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insights from multi-
omics analysis
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Background: Hepatocellular carcinoma (HCC) poses a significant health burden

globally, with high mortality rates despite various treatment options.

Immunotherapy, particularly immune-checkpoint inhibitors (ICIs), has shown

promise, but resistance and metastasis remain major challenges. Understanding

the intricacies of the tumor microenvironment (TME) is imperative for optimizing

HCC management strategies and enhancing patient prognosis.

Methods: This study employed a comprehensive approach integrating multi-omics

approaches, including single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing

(Bulk RNA-seq), and validation in clinical samples using spatial transcriptomics (ST) and

multiplex immunohistochemistry (mIHC). The analysis aimed to identify key factors

influencing the immunosuppressive microenvironment associated with HCC

metastasis and immunotherapy resistance.

Results: HMGB2 is significantly upregulated in HCCTrans, a transitional subgroup

associated with aggressive metastasis. Furthermore, HMGB2 expression positively

correlates with an immunosuppressive microenvironment, particularly evident in

exhausted T cells. Notably, HMGB2 expression correlated positively with

immunosuppressive markers and poor prognosis in HCC patients across multiple

cohorts. ST combined with mIHC validated the spatial expression patterns of

HMGB2 within the TME, providing additional evidence of its role in HCC

progression and immune evasion.

Conclusion:HMGB2 emerges as a critical player of HCC progression, metastasis,

and immunosuppression. Its elevated expression correlates with aggressive

tumor behavior and poor patient outcomes, suggesting its potential as both a

therapeutic target and a prognostic indicator in HCC management.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) stands as one of the most

prevalent malignancies globally and represents a significant

contributor to cancer-related mortality rates worldwide (1). The

advent of immune checkpoint inhibitor (ICI)-based therapies has

revolutionized the treatment landscape for HCC, offering promising

prospects for patients across disease stages (2–4). Despite

advancements in surgery, chemoradiotherapy, and immunotherapy,

the management of HCC remains challenging due to its propensity

for recurrence, therapy resistance, and metastasis (5, 6). Therefore,

there is an urgent need to unravel the underlying mechanisms driving

HCC progression and therapeutic resistance, in order to develop

more effective treatment strategies and improve patient outcomes.

Characterized by considerable heterogeneity, the tumor

microenvironment (TME) plays a pivotal role in HCC progression

(7, 8). Comprising diverse cellular constituents including immune

cells, stromal cells, and tumor cells, the TME orchestrates complex

interactions that profoundly influence tumor growth, immune

evasion, and therapy resistance (9, 10). Within this milieu,

interactions between T cells and various cell types give rise to

dynamic immunosupportive or immunosuppressive conditions,

profoundly influencing tumor progression (11). In the context of

cancer and chronic infection, CD8+ T cells may undergo exhaustion

or dysfunction, marked by the upregulation of immune checkpoints

like PD-1(PDCD1), CTLA4, LAG3, TIGIT, and TIM3(HAVCR2),

impairing their anti-tumoral function (12, 13). This state of T cell

exhaustion presents a significant challenge in cancer immunotherapy,

as it is associated with reduced efficacy of ICIs and adoptive T

cell therapies (2). Therefore, understanding the intricacies of the

TME is imperative for tailoring targeted therapies to individual

patients, thereby improving prognosis and treatment outcomes in

HCC management.

The advent of single-cell RNA sequencing (scRNA-seq) analysis

has revolutionized the understanding of the TME. With the ability

to dissect cellular heterogeneity at single cell resolution, scRNA-seq

has become a cornerstone in cancer research (14). The comprehensive

mapping of TME components in HCC is continuously evolving,

encompassing T cells (15), neutrophils (16), NK cells (17), as well as

various potentially significant subsets and driver genes previously

undiscovered, such as the function and clinical relevance of

exhausted CD8+ T cells and SPP1+ tumor-associated macrophages

within the TME (13). Moreover, the spatial transcriptomics (ST) has

further enriched the comprehension of the TME by providing crucial

spatial context to molecular analyses (18). For instance, recent

findings have unveiled the spatial organization of the tumor

immune barrier in HCC, which obstructs immunotherapy efficacy

by hindering immune cell infiltration into malignant regions,

highlighting the intricate interplay between spatial architecture and

immunotherapeutic responses in the TME (19). These cutting-edge

technologies empower researchers to investigate the TME with

unprecedented depth and precision, leveraging algorithm-driven

computational analyses and data-driven insights, these

methodologies facilitate the exploration of tumor heterogeneity

and the elucidation of intricate molecular networks underlying

tumorigenesis and therapeutic resistance.
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High-mobility group box 2 (HMGB2) is a member of the

high-mobility group box family of proteins, which are highly

conserved nuclear proteins involved in various cellular processes,

including DNA repair, transcriptional regulation, and chromatin

remodeling (20). In HCC, HMGB2 has been associated with

poor prognosis and aggressive tumor behavior by altered cell

proliferation through antiapoptotic pathways (21). However, its role

in the immunosuppressive microenvironment of HCC remains

largely unexplored.

