quality, raw reads were filtered on the basis of a set of

rules (operated using FASTP, version 0.18.0) (28). The clean tags were

clustered into operational taxonomic units (OTUs) of ≥97% similarity

using UPARSE (29) (version 9.2.64). Bioinformatic analyses, including

alpha diversity analysis, beta diversity analysis, community

composition analysis, indicator species analysis, and function

prediction were all performed using Omicsmart, a real-time

interactive online platform for data analysis (http://

www.omicsmart.com). Additional methods on 16S rRNA gene

sequencing are in Supplementary Materials.
Statistical analysis

Normally distributed and non-normally distributed

quantitative parameters were expressed as means ± standard

deviation, medians, and interquartile ranges (IQRs), respectively.

Statistical differences between two groups in normal distribution

were analyzed using a two-tailed Student t-test. Statistical methods

for bioinformatic analyses of the 16S rRNA gene sequencing data

were shown in Supplementary Materials. Levels of plasma GdIgA1,

anti-glycan antibodies, rCD89-capturing IgA complexes, and anti-

stx2 IgA1 between the groups were plotted using Prism software

(GraphPad Software, La Jolla, CA). A two-tailed p-value of <0.05

was considered statistically significant. All other statistical analyses

were performed using SPSS version 20.0.
Results

General characterization of the
IgAN cohort

We included 77 patients with biopsy-confirmed IgAN, 22

household-matched healthy subjects, and an additional 47 non-

related healthy volunteers as controls in this study. A summary of

the baseline characteristics of the patients with IgAN is presented in

Table 1. Sex and age were balanced between the patient and the

control groups. Most patients with IgAN had preserved renal

function, with their levels of eGFR at 84.8 ± 73.0 mL/min/1.73

m2 and proteinuria at 2.1 ± 1.9 g/day. Based on the Oxford

Classification of IgAN lesions, 90.9% patients had mesangial

proliferation (M1), 76.6% patients had segmental sclerosis (S1)
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lesions, 39% patients had interstitial fibrosis/tubular atrophy (T1/

T2) lesions, and 39% patients had glomerular crescents (C).

Serological measurements of plasma GdIgA1, plasma

autoantibodies against GdIgA1, and plasma poly-IgA1 complexes

were also performed. As expected, the IgAN group had significantly

higher levels of GdIgA1, GdIgA1/IgA1, and poly-IgA1 complexes

than the control groups (4.89 ± 0.27 mg/mL vs. 1.97 ± 0.2 mg/mL,

1.38 ± 0.09 mg/mg vs. 0.89 ± 0.09 mg/mg, and 39.3 ± 5.3 vs. 12.6 ±

2.1 U/mL, respectively; p < 0.05; Figures 1A–C). In contrast, the

titers of anti-GdIgA1 IgG autoantibodies were comparable between

IgAN and controls (Figure 1D). Overall, there were positive

correlations between plasma GdIgA1 and total IgA1 (r = 0.61, p <

0.001; Figure 1E) and between plasma GdIgA1 and poly-IgA1

complexes (r = 0.38, p < 0.001; Figure 1F), supporting the notion

of GdIgA1 being pathogenic and prone to aggregation (30).
16S rRNA gene sequencing of fecal
collections identified gut microbial genera
associated with IgAN

By performing 16S rRNA gene sequencing, we compared the fecal

microbiota of patients with IgAN versus household-matched or non-
Frontiers in Immunology 04
related HCs. Alpha diversity analyses of Sob, Chao1, Abundance-based

Coverage Estimator (ACE), Shannon, Simpson, and rank abundance

all showed evenness among the groups (Supplementary Figures S1A–

F), suggesting that, at the phylum and the genus levels, there were no

major dysbiosis of gut microbiota in IgAN. At the genus level, patients

with IgAN had 63 unique genera that were largely absent in household-

matched and non-related healthy volunteers (Supplementary Figure

S1G). The compositions of the genera are shown in Supplementary

Figure S1H. The main genera such as Bacteroides, Faecalibacterium,

Parabactrium,Megamonas, Prevotella_9, Escherichia-Shigella, Dialster,

Lachnoclostridium, and phascolarctobacterium were identified in all

three groups (further details in Supplementary Table S1).

