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immunotherapy response in lung
adenocarcinoma using single-
cell sequencing and multi-omics
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Zhiping Shen1, Jiaxin Shi1, Meifeng Li1, Chenghao Wang1,
Xiang Zhou1, Chengyu Xu1, Hao Chang3* and Linyou Zhang1*

1Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School
of Medicine, Shanghai, China, 3Department of Thoracic Surgery, The First Affiliated Hospital of Harbin
Medical University, Harbin, China
Background: Elevated PPP4C expression has been associated with poor

prognostic implications for patients suffering from lung adenocarcinoma

(LUAD). The extent to which PPP4C affects immune cell infiltration in LUAD, as

well as the importance of associated genes in clinical scenarios, still requires

thorough investigation.

Methods: In our investigation, we leveraged both single-cell and comprehensive

RNA sequencing data, sourced from LUAD patients, in our analysis. This study

also integrated datasets of immune-related genes from InnateDB into the

framework. Our expansive evaluation employed various analytical techniques;

these included pinpointing differentially expressed genes, constructing WGCNA,

implementing Cox proportional hazards models. We utilized these methods to

investigate the gene expression profiles of PPP4Cwithin the context of LUAD and

to clarify its potential prognostic value for patients. Subsequent steps involved

validating the observed enhancement of PPP4C expression in LUAD samples

through a series of experimental approaches. The array comprised

immunohistochemistry staining, Western blotting, quantitative PCR, and a

collection of cell-based assays aimed at evaluating the influence of PPP4C on

the proliferative and migratory activities of LUAD cells.

Results: In lung cancer, elevated expression levels of PPP4C were observed,

correlating with poorer patient prognoses. Validation of increased PPP4C levels

in LUAD specimens was achieved using immunohistochemical techniques.

Experimental investigations have substantiated the role of PPP4C in facilitating

cellular proliferation and migration in LUAD contexts. Furthermore, an

association was identified between the expression of PPP4C and the infiltration

of immune cells in these tumors. A prognostic framework, incorporating PPP4C

and immune-related genes, was developed and recognized as an autonomous

predictor of survival in individuals afflicted with LUAD. This prognostic tool has
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demonstrated considerable efficacy in forecasting patient survival and their

response to immunotherapeutic interventions.

Conclusion: The involvement of PPP4C in LUAD is deeply intertwined with the

tumor’s immune microenvironment. PPP4C’s over-expression is associated with

negative clinical outcomes, promoting both tumor proliferation and spread. A

prognostic framework based on PPP4C levels may effectively predict patient

prognoses in LUAD, as well as the efficacy of immunotherapy strategy. This

research sheds light on the mechanisms of immune interaction in LUAD and

proposes a new strategy for treatment.
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1 Introduction

Lung adenocarcinoma (LUAD), a prevalent form of lung

cancer, remains a leading cause of cancer-associated mortality

globally (1), displaying a five-year survival rate of merely 15% (2–

4). Among the primary therapeutic targets for LUAD are PD-1 and

PD-L1 (5–8). The field has seen considerable interest in immune

checkpoint blockade (ICB), noted for substantially enhancing

survival rates in cancer patients. Despite these advances, the

effectiveness of immunotherapy is not universal among LUAD

patients (9). Factors such as the PD-1 expression, MSI, TMB, and

tumor microenvironment play crucial roles in determining the

response to immune treatments (10–13). Nevertheless, the

prognostic tools currently available lack precision, underscoring

the imperative need for research into vital genes and biomarkers

that influence both the prognosis of LUAD patients and the

response to immunological therapies (14–17).