In this study, we utilized multi-omics approaches encompassing

scRNA-seq, Bulk RNA-seq, ST, and validation in clinical sample using

multiplex immunohistochemistry (mIHC). Our principal aim is to

elucidate the pivotal factors contributing to the immunosuppressive

microenvironment associated with HCC metastasis and resistance to

immunotherapy. By doing so, our study endeavors to pave the way for

personalized treatment strategies customized to individual patients,

thereby optimizing treatment effectiveness and improving overall

patient outcomes in HCC.
2 Materials and methods

2.1 Patient sample collection and
ethical statement

HCC tissue samples were obtained from patients undergoing

surgical resection at Shanghai East Hospital. Tumor specimens were

preserved by Paraformaldehyde fixation and paraffin embedding for

subsequent analysis.

This study adhered to ethical guidelines as stipulated in the

Declaration of Helsinki. Approval (No. 202308) was obtained

from the Ethics Committee of Shanghai East Hospital. Informed

consent was secured from all participants for the use of their

tissue samples in research. Patient confidentiality was strictly

maintained through anonymization of data and restricted

access protocols.
2.2 Data acquisition

scRNA-seq analysis was conducted using data obtained from

the GSE149614 dataset (22) within the Gene Expression Omnibus

(GEO) database. Bulk RNA-seq analysis encompassed diverse

datasets, including the TCGA-LIHC cohort (23) from The Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/projects/

TCGA-LIHC) and the ICGC-LIRI cohort from the International

Cancer Genome Consortium (ICGC) (https://dcc.icgc.org/projects/

LIRI-JP). Additional datasets sourced from the GEO database,

including GSE144269 (24), GSE109211 (25),GSE104580(https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104580),

GSE14520 (26), and GSE54236 (27), were also incorporated.

Integration of single-cell and spatial transcriptome analysis was

facilitated by data from the GSE224411 dataset (28) within the GEO

database. Immunohistochemical verification of related protein

expression was obtained from the Human Protein Atlas (HPA)

database (https://www.proteinatlas.org/).
frontiersin.org

https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://dcc.icgc.org/projects/LIRI-JP
https://dcc.icgc.org/projects/LIRI-JP
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104580
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104580
https://www.proteinatlas.org/
https://doi.org/10.3389/fimmu.2024.1415435
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1415435
2.3 Processing of scRNA-seq data

2.3.1 Data preprocessing
The scRNA-seq data from the GSE149614 dataset

encompassed 21 samples obtained from 10 HCC patients,

including 10 primary tumors (PT), 8 non-tumor livers (NTL), 2

portal vein tumor thrombus (PVTT), and 1 metastatic lymph node

(MLN). Initial data processing was conducted using the R package

“Seurat” (29). Quality control were rigorously applied to exclude

cells with gene expression levels outside the range of 500 to 8000, as

well as those exhibiting mitochondrial gene expression exceeding

15%. Subsequently, gene expression values underwent

normalization using the SCTransform method, followed by

dimensionality reduction via principal component analysis

(PCA). Inter-sample batch effects were corrected using the

“Harmony” package (30). Clustering analysis was performed

utilizing the FindNeighbors and FindClusters functions in Seurat.

The results were visual ized using Uniform Manifold

Approximation and Projection (UMAP). Subclusters annotation

was conducted using a combination of manual annotation based

on recognized markers and automatic annotation using the

“singleR” (31) and “sctype” (32) packages to ensure unbiased cell

annotation. This process of dimensionality reduction, clustering,

and subclusters annotation was consistently applied across

epithelial/tumor cells, and NK/T cell subclusters. Additionally,

the “copykat” package facilitated the inference of cell copy

number variations (33), specifically focusing on distinguishing

between non-malignant and malignant epithelial cells.
2.3.2 Pseudotime trajectory analysis
Themonocle 2 analysis (34) was utilized to explore the pseudotime

trajectories between malignant and non-malignant epithelial

subclusters, as well as between different CD8+ T cell subclusters. The

“plot_cell_trajectory” and “plot_genes_in_pseudotime” functions were

employed to visualize cell state trajectories and pseudotime processes,

enabling the analysis of evolutionary dynamics. Following the

identification of key branches, the results were visualized using the

“plot_genes_branched_heatmap” function.

To elucidate the dynamic status and internal relationships

among different subclusters of HCC cells, other three trajectory

inference methods were employed. The VECTOR method,

employing “quantile polarization” based on principal-

component values, inferred cellular developmental trajectories

(35). This analysis utilized the first 50 PCs, with default settings

for other parameters, and results were visualized using UMAP

plots with vector arrows indicating trajectory development

directions. Additionally, the Slingshot method (36), based on

dimensionality reduction and Gaussian mixture modeling

generated by PCA, was utilized to infer evolutionary trajectories

between different states of cells. Furthermore, CytoTRACE was

employed to quantify the stemness and differentiation potential of

computational cell subpopulations (37), facilitating the assessment

of cellular states in terms of their relative stemness, thereby

providing additional insights into the cellular hierarchy and

developmental trajectories.
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2.3.3 Gene enrichment analysis
In the analysis of HCC cell subclusters, two complementary

approaches were employed for gene enrichment analysis. Gene

Ontology (GO) enrichment analysis was performed based on

differentially expressed genes (DEGs) between subclusters using the

“scRNAtoolVis” package (https://github.com/junjunlab/scRNAtoolVis).