By performing beta diversity analysis of Jaccard distance with

Welch’s t-test, we detected an imbalance in the microbiome in the

IgAN group as compared to the HCs (p < 0.001). These differences

were evident in the principal coordinate analysis (PCoA) using

unweighted unifrac distances in the OTU level (Figure 2A). The

relative abundance of selected genera across the three groups is

depicted by heat maps (Figure 2B), in which the IgAN group shows

a significant enrichment of Escherichia-Shigella, Bacteroides, and

Alistipes. Meanwhile, the abundance of Faecalibacterium,

Prevotella_9, and Lachnoclostridium genera was lower in the

IgAN group (Figure 2B; Supplementary Table S1). Importantly,

similar differences of the genera were also evident when we

individually compared IgAN subjects with their household-

matched family members (Supplementary Figure S2A), suggesting

that the observed enrichments of these genera in IgAN could

possibly link to the disease.
Enrichment of Escherichia-Shigella as an
indicator genus in IgAN

Further analysis of the results using receiver operating

characteristic curve (ROC) showed that Escherichia-Shigella had

the highest area under curve (AUC) value of 0.837 (95% CI, 0.738–

0.914; additional details in Supplementary Table S2) among all

identified genera in association with IgAN (Figure 2C). Escherichia-

Shigella also had the higher indicator value of 0.77 for IgAN as a

group versus 0.23 for HCs shown in the bubble chart (p = 0.002,

Figure 2D), supporting it having a high probability as an indicator

genus between groups. Again, when patients were individual

compared to their household-matched counterparts, Escherichia-

Shigella abundance was the best marker to distinguish the pairs

(Supplementary Figures S2B–E), further implicating the genus

being linked to IgAN. Additionally, we performed linear

discriminant analysis (LDA) by running the LEfSe algorithm to

compare patients with IgAN to HCs (Figure 3 and Supplementary

Table S3; threshold of LDA score of >3, p < 0.05). The results also

showed high abundance of Escherichia-Shigella associated with

IgAN (LDA score: 4.56, p < 0.001; Supplementary Figure S3), in

contrast to the enrichment of Prevotellaceae, Megasphaera, and

Prevotella_9 in controls (Figure 3; Supplementary Figure S3;

Supplementary Table S3). Once more, individually paired analysis

of IgAN versus their corresponding household controls in LEfSe

also identified Escherichia-Shigella as one of the best indicators for
TABLE 1 Baseline characteristics of included patients with IgAN and
healthy controls.

Baseline
characteristics

IgAN
(n = 77)

Non-
related
healthy
controls
(n = 47)

Household-
matched
healthy
controls
(n = 22)

Age (years old) 35.4
± 11.8

33.5 ± 10.9 34.6 ± 8.2

Sex (male %) 57.10% 54.35% 53.62%

SBP (mmHg) 130 ± 20 120 ± 14 122 ± 16

DBP (mmHg) 88 ± 14 76 ± 11 79 ± 10

Serum albumin (g/L) 35.5 ± 8.5 38.5 ± 3.8 37.7 ± 4.3

Serum creatinine
(mmol/L)

107.7
± 73.1

68.5 ± 21.1 72.2 ± 25.3

eGFR (mL/1.73m2) 84.8
± 73.0

119.8 ± 22 109.8 ± 25

Hemoglobin (g/L) 135 ± 26 138 ± 23 136 ± 27

Total urinary protein
(g/day)

2.1 ± 1.9 ─ ─

CKD stage 3–5 (%) 29.9 ─ ─

M1 (%) 90.9 ─ ─

E1 (%) 18.2 ─ ─

S1 (%) 76.6 ─ ─

T1/2 (%) 39 ─ ─

C1/2 (%) 39 ─ ─
SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular
filtration rate; CKD, chronic kidney disease; M, mesangial proliferation; S, segmental sclerosis
lesions; T, interstitial fibrosis/tubular atrophy; C, glomerular crescents.
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the disease (Supplementary Figure S4; Supplementary Table S4).