Nowadays, high-throughput sequencing tools such as second-

generation sequencing (18, 19), single-cell transcriptomics

sequencing (20), spatial transcriptomics sequencing, proteomics

sequencing, and metabolomics sequencing are rapidly evolving

(21). These technological advances have brought new perspectives

to the field of genetic research. Utilizing patterns of gene expression,

researchers aim to uncover novel biomarkers within various cancers

(22, 23). By rigorously analyzing high-throughput RNA sequencing

data, it is possible to support initiatives in personalized treatment

and precision medicine. This includes identifying emerging

prognostic markers and therapeutic targets, elucidating principal

genes that affect the immune infiltration status of patients, and

delineating the molecular pathways that promote the progression of

LUAD (24, 25). These objectives can be fulfilled through the

application of differential expression analysis and functional

enrichment studies (26).

Protein phosphatases from the PPP family play crucial roles in a

variety of physiological and pathological contexts, notably in

oncological disorders (27). In particular, the enzyme PPP4C has
02
been linked to the advancement of numerous malignancies, such as

breast and pancreatic cancers, and glioblastomas (28). The

connection between the expression levels of PPP4C, immune cell

infiltration, and the efficacy of chemoimmunotherapy treatments

has been established (29–32). However, the specific role of PPP4C

within the framework of LUAD has yet to be clarified.

To address the challenge of identifying potential therapeutic

targets and prognostic biomarkers for lung adenocarcinoma, our

study focused on analyzing the differential immunogenomic profiles

in both tumor and non-tumor tissues from LUAD patients.

Employing methodologies such as gene set enrichment analysis,

survival analysis, WGCNA, single-cell transcriptomics analysis and

assessment of differentially expressed immune-related genes, we

pinpointed PPP4C as a pivotal subject for further investigation (33).

Our research further explored how PPP4C expression within the

tumor immune microenvironment influences LUAD prognosis. By

constructing a risk assessment model incorporating PPP4C alongside

other immunologically relevant genes, we successfully predicted

outcomes and immune response efficacy in LUAD therapy.

Furthermore, our investigation extended to analyzing clinical and

immune profiles across various risk categories, culminating in the

development of diagnostic charts that offer novel insights into

managing LUAD and evaluating immunotherapy responses in

treated patients.
2 Materials and methods

2.1 Participant recruitment and
data collection

Between June and August 2023, individuals undergoing surgical

procedures at Harbin Medical University’s Second Affiliated

Hospital contributed samples from three distinct pairs of lung

adenocarcinoma and adjacent non-malignant tissues. These

specimens encompassed paired samples of lung adenocarcinoma
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tumors and the corresponding adjacent healthy tissues.

Authorization for this research was granted by the Ethics

Committee of the Second Affiliated Hospital at Harbin Medical

University under the protocol number KY2023–042.

Clinical records and RNA sequencing data from 594 LUAD

patients were retrieved from the TCGA repository (https://

portal.gdc.cancer.gov/). Furthermore, RNA sequencing and survival

statistics for an additional 246 LUAD patients were accessed through

GEO dataset GSE31210 (34). The dataset GSE123902, which includes

RNA sequencing data at the single-cell level, comprised thirteen

tumor and four normal tissue samples. An immunotherapy

validation cohort was established using data from the R program

IMvigor210. Additionally, gene sets pertinent to immune responses

were obtained from both InnateDB and ImmPort databases.
2.2 Identification of immune-related genes

To ascertain immune-associated genes, differential expression

analysis was conducted on LUAD cohort data from the TCGA

database, employing the limma software (|log2FC| > 0.585) (35).

Subsequently, lists of immune genes sourced from the InnateDB

and ImmPort databases were amalgamated to facilitate functional

enrichment analysis. Genes within the yellow and brown modules

were selected based on a significance threshold of P < 0.05. The

identification of pivotal genes in immune regulation was achieved

through the application of the WGCNA algorithm (33, 36).