Including visualization of volcano plots of DEGs and heatmaps of

marker genes and the top five most significant GO enrichment

entries among HCC subpopulations were identified. Additionally,

differences in cellular metabolic processes between subpopulations

were analyzed and visualized using the scMetabolism package (38).

For the functional analysis of NK/T cells, the “AddModuleScore”

function in Seurat was utilized. Specifically, acknowledged gene sets

were used to compute cytotoxic scores for each cell (14, 39), including

IFNG, GZMA, GZMB, GZMH, GZMK, GZMM, GNLY, PRF1,

KLRC1, KLRB1, NKG7, KLRK1, KLRD1, FASLG, TNF, IL2, and

LAMP1. Exhaustion scores were similarly computed using genes

including PDCD1, CXCL13, TIGIT, CTLA4, HAVCR2, ICOS,

CD274, LAYN, ENTPD1, BATF, TNFRSF9, TOX, LAG3, and

ITGAE (40, 41). These scores were then integrated into

visualizations in UMAP diagrams and violin plots.

2.3.4 Cell communication analysis
To elucidate the cellular interactions between the HCC cells and

T cells, we utilized the “CellChat” R package, which infers

intercellular communication networks based on ligand-receptor

interactions (42). Normalized gene expression data were used to

identify potential ligand-receptor pairs across different cell types.

The “CellChat” algorithm was employed to infer communication

probabilities between cell types, identifying significant ligand-

receptor interactions. Communication networks were visualized

using circle plots, bubble plots, hierarchy plots, or heatmaps to

depict the strength and frequency of interactions between HCC

subpopulations and T cell subpopulations.
2.4 Processing of bulk RNA-seq data

All Bulk RNA-seq analyses were conducted using the BEST

platform (43), a web application designed for comprehensive

biomarker exploration in solid tumors on large-scale datasets.

2.4.1 Prognostic analysis
The relationship between HMGB2 expression and HCC patient

prognosis was investigated through Kaplan-Meier survival analysis.

Patients were grouped based on the median expression level of

HMGB2 in three cohorts: TCGA-LIHC, GSE144269, and ICGC-

LIRI. Overall survival (OS), progression-free survival (PFS), disease-

free survival (DFS) and disease-specific survival (DSS) were

evaluated in the TCGA-LIHC cohort, while OS was assessed in

the GSE144269 and ICGC-LIRI cohorts.

2.4.2 Gene differential expression analysis
Differences in HMGB2 expression among patient samples of

varying grades were compared in TCGA-LIHC using the Kruskal-
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Wallis test. HMGB2 expression was also compared between the

responsive and non-responsive groups to sorafenib treatment in

GSE109211, and between the transarterial chemoembolization

(TACE) treatment responding and non-responding groups in

GSE104580. Additionally, HMGB2 expression in tumor tissues

versus normal tissues was examined in GSE144269, GSE14520,

GSE54236, and TCGA-LIHC cohorts. Pairwise comparisons

were conducted using the Wilcoxon test, with statistical

significance set at p < 0.05.

2.4.3 Gene set enrichment analysis
Gene set enrichment analysis based on GO terms was

conducted using the “Enrichment analysis” function of the BEST

platform. Initially, this tool calculated the correlation between the

HMGB2 gene and all other genes across all HCC cohorts available

on the platform. Subsequently, the average correlation coefficient

across all cohorts was computed and the correlation coefficients

were sorted in descending order. These correlation coefficients were

then inputted into the Gene Set Enrichment Analysis (GSEA)

algorithm (44), enabling unbiased enrichment analysis and

providing valuable insights into the functional significance of

HMGB2 across HCC cohorts.

2.4.4 Correlation analysis of HMGB2 and
immunosuppression gene expression

Correlation analysis was conducted to explore the relationship

between HMGB2 and six immunosuppression-related genes,

including PDCD1, CTLA4, HAVCR2, TIGIT, LAG3, and CD274

(PD-L1). The analysis was performed in both the TCGA-LIHC and

ICGC-LIRI cohorts. Expression levels of all genes were normalized

using the z-score method, Pearson correlation analysis was

employed. Statistical significance was determined using a

threshold of p < 0.05.
2.5 Processing of spatial
transcriptome data

The investigation into the TME of HCC relies on ST analysis

utilizing the GSE224411 dataset, which integrates both single-cell

and ST data. Initially, scRNA-seq data underwent quality control,

dimensionality reduction, clustering, and subcluster annotation, we

then discern epithelial cells and NK/T cells based on HMGB2

expression status. Subsequently, we integrate these stratified

subclusters with ST data using the FindTransferAnchors and

TransferData functions. To unravel the complex spatial dynamics,

we employ the “SPOTlight” package (45) for deconvolution

analysis, enabling the visualization of each subcluster’s spatial

distribution across the transcriptome landscape.
2.6 mIHC

Briefly, tissue slides underwent deparaffinization using xylene (2

times for 15 minutes each time), followed by rehydration through a

graded series of ethanol dilutions (100%, 95%, 85%, and 75%, 5
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minutes each). Antigen retrieval was performed using a microwave-