Collectively, these results supported fecal Escherichia-Shigella as a

marker in differentiating patients with IgAN from HCs, which

prompted us to examine its antigenicity.
Escherichia-Shigella correlated with high
plasma GdIgA1 levels, and patients with
IgAN developed antibodies against
Escherichia-Shigella antigen stx2

We sought to investigate whether gut mucosal–derived plasma B

cells (11, 13) produce GdIgA1 in response to Escherichia-Shigella.

Firstly, we compared plasma GdIgA1 levels to the relative abundance

of selected fecal microbiotas. High abundance of Escherichia-Shigella,

Hungatella, Ruminococcus gnavus, and Ruminococcus torques

generally correlated with high GdIgA1 levels as seen in patients

with IgAN (p < 0.05, Figure 4A), with Escherichia-Shigella ranked the

highest (r = 0.36, p < 0.001). Meanwhile, the abundance of

Magosphaera and Prevotella_9, Alloprevotella, Butyricicoccus,

Succiniclasticum, and Lachnospiraceae_ND3007_group inversely

correlated with plasma GdIgA1 levels. To test whether Escherichia-

Shigella could directly elicit antibody responses, we coated plates with

the main antigen of Escherichia-Shigella, stx2, for detecting

antimicrobial antibodies in the hosts, particularly those of the IgA1

type. Interestingly, anti-stx2 IgA1 is more frequently detected in

patients with IgAN than in HCs (2.88 ± 0.46 IU/mL vs. 1.34 ± 0.35

IU/mL, p = 0.03; Figure 4B). Furthermore, functional evaluation of

gut microbial by Tax4fun in conjunction with Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses of level 3 predicted
Frontiers in Immunology 05
that higher proportions of infections by Escherichia coli and Shigella

are strongly associated with the IgAN group than with the controls

(Figure 4C; p = 0.003 for IgAN vs. HC and p < 0.001 for IgAN vs.

HM-HC; Supplementary Figure S5), whereas the Salmonella

infection rate was comparable among the groups. Collectively, the

16S rRNA data suggest a potentially causal relationship between IgA1

responses to gut Escherichia-Shigella and the development of IgAN.
IgAN is associated with the suppression of
intestinal flora that produce IgA-
degrading proteases