Functional enrichment analysis was subsequently conducted using

the clusterProfiler software (37).
2.3 Single-cell RNA sequencing

In this investigation, data from single-cell RNA sequencing was

analyzed using the Seurat package within R software (version 4.4.0)

(38). Initially, rigorous quality control protocols were employed to

eliminate substandard cells, which required the establishment of

specific criteria such as nFeature between 300 and 7,500, nCount

between 300 and 100,000, mitochondrial gene expression ratio of less

than 20%, ribosomal gene expression ratio of greater than 3 and

erythrocyte gene expression ratio of less than 0.1. Subsequently, the

SCTransform method was applied for data normalization, followed

by dimensionality reduction via the RunTSNE function, facilitating

easier clustering and visualization. Knowledge from prior studies and

the CellMarker database (http://xteam.xbio.top/CellMarker) aided in

cell type annotation (39). Furthermore, normal epithelial cells in the

sample were used as a control group, and the inferCNV (https://

github.com/broadinstitute/inferCNV/) algorithm was utilized to

differentiate between benign and malignant epithelial cells based on

differences in chromosome copy number variants and to explore the

differences in the expression of PPP4C in the two types of cells, Then,

tumor cells were categorized according to the median PPP4C

expression level, and differential pathway enrichment was explored

using GSVA analysis, and CellPhoneDB (version 2.0) elucidated cell-

cell interactions, with higher ligand-receptor interaction scores

suggesting more robust intercellular communication.
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2.4 Immune infiltration

LUAD patients were stratified into groups with high and low

levels of PPP4C gene expression based on median values.

Subsequent analysis of immune cell infiltration differences

between these groups employed the CIBERSORT algorithm (40).

Comparative immunological assessments utilized the ESTIMATE

method (41, 42), alongside Spearman’s rank correlation analysis. To

delineate key genetic markers for constructing a prognostic model,

the LASSO and univariate regression methodologies isolated 14

critical genes (43, 44). Furthermore, multivariable Cox regression

analysis facilitated the establishment of risk scores, categorizing

patients into cohorts with elevated or diminished risk profiles.
2.5 The immunological landscapes, clinical
manifestations, and immunotherapy

To elucidate the interplay between immunological profiles,

clinical characteristics, and responses to immunotherapy, our

study employed MCPcounter to quantify immune cell infiltration

within distinct risk strata. This approach facilitated an exploration

of the correlations between risk assessments and clinical

manifestations. Furthermore, the ESTIMATE algorithm was

applied to evaluate differences in immunological scores across the

cohorts (45). We investigated disparities in the expression of genes

associated with immune checkpoints across these risk groups.

Subsequent analysis focused on contrasting the tumor mutational

burden between individuals classified as high-risk and those

deemed low-risk, alongside investigating variations in prognostic

outcomes, responses to immune treatments, and staging utilizing

the R IMvigor210 toolset. In pursuit of developing a predictive

framework, we conducted both univariate and multivariate Cox

regression analyses. The decision curve analysis (DCA) was

subsequently utilized to determine the predictive precision and

clinical utility of the developed model.
2.6 Real-time PCR

In this investigation, the methodology of real-time quantitative

polymerase chain reaction (RT-qPCR) was utilized. For the

synthesis of cDNA, cellular RNA was initially isolated using

Trizol (Sigma), followed by reverse transcription using

PrimeScriptTM RT Master Mix (TaKaRa). Subsequently, the

ChamQ Universal SYBR qPCR Master Mix (Vazyme) facilitated

the RT-qPCR analysis. The quantification of mRNA expression

levels of the target genes was performed utilizing the 2-DDCT
approach, wherein b-actin served as the internal standard (46).

Data analysis and the creation of graphical outputs were conducted

with the aid of Prism software.

The primer sequences used were as follows: for PPP4C, 5’-

GGTCTATGGCTTCTACGATG -3 ’ ; and for b-actin, 5’-

GAAGAGCTACGAGCTGCCTGA-3’.
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2.7 Western blot

Proteins were extracted from washed tissues using a RIPA

buffer enhanced with PMSF and a cocktail of protease inhibitors.

Subsequently, protein concentrations were quantified employing

the BCA assay. Proteins were resolved by SDS-PAGE and

transferred onto PVDF membranes. The membranes underwent a

blocking process using 5% non-fat milk before antibody incubation.