based method with antigen restoration solution (10 mM citrate

buffer, pH 6.0). To block endogenous peroxidase activity, slides

were treated with 3% H2O2 for 15 minutes. Subsequently,

nonspecific binding was minimized by incubating the sections in

10% normal goat serum (ZSGB-Bio, ZLI-9022) for 30 minutes.

Primary antibodies against HMGB2 (1:200, Abclonal, A9168),

GPC3 (1:100, Abclonal, A12383), CD8 (1:200, Abcam, ab237709),

and PD-1 (1:200, Proteintech, 66220-1-Ig) were applied and

incubated overnight at 4°C. Following primary antibody

incubation, sections were incubated with the corresponding

secondary antibodies. Signal amplification was achieved using a 4-

color IHC kit according to the manufacturer’s instructions (AiFang

Biological, AFIHC025). DAPI staining was employed to

counterstain nuclei for 20 minutes. Finally, the stained slides were

scanned using a digital scanner (3DHISTECH-Pannoramic MIDI,

3DHISTECH Ltd, Budapest).
3 Results

3.1 Summary of study design

As shown in Figure 1, through an integrated approach

encompassing multi-omics analyses, we discovered and validated

the pivotal role of HMGB2 in tumor metastasis and the

immunosuppressive microenvironment of HCC, highlighting its

potential as a therapeutic target and prognostic marker for

HCC management.
3.2 Identification of HMGB2 as a critical
factor in hepatocyte transformation
to HCC

Following quality control, batch removal, and standardization

operations, a total of 68,097 cells meeting the criteria were included

in subsequent analysis. The UMAP diagram depicted in Figure 2A

vividly illustrates the distinct cell subpopulations, while the bubble

chart in Figure 2B highlights differences in marker gene expression

across these subpopulations. Figure 2C illustrates the distribution of

subpopulations among the four clinical groups, providing further

insights into their heterogeneity across clinical contexts.

Subsequently, we conducted a comprehensive analysis of tumor/

epithelial cell subpopulations, delving into their characteristics in

greater depth. To delineate non-malignant and malignant epithelial

cells, we combined two discernment methods: cells exhibiting CNV

characteristics consistent with malignancy as determined by

copykat-based assessment (Figure 2D) and those identified as

HCC based on marker genes (Figure 2E) were classified as HCC

cells. Subsequent pseudotime trajectory analysis of HCC cells

delineated the progression process from hepatocytes to HCC cells

(Figure 2F). Notably, analysis of branch point 1 revealed HMGB2 as

an important influencing factor between different cell fates during

malignant transformation of hepatocytes, evidenced by significantly

differentially expressed genes (Figure 2G). Further examination
frontiersin.org
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indicated a substantial increase in HMGB2 expression in

hepatocytes transitioning into HCC cells (Figure 2H), with

significant differences observed in HMGB2 expression between

hepatocytes and HCC cells (Figure 2I). Immunohistochemistry

experiments based on the HPA database corroborated these

findings, reaffirming HMGB2’s potential as a crucial factor in

hepatocyte progression to HCC at the protein expression level

(Figures 2J, K).
3.3 Identification of HMGB2 as a key
contributor in HCC metastasis

We then proceeded to investigate the metastatic progression

of HCC. HCC cells from groups of PVTT and PT were subjected

to dimensional reduction and clustering, with each group

exhibiting unique clusters. Notably, subcluster 3 was found to

be shared between both groups, suggesting its pivotal role in the
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transformation process from primary tumor cells to those in the

portal vein tumor thrombus (Figure 3A). Consequently, we

categorized HCC into three subgroups: HCCPVTT, HCCPT, and

HCCTrans (Transition) (Figure 3B). Notably, HCCTrans exhibited

significantly higher HMGB2 expression compared to the other

two groups (Figures 3C, D). Trajectory analyses using VECTOR

(Figure 3E) and Slingshot (Figure 3F) demonstrated HCCTrans as

a critical transitional subgroup in the progression from HCCPT to

HCCPVTT. CytoTRACE-based quantification reaffirmed

HCCTrans as a crucial transitional state in HCC metastasis

(Figure 3G). Differential gene expression analysis revealed

HMGB2 as a significant marker gene in HCCTrans (Figure 3H).