In addition to focusing on IgA1-stimulating bacterial activities,

we also studied the gut microbiome that expresses IgA-specific

bacterial proteases [referred to as IgA-P (31)]. We speculated that

their collective activities in the intestine contribute to the natural

catabolism of IgA, which may ultimately affect total IgA levels in

circulation. Previously, we and others studied a commensal strain of

Clostridium ramosum on its IgA-P known as AK183 (32). By

extensively searching for AK183-like bacterial proteases based on

sequence similarities, using an open-source database (33) (https://

www.ebi.ac.uk/merops/), we enlisted >100 proteases that are

generally known as M64-type peptidases (Supplementary Figure

S6). Among those that the host species are traceable, we discovered

that a majority of these species reside in the human intestinal and,

therefore, likely constitute the microbial flora (shown as highlighted

in Supplementary Figure S6). Notably, many of the host species

with IgA M64 peptidases belong to Clostridium senus including

Eubacterium ventriosum, Coprobacillus sp., Roseburia intestinalis,
B C

D E F

A

FIGURE 1

Levels of plasma galactose-deficient IgA1 (GdIgA1), anti-glycan antibodies, and poly-IgA1 complexes in patients of IgA nephropathy and healthy
controls. Patients with IgAN had significantly higher levels of plasma GdIgA1 (A), GdIgA1/IgA1 (B), and poly-IgA1 (C) than healthy participants. Levels
of plasma autoantibodies against GdIgA1 were comparable between the two groups (D). Plasma IgA1 and poly-IgA1 levels were positively correlated
with circulating GdIgA1 levels (r = 0.61, p < 0.001 for plasma IgA1 and GdgA1 and r = 0.38, p < 0.001 for poly-IgA1 and GdIgA1, respectively, E, F).
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Lachnospiraceae, and Eubacterium eligens, among others

(Supplementary Figure S6). Other intestinal microbiota with

potential IgA-Ps activity belong to the genus of Prevotella spp. or

Alloprevotella genera (Supplementary Table S5). To investigate

their potential contribution in catabolizing IgA in the gastric

intestinal tract to ultimately lower the overall IgA load in

circulation, we compared the relative levels of Prevotella spp. and

Alloprevotella in IgAN to HC by 16S rRNA gene sequencing.

Although not all species of gut Prevotella spp. and Alloprevotella

are IgA-P–producing bacteria, the Prevoltella spp. and

Alloprevotella genera had significantly lower abundance in the

IgAN group than that in HCs (Figures 5A, B). In addition,

Prevoltella spp. and Alloprevotella abundances were both

inversely correlated with plasma GdIgA1 levels (Figure 4A),

suggesting their role in catabolizing IgA through M64 IgA-P

activities. In keeping with our hypothesis that IgA catabolism

through collective activities of IgA-Ps may contribute to lowering
Frontiers in Immunology 06
the overall IgA load, we discovered a general trend of reduced

carriage of commensal clostridium bacteria with IgA-P activities,

such as Lachnospiraceae_UCG 004, Clostridium_sensu,

Eubacterium eligens, Eubacterium Coprostanoligenes, and

Roseburia in patients with IgAN as compared to the HCs

(Figures 5C–G), with the only exception of poorly detected

Eubacterium ventriosum species (Figure 5H).
Discussion

IgAN is a complex disease caused by the aberrant production of

GdIgA1 as the main source of immunodeposits. Clinical evidence

points to a connection between mucosal hyperimmunoreactivity

and the kidney that had led to the concept of “gut-kidney” axis in

IgAN (12, 34). As the mucosal lymphoid synthesizes the bulk of IgA

in the body, studies have focused on the gut microbiota for their
B

C

D

A

FIGURE 2

Principal coordinate analysis (PCoA), heat map of genera abundances, ROC curve, and indicator analysis of the genera. PCoA analysis and heat map
based on the composition of the genera showed substantially different distributions in the IgAN group as compared to the control groups (A, B). The
IgAN group had higher relative abundance of Escherichia-Shigella than the healthy control groups. ROC analysis demonstrated that Escherichia-
Shigella had the best AUC value among all genera to differentiate patients with IgAN from healthy controls (C). Patients with IgAN also had
significantly higher indicator values as calculated based on abundance and frequency of Escherichia-Shigella than healthy control participants (0.77
vs. 0.22, p = 0.002). Other genera such as Bacteroides, Prevotella_9, and Subdoligranulum with significantly different indicator values between
groups could also be considered in the group’s discrimination (D). HM-HC, household-matched healthy control; HC, healthy control;
IgAN, IgA nephropathy.
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roles in stimulating antibody responses (35). We followed a 16S

rRNA gene sequencing approach to characterize the fecal

composition of the microbiome among patients with IgAN as

compared to HCs. We were interested in identifying key bacterial

taxa that are enriched in disease for inciting antigenicity.