Primary antibodies were applied overnight at 4°C, followed by a

one-hour incubation with secondary antibodies at ambient

temperature (47). In this study, the primary antibodies utilized

were anti-b-actin and anti-PPP4C, while Goat anti-Rabbit HRB

served as the secondary antibody. Visualization of the protein bands

on the Western blots was facilitated using an ECL detection system.
2.8 Immunohistochemistry

In the course of this study, the immunohistochemistry protocol

was meticulously followed through several distinct methodological

phases (48). Initially, tissue sections were subjected to a pre-

treatment phase within a temperature-controlled oven. Ensuring

cellular exposure to the antigen involved multiple steps including

the removal of paraffin and the retrieval of antigens. Overnight

incubation with primary antibodies, sourced from Abcam, was then

conducted. Visualization of the staining process was facilitated

using the Dako EnVisionTM FLEX+ kit. Subsequently, an Aperio

digital pathology slide scanner was employed to capture the

resultant images, and additional staining was performed using

hematoxylin provided by Sigma Aldrich. The semi-quantitative

analysis of immunohistochemical staining was performed using

the IHC Profiler plugin in Image J software, and the IHC score was

calculated based on the percentage of area of different staining

intensities. (IHC sore = High positive areas percentage × 3 +

Positive areas percentage × 2 + Low positive areas percentage × 1

+ Negative areas percentage × 0)
2.9 Cultivation of lung cancer cells

Cultures of the A549, H1299, PC9 and H1975 cell lines (sourced

from PLST Co., Ltd., China) were propagated using RPMI-1640

medium (manufactured by Gibco, USA), which was enriched with

10% fetal bovine serum. BEAS-2B cell line culture was performed in

serum-free BEpiCM complete medium (manufactured by SclenCell,

USA). These cultures were sustained at a constant temperature of

37°C within a humidified environment, supplemented by an

atmosphere containing 5% CO2.
2.10 PPP4C influences on the migration
and invasion of LUAD cells

In the investigation of PPP4C’s role in inhibiting LUAD cell

migration, cells were evenly distributed across six-well plates for a
Frontiers in Immunology 04
wound healing assay, achieving the necessary confluency.

Subsequently, serum-free DMEM was employed to foster cell

cultures post-creation of uniform scratches using 200 ml pipette
tips. After 24 hours of cell culture, the scratched areas were

systematically photographed to monitor the healing progress, thus

helping to analyze the migration dynamics of the cells.

To determine the invasive properties of the tumor cells,

experiments utilized a 24-well, 8mm Transwell setup (NEST

Biotechnology Co. LTD., Wuxi, China). Single-cell suspensions

were introduced into the upper compartment at a concentration

of 1×10^5 cells per well, with serum-free media above and 10%

FBS-enriched media below. Following a 24-hour incubation, the

cells underwent fixation with 4% paraformaldehyde post-staining

with 1% crystal violet (49). Invasion assessments were conducted

using an inverted microscope to capture images from at least three

random fields.
2.11 Cell colonies formation

To investigate colony formation, 500 cells were uniformly

distributed into each well of a six-well plate. These cells were

incubated at 37°C for two weeks until distinct colonies,

comprising no fewer than 50 cells each, could be discerned

microscopically. Post-incubation, colonies were fixed using 4%

paraformaldehyde and subsequently stained with 1% crystal

violet. Photographs documenting colony growth across all wells

were subsequently captured (50).
2.12 Statistical analysis

To conduct the statistical evaluations, we utilized versions 4.2.2

and 9.5.1 of Prism and R, respectively. Continuous variables were

described using means and standard deviations of independent

samples. Survival differences were assessed employing Kaplan-

Meier curves and the Log-rank test, alongside Spearman’s

correlation coefficient and the t-test for comparisons between two

groups. A significance level was established at P < 0.05.
3 Results

3.1 Analysis of differentially expressed
immune genes in LUAD

Utilizing the TCGA-LUAD data set for analysis, a survey of

gene expression variances unveiled 13,618 genes with fluctuating

expression levels. Among these, 4,237 were noted as down-

regulated and 9,381 as up-regulated (Figure 1A). Subsequent

scrutiny against immune-specific databases from InnateDB and

ImmPort revealed 1,011 genes linked to immune functionalities

showing disparate expression patterns in LUAD, divided into 499

down-regulated and 512 up-regulated genes (Figure 1B). Advanced

probing into these genes’ roles identified enrichment in 132 KEGG
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FIGURE 1