Additionally, GO enrichment analysis highlighted distinct

functional signatures, with HCCPT enriched in immune

responses, including responses to chemokines, neutrophil

chemotaxis, and neutrophil migration, whereas HCCTrans was

predominantly associated with cell cycle and division processes,

including chromosome segregation and nuclear division
FIGURE 1

Graphical abstract of this study. Drawn and adapted by Figdraw (https://www.figdraw.com) and Smart Servier Medical Art (https://smart.servier.com/).
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(Figure 3I). Metabolic profiling revealed metabolic pathway

distinctions among the three HCC subgroups, with HCCPT

exhibiting the lowest metabolic pathway activity. Notably,

HCCTrans displayed the most active pyruvate metabolism,

citrate cycle, and pentose and glucuronate interconversions,

while HCCPVTT demonstrated the highest activity in glycolysis,

amino sugar, and nucleotide sugar metabolism (Figure 3J). These

findings elucidate the pivotal role of HMGB2 in orchestrating

HCC metastatic progression.
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3.4 Identification of HMGB2 as a key factor
in T cell exhaustion in HCC

We further characterized NK/T cell subpopulations through

dimensionality reduction and clustering, as illustrated in the UMAP

diagram in Figure 4A. Annotation into 8 distinct subpopulations was

achieved based on established marker genes (Figure 4B). Quantitative

analysis across clinical groups revealed a higher proportion of

exhausted T cells in metastatic lesions compared to primary lesions
FIGURE 2

HMGB2 is a crucial factor in hepatocyte transformation to HCC cells. (A) UMAP diagram illustrating the distribution of subpopulations of all included
cells. (B) Bubble chart depicting marker gene expression of each cell subpopulation. The darker the bubble color, the higher the expression level,
and the larger the bubble, the greater the proportion of cells expressing the gene. (C) UMAP diagram showing the distribution of cell subpopulations
of all cells among different clinical groups. (D) Left side: UMAP distribution map of cells with copykat judgment results. Right side: Heat map
depicting copykat judgment results for each cell. (E) Left side: UMAP distribution map of three epithelial cell subpopulations (HCC, hepatocyte,
cholangiocyte). Right side: Violin plot showing marker gene expression for each cell subpopulation. (F) Pseudotime trajectory diagram of the
transformation process from hepatocytes to HCC cells. (G) Clustered heatmap of gene expression patterns across different cell fates after branch
point 1. (H) Pseudotime expression of HMGB2 during hepatocyte transformation to HCC. (I) Violin plot illustrating the expression difference of
HMGB2 between the hepatocyte group and the HCC group. (J) Immunohistochemical image of HMGB2 expression in HCC patients from the HPA
database. (K) Immunohistochemical image of HMGB2 expression in normal liver tissue from the HPA database. Epi, epithelial cells; Endo, endothelial
cells; Fibro, fibroblasts; NK, natural killer cells; Mono/Mac, monocytes/macrophages. PT, primary tumors; NTL, non-tumor livers; PVTT, portal vein
tumor thrombus; MLN, metastatic lymph node.
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in terms of both absolute numbers and proportions (Figure 4C).

Further analysis demonstrated significantly higher cytotoxicity scores

in IFNG+ CD8+ T, GNLY+ CD8+ T, and GNLY+ NK

subpopulations (Figures 4D, E). Conversely, the exhausted T

subgroup exhibited the highest exhaustion score (Figures 4F, G).

Importantly, the exhausted T subgroup demonstrated the highest

expression of HMGB2 among all subgroups. (Figure 4H). Pseudotime

analysis of CD8+ T cells revealed the exhausted T subgroup to be

situated at the terminal end of the developmental trajectory

(Figure 4I), with HMGB2 expression increasing with pseudotime

progression (Figure 4J). Analysis at key branch point 4 further

underscored HMGB2 as a pivotal factor in the fate determination of

CD8+ T cells transitioning into exhausted T phenotype (Figure 4K).
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3.5 Cell-cell interaction in the HCC and
T cells

To elucidate the cellular interactions between HCC and T cell

subpopulations, we performed cell communication analysis

using CellChat. Figure 5A illustrates the number and strength of

the cell-cell interaction pathways among the eight identified cell types.

Figure 5B presents a bubble diagram of the specific signaling pathways

involved in these interactions. The hierarchical diagram in Figure 5C

demonstrates the SPP1 signaling pathway, with HCCPT, HCCTrans,

and exhausted CD8+ T acting as primary sources. The SPP1-CD44

pathway interaction involves all T cell subpopulations as targets. The

heatmap in Figure 5D shows that HCCPT is the most potent sender,
FIGURE 3

Role of HMGB2 in HCC Metastasis. (A) UMAP plot of HCC cells from PT and PVTT groups. (B) UMAP diagram illustrating the categorization of HCC
cells into three distinct subgroups. (C) Feature plot highlighting elevated HMGB2 expression in HCCTrans subgroups. (D) Violin plot demonstrating
differential HMGB2 expression across the three HCC subgroups. (E) Trajectory inference on the UMAP plot reconstructed by VECTOR. (F) Trajectory
inference on the UMAP plot using slingshot. (G) Boxplot illustrating the predicted ordering and CytoTRACE scores for the three HCC groups. (H)
Volcano plot illustrating HMGB2 as a significant marker gene in HCCTrans. (I) Heatmap displaying differential gene expression patterns among the
HCC subgroups, with different enrichment of GO biological processes among three subgroups. (J) Bubble chart demonstrating metabolic pathway
distinctions among HCC subgroups.
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while exhausted CD8+ T is a prominent mediator, sender, and