Meanwhile, previous studies indicated retrotranscytosis, or
Frontiers in Immunology 07
spillover, of mucosal IgA across human epithelium (36) involved

in the pathogenesis of IgAN (14, 15). Our 16S rRNA results

discovered the Escherichia-Shigel la genera for being

overpopulated in the gut, and a high level of IgA1 antibody

response to their main bacterial antigen stx2 was elevated among

patients with IgAN. These results are consistent with the
FIGURE 3

Characterization of gut microbiota differences between patients with IgAN and healthy controls by using LEfSe analysis and LAD. Linear discriminant
analysis (LDA) and effect size (LEfSe) analysis for high-dimensional biomarker discovery and explanation were conducted. Significantly enriched
bacterial taxa were identified in patients with IgAN (bule) with threshold of >3.0. Among them, Enterobacteriaceae, Enterobacteriales, and
Escherichia-Shigella with higher LDA values were highly enriched in IgAN, HM-HC, and HC. HM-HC, household-matched healthy control;
HC, healthy control; IgAN, IgA nephropathy.
B

C

A

FIGURE 4

Exposure of gut Escherichia-Shigella was associated with the levels of circulating GdIgA1 and plasma IgA1 specific against the bacteria was detected
in IgAN. A variety of gut bacteria correlated with high plasma GdIgA1 levels in patients with IgAN (p < 0.05) (A). At the top of the list, Escherichia-
Shigella correlated strongly with plasma GdIgA1 levels (r = 0.36, p < 0.001). In contrast, Prevotella_9 Alloprevotella, Butyricicoccus, and
Lachnospiraceae_ND3007_group were negatively correlated with plasma GdIgA1 levels. Patients with IgAN had elevated plasma IgA1 against the
stx2 antigen of Escherichia-Shigella (B). (C) Tax4fun functional analysis and KEGG pathway analysis of level 3 predicted higher proportions of
pathogenic Escherichia-coli infection in the IgAN group than in the healthy controls (p = 0.003 for IgAN vs. HC and p < 0.001 for IgAN vs. HM-HC).
HM-HC, household-matched healthy control; HC, healthy control; IgAN, IgA nephropathy; stx2, Shiga toxin 2. * means p<0.05 when compared to
the other groups, respectively.
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observation of high circulating GdIgA1 levels being positively

correlated with the abundance of Escherichia-Shigella (37). In

addition to focusing on antigenic bacteria in the gut, we also

characterized microflora that naturally express IgA-degrading

proteases (IgA-P). To this end, we analyzed taxa with subgroups

of gut bacteria known to express the M64 class of IgA proteases.

Earlier work of our own (32) and information from Merops

Database on peptidase classification (33) collectively showed M64

proteases being expressed by commensal bacteria. We recognized

Clostridium and Prevoltella genera that express M64 have lower

representations in the IgAN group than the healthy group.

Therefore, it is plausible that dysbiosis that shifts the balance

between IgA-stimulating Escherichia-Shigella and IgA-degrading

bacteria such as Prevoltella may ultimately lead to high GdIgA1

levels in circulation as seen in IgAN.

Circulating GdIgA1 and its polymerization play a crucial role in

the pathogenesis of IgAN (38). As the clinical onset of gross

hematuria or an episode of heavy proteinuria in patients is often

preceded with a mucosal infection, it is suggested that mucosal

immunity may have a causal role in some cases of IgAN (7). By

tracing the clonal plasma B-cell lineage, a strong relatedness

between mucosal and systemic plasma cell pool was discovered,

which is consistent with the notion of mucosal priming of IgA-

producing plasma cells (39–41). This concept is further supported

by the discoveries of susceptibility genes that regulate gut-associated
Frontiers in Immunology 08
lymphoid tissue (GALT) functions against gut pathogens (9, 10, 42).

Accordingly, new synthetic corticosteroid Nefecon specifically

formulated to suppress GALT immunity has shown renal

protection in IgAN with reduced systemic toxicity (8). Our own

study here is focused on the imbalance of gut microbiota taxa. One

of our discoveries is the correlation between the abundance of

Escherichia-Shigella genera and the individuals’ overall plasma

GdIgA1 levels and the detection of anti–Escherichia-Shigella IgA

antibodies in circulation. In this regard, our results provided new

supporting evidence for the causal role of the gut-kidney axis in

IgAN (Supplementary Figure S7).