Identifying differentially expressed immune genes in LUAD. (A) Comparative analysis was conducted between 535 tumor samples and 59 normal
lung tissues from LUAD patients. Up-regulated genes are depicted in red, while down-regulated genes are depicted in green. (B) A heatmap
visualizes the differential expression pattern of immune-related DEGs between tumor samples (in red) and normal samples (in blue). (C) Gene
Ontology (GO) enrichment analysis was performed on the identified differential immune genes. (D) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was conducted on the differential immune genes.
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pathways and 2,720 GO terms, with emphasis on the foremost 30

GO terms and KEGG pathways (Figures 1C, D).
3.2 Characterization of immune-related
gene targets in LUAD

In an endeavor to identify pivotal hub genes associated with

immunity in lung adenocarcinoma (LUAD), researchers conducted

a comprehensive analysis using Weighted Gene Co-expression

Network Analysis (WGCNA) on 1011 genes known for their

variable expression in immune responses. This analysis

constructed a scale-free network, which facilitated the

identification of an optimal soft-thresholding power set at 2, as

depicted in Figure 2A. This specific thresholding power, when

applied alongside hierarchical clustering employing average

linkage techniques, classified these genes into seven distinct

clusters (Figures 2B, C). Subsequent analysis calculated Pearson

correlation coefficients to link these gene clusters with particular

traits of LUAD tumor samples, adopting a significance level of P <

0.05. Notably, genes within the brown and yellow clusters were

selected for further detailed scrutiny. The intent of this deeper

investigation was to elucidate the relationship between immune

genes and patient prognosis in LUAD. Prior to a focused analysis of

the selected gene clusters, a preliminary survey was conducted to

assess their functional involvement and pathway engagement. This

led to the revelation of considerable enrichment in the top 8 Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways, shedding

light on their biological functions and interconnected roles in

LUAD progression (Figures 2D, E).
3.3 Probing PPP4C expression patterns in
lung cancer

To ascertain immune-associated genes of independent prognostic

value, a meticulous univariate Cox regression coupled with Kaplan-

Meier survival analysis was conducted for genes within the brown

and yellow modules (Figures 3A-G). This analysis brought to light 58

immune genes of prognostic significance. Moreover, earlier

investigations have illuminated distinctive expression profiles of the

PPP gene family in breast cancer, underscoring its link to both

prognosis and the infiltration states of immune cells (21). Notably,

PPP4C has been distinguished as a valuable prognostic indicator and

as a potential therapeutic target in breast cancer. However, the

expression dynamics, biological functions, and impact on immune

cell infiltration by PPP4C in lung adenocarcinoma (LUAD)

necessitate further inquiry. Thus, our focus has shifted toward the

PPP4C gene. Through the analysis of the GSE31210 dataset from the

GEO database, we confirmed PPP4C’s unique expression in LUAD

and its prognostic ramifications. The findings reveal a significant

upregulation of PPP4C in LUAD, correlating with unfavorable

outcomes (Figures 3H, I). Subsequently, an exhaustive pan-cancer

assessment of PPP4C was undertaken to define its biological

ramifications across various cancers (Figure 3J). This broad

evaluation disclosed a uniform pattern of elevated PPP4C
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expression in numerous cancers, notably associated with adverse

results, particularly in patients with liver hepatocellular carcinoma

(LIHC) and kidney renal clear cell carcinoma (KIRC) (Figure 3K). In

conclusion, the pervasive increase in PPP4C expression in LUAD and

other cancers highlights its critical role as an indicator of poor

prognosis, thereby solidifying PPP4C as a paramount prognostic

marker and a prospective therapeutic target.
3.4 Delineation of PPP4C expression via
single-cell profiling

A single-cell transcriptomic approach to investigating PPP4C

expression has uncovered a considerable variation in expression

levels and functional roles across cells. By examining the

GSE123902 dataset, which encompasses primary, metastatic lung

adenocarcinomas, and non-tumorous lung tissues, the study

distinguished twenty distinct cellular clusters. These clusters were

systematically categorized as epithelial, immune, or stromal cells

through integration with the CellMarker database (Figures 4A-C).