receiver, indicating complexinteractions that potentially contribute

to an immunosuppressive microenvironment.
3.6 Investigating the prognostic
implications of HMGB2 expression in HCC

Based on the HCC bulk RNA-seq data analysis in the BEST

platform, it was observed that in the TCGA-LIHC cohort, the

subgroup with high HMGB2 expression had poorer OS (Figure 6A),

PFS (Figure 6B), DFS (Figure 6C), and DSS (Figure 6D) than the
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low-expression group. Similarly, OS in the high HMGB2 group was

significantly worse in the GSE144269 cohort (Figure 6E) and

ICGC_LIRI cohort (Figure 6F). Furthermore, in the TCGA-LIHC

cohort, the expression of HMGB2 significantly increased with

tumor grade, suggesting a potential association with tumor

aggressiveness (Figure 6G). Additionally, HMGB2 expression was

markedly higher in non-responders to sorafenib treatment

compared to responders (Figure 6H), as well as in non-

responders to TACE treatment (Figure 6I). Moreover, HMGB2

expression was consistently elevated in tumor tissues compared to

normal tissues across multiple independent cohorts (Figures 6J–M).

GSEA revealed a positive correlation between HMGB2 expression
FIGURE 4

Role of HMGB2 in T cell exhaustion in HCC. (A) UMAP plot of NK/T cell subpopulations. (B) violin plot showing expression of recognized marker
genes for each NK/T cell subpopulation. (C) Bar chart comparing the absolute numbers and relative proportions of each NK/T cell subset in the four
clinical groups. (D) Feature plot of cytotoxic score on the UMAP diagram. (E) Violin plot displaying cytotoxic score in each NK/T cell subpopulation.
(F) Feature plot of exhaustion score on the UMAP diagram. (G) Violin plot displaying cytotoxic score in each NK/T cell subpopulation. (H) Violin plot
illustrating HMGB2 expression across NK/T cell subpopulations. (I) Pseudotime trajectory diagram of the transformation process of CD8+ T cells.
(J) Pseudotime expression of HMGB2 during transformation process of CD8+ T cells. (K) Clustered heatmap of gene expression patterns across
different cell fates after branch point 4.
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and critical biological processes such as cell cycle regulation, DNA

replication, and sister chromatid segregation (Figure 6N),

suggesting its potential involvement in tumor progression

and prognosis.
3.7 Correlation analysis of HMGB2 and
immunosuppressive genes in HCC

Correlation analysis was conducted to explore the relationship

between HMGB2 expression and various immunosuppressive

genes in HCC. Utilizing two bulk RNA-seq datasets, scatter

plots were generated to depict the expression correlation

between HMGB2 and six key immunosuppressive genes:

PDCD1, CTLA4, HAVCR2, TIGIT, LAG3, and CD274.

Figures 7A–L present the expression correlation scatter plots for

each gene in both the TCGA-LIHC and ICGC-LIRI cohorts.

Remarkably, all scatter plots demonstrated a significant positive

correlation between HMGB2 expression and the expression of the

immunosuppressive genes across both cohorts. These findings

suggest a potential role for HMGB2 in contributing to the

immunosuppressive microenvironment in HCC.
3.8 Role of HMGB2 in the
immunosuppressive microenvironment
of HCC

We then elucidate the intricate interplay between HMGB2 and

the immunosuppressive microenvironment characterizing HCC
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leveraging ST analysis and mIHC techniques. Figure 8A presents

a bubble plot illustrating the expression of recognized marker genes

across cell subpopulations derived from scRNA-seq data in the ST

dataset. Figure 8B depicts the ST atlas of the sample under study. ST

analysis reveals the distribution of HMGB2+ epithelial cells, as

depicted in Figure 8C. Additionally, Figure 8D showcases the spatial

deconvolution map of HMGB2+ NK/T cells, demonstrating their

spatial organization within the TME. Remarkably, HMGB2+

epithelial cells and HMGB2+ NK/T cells exhibit spatial co-

localization. Further spatial mapping in Figures 8E–H delineates

the distribution of monocytes/macrophages, HMGB2- epithelial

cells, HMGB2- NK/T cells, and endothelial/fibroblast cells within

the HCC microenvironment. Finally, the mIHC results, depicted in

Figures 8I–K, provide additional insights into the spatial co-

expression patterns of HMGB2, GPC3, CD8, and PD-1 within the

TME, specifically, GPC3 staining highlighted the distribution of

HCC cells, while CD8 and PD-1 staining co-localized with

exhausted T cells. Figure 8I illustrates the comprehensive spatial

distribution of these markers in the TME of HCC. As shown in

Figure 8J, a partial enlargement of the image reveals the spatial co-

expression of HMGB2 in specific HCC cells and T cell subsets.