We should also note that prior to our study, there have been

several publications on fecal expansion of Escherichia-Shigella in

IgAN (19, 43–47), but none of those studies particularly addressed

the association of Escherichia-Shigella with GdIgA1 production or

anti–Escherichia-Shigella antibodies in IgAN. As when we were

preparing the manuscript, a new publication that followed a similar

16S rRNA approach had reached a similar conclusion on

Escherichia-Shigella in association with IgAN (37). This study by

Zhao et al. also addressed the prospective aspect of the gut microbiota

in patients undergoing immunosuppressive therapy, showing

changes in Escherichia-Shigella abundance in patients who entered

posttreatment remission (37). Our study here additionally addressed

the association of Escherichia-Shigella with GdIgA1, including the

detection of IgA1-type anti–Escherichia-Shigella antibodies in IgAN.
frontiersin.or
B C D

E F G H

A

FIGURE 5

Patients with IgAN had low abundance of intestinal commensal flora that express the M64-class IgA proteases. Prevotalla_9, Alloprevotalla, and
Lachnospiraceae_UCG 004 were with significantly lower abundance in IgAN than in healthy control (HC) (A–C). Other bacteria, including
Clostridium_sensu, Eubacterium eligens, Eubacterium Coprostanoligenes, and Roseburia, that have genes encoding M64-class IgA proteases had
lower abundances in IgAN than in healthy controls (D–G), with the only exception of Eubacterium ventriosum (H). Data were described as mean ±
standard deviation in each group. IgAN, IgA nephropathy; HC, healthy control. *** p<0.001, **p<0.01, *P<0.05.
g
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Furthermore, to control the confounding factors due to dietary habits

and living environment, our study also enrolled paired healthy family

members. We found that patients with IgAN had a higher overall

level of anti-stx2 IgA1 than HCs, whereas there was still considerable

overlap between groups. This might be because of the short

circulating half-time of IgA1. Further studies are needed to explore

the mechanism in detail.

Admittedly, our study has some limitations. Lacking animal

experiment, we could not prove robust causal relationship of gut

Escherichia-Shigella and IgAN. Furthermore, 16S rRNA signatures

revealed genus level taxa of the gut microbiota, missing out some

species-level classifications. Therefore, our analyses do not have the

resolution to pinpoint the bacterial species that are truly responsible

for inciting the mucosal GdIgA1 response or catabolizing IgA in

preventing them from reentering circulation via retrograde

transportation. For instance, although we took a broad approach

to categorize the M64 class of IgA-P and have the individual IgA-Ps

assigned to the corresponding bacterial species, it is clear to us that

the evolution of M64 IgA-Ps did not strictly follow divergent

selection. Instead, some bacteria may have either gained the gene

by horizontal gene transfer from distantly related bacterial species

or lost the protease gene in members of closely related species.

Therefore, future animal studies should focus on more detailed

classification of the gut microbiota at species, or even subspecies,

level involvement in the IgAN pathogenesis. With regard to the

IgA-Ps, classification should be based on primer sets that can

distinguish M64 IgA-P sequences, as opposed to only broadly

characterizing the genera based on 16S rRNA signatures.

In conclusion, our study, for the first time, demonstrated that

Escherichia-Shigella exposure could possibly augment GdIgA1

production. Meanwhile, commensal bacteria of the Prevoltella

genus and Clostridium genus that express M64-type of IgA

proteases might participate in the natural catabolism of secreted

IgA, leading to the overall reduction of GdIgA1 levels. Thus, our

findings provide new perspective on the interplays among gut

microbiome, mucosal infections, and mucosal immune responses

during the onset and the progression of IgAN.
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