Deeper scrutiny revealed seven principal subtypes within the immune

cells (Figures 4D-F). The classification strategy hinged on the use of

defined cellular markers (Figures 4G, H). Subsequent analysis using

inferCNV highlighted a conspicuous escalation in PPP4C expression

among cancerous epithelial cells (Figure 5A), compared to their

normal counterparts (Figure 5B). Further subdivision of the tumor

epithelial cells into high and low PPP4C expression groups, followed

by GSVA enrichment analysis, identified significant upregulation of

pathways related to the cell cycle, DNA replication, oxidative

phosphorylation, and metabolism of glycolysis/TCA cycle in cells

with elevated PPP4C expression (Figure 5C). Moreover, a

comparative analysis of intercellular communication between

different factions of cancerous epithelial and immune cells was

conducted. This investigation not only casts light on the crucial

role of PPP4C in lung adenocarcinoma pathogenesis but also lays the

groundwork for further explorations (Figures 5D, E).
3.5 Exploration of immunological subtypes
based on PPP4C gene expression

Current research explores the dynamic interaction between

PPP4C gene expression and immune cell infiltration, highlighting

its importance in modern scientific investigations. This study

stratifies patients into categories based on either elevated or

reduced PPP4C gene expression levels. Utilizing CIBERSORT

software to analyze their sequencing data, the study assesses how

PPP4C gene expression impacts the distribution of twenty-two

distinct immune cell types (Figure 6A). Results reveal that

patients with increased PPP4C expression show higher levels of

follicular helper T cells, regulatory T cells (Tregs), and both M0 and

M1 macrophages. In contrast, individuals with lower expression

levels display a higher prevalence of memory B cells, CD4 memory

resting T cells, monocytes, and inactive mast cells (Figure 6B).

Additionally, employing the ESTIMATE algorithm to determine

stromal and immune scores within these gene expression subclasses
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FIGURE 2

The identification of immune-related hub genes. (A) Determination of the soft threshold power through analysis, with the optimal value found to be
2. (B) Application of WGCNA on differential immune genes. (C) Extraction of seven gene modules through WGCNA. (D) GO enrichment analysis of
genes within the yellow and brown modules. (E) KEGG enrichment analysis of genes within the yellow and brown modules.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2024.1416632
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1416632
B C

D E

F G

H I

J K

A

FIGURE 3

Analysis of PPP4C (A) Univariate Cox regression analysis was conducted on 58 immune-related hub genes, where green dots represent protective
factors and red dots represent risk factors. (B-G) Kaplan-Meier survival analysis was performed on the top six immune-related hub genes with HR>1.
(H) Differential expression analysis of PPP4C in the GEO cohort. (I) Kaplan-Meier survival analysis of PPP4C in the GEO cohort. (J, K) Pan-cancer
analysis of the PPP4C gene. (*P < 0.05, **P < 0.01, ***P < 0.001).
Frontiers in Immunology frontiersin.org08

https://doi.org/10.3389/fimmu.2024.1416632
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1416632
demonstrates a negative correlation between PPP4C gene

expression and the immune score (Figures 6C, D). Such findings

provide crucial insights into the role of the PPP4C gene in

immune regulation.
3.6 Constructing and validating a
predictive model involving PPP4C