Notably, Figure 8K presents a faceted image showcasing the four

indicators, providing detailed visualization of their expression

patterns. Remarkably, the mIHC results underscore the presence

of PD-1+ CD8 T cells infiltrating into HMGB2+ HCC cells, while

concurrently expressing HMGB2 themselves. This reciprocal

expression pattern elucidates the complex interplay between HCC

cells and infiltrating T cells, shedding light on the dynamic nature of

HMGB2-mediated immune modulation in HCC progression

and immunosuppression.
FIGURE 5

Cell-cell interaction analysis in HCC and T cells. (A) The number and strength of interaction pathways among eight cell types. (B) Bubble plot
showing specific pathways of the eight cell-cell interactions. (C) Hierarchical plot showing the inferred intercellular communication network for SPP1
signaling, indicating the sources and targets among HCC and T cell subpopulations. (D) Heatmap depicting the SPP1 signaling pathways to evaluate
each cell type’s involvement in cell interaction, showing the relative importance of each cell type as sender, receiver, mediator, and influencer based
on the SPP1 signaling.
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4 Discussion

HCC exhibits significant heterogeneity, influencing its

aggressiveness, metastatic propensity, and therapeutic

responsiveness (46). Recent investigations have elucidated the

divergence between AFP-negative and AFP-positive HCC

subtypes, providing invaluable insights into the underlying

mechanisms driving tumor progression (47). Additionally, studies

conducted by Meng et al. have elucidated the pivotal role played by

specific notably GPNMB+ Gal-3+ hepatic parenchymal cell

subgroups, in driving hepatocellular carcinogenesis, thereby

underscoring the complexity of the TME (48).

In this study, we adopted a stringent definition of malignant cells

to achieve a more accurate understanding. Pseudotime analysis and

differential expression profiling revealed HCCTrans, characterized by
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heightened HMGB2 expression, as pivotal in driving tumorigenesis

and metastasis. Furthermore, our investigation uncovered the

involvement of HMGB2 in CD8+ T cell exhaustion and the

immunosuppressive microenvironment of HCC, highlighting its

multifaceted role in hepatocarcinogenesis at single-cell resolution.

HMGB2 is expressed in all immortalized human and mouse

cells, possibly helping to overcome replication limitations (49).

Previous studies have linked HMGB2 to the development and

progression of several cancers by influences cell proliferation,

apoptosis, and metastasis through antiapoptotic pathways (21).

Our study extends these findings by demonstrating that HMGB2

not only affects cell proliferation but also plays a significant role in

the immunosuppressive microenvironment of HCC. The

comprehensive analysis provided insights into the functional

implications of HMGB2 through GO and metabolic pathway
FIGURE 6

Impact of HMGB2 expression on prognosis and therapeutic response in HCC. Kaplan-Meier survival curves depicting OS (A), PFS (B), DFS (C) and
DSS(D) in the TCGA-LIHC cohort stratified by HMGB2 expression levels. Kaplan-Meier survival curves illustrating OS in the GSE144269 (E) and ICGC-
LIRI (F) cohorts based on HMGB2 expression levels. (G) Box plot demonstrating the association between HMGB2 expression and tumor grade in the
TCGA-LIHC cohort. Comparative analysis of HMGB2 expression in responders vs. non-responders to sorafenib (H) and TACE (I) treatments in the
TCGA-LIHC cohort. (J–M) Comparison of HMGB2 expression levels between tumor tissues and adjacent normal tissues in four independent
cohorts. (N) Ridgeline plot illustrating GSEA results, highlighting significant positive correlations between HMGB2 expression and key
biological processes.
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enrichment analyses, revealing its enrichment in pathways related

to cell cycle/division regulation, pyruvate metabolism, and the

citrate cycle, further corroborating the significance of HMGB2 in

driving HCC progression. Targeting HMGB2 may disrupt these

critical pathways involved in the metabolic reprogramming of

cancer cells, thereby inhibiting tumor growth and progression,

offering a promising avenue for improving patient outcomes.

Additionally, our study demonstrated that HMGB2 was

associated with worse OS, DFS, and PFS in patients, HMGB2

expression was significantly higher in patients with advanced

tumor progression or non-response to antitumor therapy.

Notably, the evidence suggesting that blood levels of HMGB2

may serve as diagnostic markers for early-stage liver fibrosis and

cirrhosis underscores its potential role in the early development of

HCC (50), providing a window for preventive interventions aimed

at mitigating disease progression. This emphasizes the dual role of

HMGB2 as both a prognostic biomarker for HCC treatment and a

candidate for early detection and prevention strategies.
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Following the promising outcomes of the IMbrave150 trial,

immunotherapy has emerged as a promising treatment modality for

advanced HCC, although its efficacy remains limited to a subset of

patients (3). The intricate interplay between HCC cells and the

TME significantly influences disease progression and therapeutic

outcomes. Recent data from diverse immunotherapy cohorts have

underscored the significance of baseline tumor-intrinsic

characteristics in determining the response to ICIs (51–53).

Additionally, the presence of exhausted CD8+ T cells in TME,

characterized by impaired effector function and proliferative

capacity, has attracted considerable attention due to their

involvement in immune evasion mechanisms, as reprogramming

these cells could potentially enhance immunotherapy efficacy.

Studies have identified HMGB2 as a crucial regulator of CD8+ T

cell exhaustion during chronic viral infection and cancer, critical for

their long-term maintenance (54). However, the role of HMGB2 in

CD8+ T cell exhaustion in HCC and its relevance within the

immunosuppressive microenvironment remain unexplored.
FIGURE 7

Correlation Analysis of HMGB2 and immunosuppressive genes in HCC. Scatter plots demonstrate the expression correlation between HMGB2 and
various immunosuppressive genes in the TCGA-LIHC and ICGC-LIRI cohorts. Panels (A–L) present the correlation of HMGB2 expression with
PDCD1, CTLA4, HAVCR2, TIGIT, LAG3, and CD274 in two cohorts respectively.
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A recent spatial transcriptomic study involving HCC patients

receiving anti-PD-1 therapy revealed a distinct tumor-immune

barrier structure comprising SPP1+ macrophages and CAFs

localized at tumor boundaries in non-responders (19),

interestingly, HMGB2+ HCC cells were enriched around the
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tumor-immune barrier in non-responders (19), yet the role of

HMGB2 in the immunotherapy resistance microenvironment of

HCC was not investigated. Increasing evidence demonstrates that

SPP1 pathway correlates with the local immunosuppressive

microenvironment of tumors (55, 56). Our cell communication
FIGURE 8

Spatial characterization of HMGB2 expression in the HCC microenvironment. (A) Bubble plot depicting the expression profiles of marker genes
across subpopulations derived from scRNA-seq within the ST dataset. (B) H&E staining of ST section. Spatial deconvolution map delineating the
localization patterns of (C) HMGB2+ epithelial cells, (D) HMGB2+ NK/T cells, (E) monocytes/macrophages, (F) HMGB2- epithelial cells, (G) HMGB2-
NK/T cells, and (H) endothelial/fibroblast cells. (I) Representative image demonstrating the co-localization of HMGB2 (green), GPC3 (red), CD8
(cyan), and PD-1 (yellow) in TME of HCC tissues. (J) A partial enlargement of the image highlighting the co-expression of these markers. (K) Faceted
fluorescence image displaying the four indicators: HMGB2, GPC3, CD8, and PD-1, further confirming their co-localization in the
HCC microenvironment.
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analysis found that the CD8+ exhausted T cell subset with high

expression of HMGB2 plays an important role in the SPP1 pathway.

This may serve as a crucial insight for future understanding of how

HMGB2 promotes immunosuppression in the local immune

microenvironment of HCC, thereby facilitating tumor invasion,

metastasis, or resistance to immunotherapy. Moreover, we validated

the spatial distribution and potential functional relevance of

HMGB2 within the TME of HCC using ST analysis and mIHC.

Our findings underscore the therapeutic potential of targeting

HMGB2 in combination with immunotherapeutic approaches,

offering promising avenues for synergistic HCC treatment

strategies. Further investigations are warranted to explore the

clinical utility of HMGB2-targeted therapies and their potential to

enhance patient outcomes in HCC management.

It is essential to acknowledge the limitations of this study. The

retrospective nature of our analyses based on multiple available

datasets warrants further validation in cohorts with large sample to

ensure robustness and generalizability. Furthermore, while our

multi-omic analyses offer insights into the role of HMGB2 within

the HCC and TME, further investigations are needed to elucidate its

precise functional mechanisms. Despite these limitations, our study

represents a significant contribution to understanding the complex

interplay between HMGB2, HCC progression, and the tumor

immune microenvironment. Leveraging multi-omics methods has

allowed us to uncover novel insights into HCC pathogenesis and

identify potential therapeutic targets, thereby benefiting patient

outcomes and advancing clinical translational medicine.
5 Conclusions

In conclusion, our study highlights the pivotal role of HMGB2 in

driving HCC aggressiveness and immunosuppression, offering new

avenues for therapeutic intervention and patient stratification. By

elucidating the intricate interplay between HMGB2 and the tumor

microenvironment, we provide a foundation for the development of

precision medicine approaches tailored to the unique molecular

characteristics of individual tumors. Ultimately, the integration of

HMGB2-targeted therapies into clinical practice holds promise for

improving outcomes in patients with HCC.
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