Given the correlation between elevated expression of the PPP4C

gene and reduced survival rates in patients with lung adenocarcinoma

(LUAD), as well as its ties to immune cell infiltration in the tumor

environment, we developed a prognostic model based on PPP4C.
Frontiers in Immunology 09
This model aims to predict survival and immunotherapy outcomes

for LUAD patients. We initially conducted an analysis to identify

genes correlated with PPP4C expression and immune parameters,

revealing a set of 267 genes (Figure 7A). Further enrichment analysis

linked these genes to GTPases, pathways of non-small cell lung

cancer, PD-L1 expression, and the PD-1 checkpoint, underscoring

their potential impact on LUAD prognosis and the efficacy of PD-L1-

targeted therapies (Supplementary Figure S1). A selected group of

100 genes with significant prognostic value was further narrowed

down to 14 key genes through LASSO regression analysis (Figures 7B,

C). Utilizing these key genes, a risk stratification model was

constructed, and risk scores for individual samples were

determined via multivariate COX regression analysis. The
B

C

D E

F

G H

A

FIGURE 4

Single-cell mapping. (A) t-SNE plots depict all cells in the 20-cell cluster. (B) Classification of all cells into three primary types: epithelial, immune,
and stromal. (C) Demonstration of specific gene expression across different cell types. (D) t-SNE plot focusing on immune cell clustering.
(E) Annotation of the immune cell population into seven major immune cells. (F) Presentation of specific gene expression within the seven immune
cell types. (G) Integration of clustered t-SNE plot for all cells. (H) Demonstration of specific gene expression across all cell types.
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FIGURE 5

Analysis of functional enrichment. (A) Application of the inferCNV algorithm to analyze all epithelial cell copy number variants. (B) Comparison of
PPP4C differential expression between normal and malignant epithelial cells. (C) GSVA pathway enrichment analysis between high and low PPP4C
expression groups. (D) Investigation of cellular communication between PPP4C-overexpressing malignant epithelial cells and immune cells.
(E) Examination of cellular communication between PPP4C low-expressing malignant epithelial cells and immune cells.
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effectiveness of this model was confirmed through PCA analysis

(Figure 7D), and the creation of Kaplan-Meier survival and ROC

curves demonstrated significantly lower survival in the high-risk

group compared to the low-risk group (Figures 7E, F). Further

validation of the model’s robustness and precision was conducted

using a GEO dataset, reinforcing the prognostic model’s accuracy and

dependability in predicting survival and responses to immunotherapy

in LUAD patients (Figures 7G, H).
3.7 Assessing the clinical impact of a
PPP4C-centric prognostic framework

The prognostic model based on PPP4C demonstrates significant

potential for predicting survival rates in patients with lung

adenocarcinoma. This approach involves stratifying patients into

distinct groups based on clinical features including TNM

classification and age. The analysis aims to explore the relationship

between these clinical variables and prognostic scores. Results indicate

a positive correlation between higher prognostic scores and advanced

T, N (Figures 8A, B), and pTNM stages (Figures 8C, D), particularly in

patients under the age of 65 (Figure 8E). An extensive analysis was

conducted to assess differences in immune cell composition among

cohorts displaying varied prognostic scores. Notably, the high-risk
Frontiers in Immunology 11
group exhibited a reduced presence of T cells CD4 memory activated,

Tregs, activated NK cells, and M0 macrophages compared to the low-

risk group, which presented an inverse pattern (Figure 9A). The

variation in immune cell and score metrics among these groups was

evaluated using the ESTIMATE algorithm and MCP counting method

(Figures 9B, C). Furthermore, an analysis comparing immune

checkpoint gene expression across different prognostic groups was

undertaken (Figure 9D). The model’s accuracy in predicting outcomes

after immunotherapy was validated (Figure 9E), with the high-risk

group showing a decreased likelihood of favorable response (Figure 9F).

The study also included an examination of the disparity in tumor

mutation burden between high and low-risk groups (Figures 9G, H).

These findings underscore the critical clinical importance of utilizing a

PPP4C-focused prognostic model for lung adenocarcinoma patients,

providing key insights for optimizing therapeutic strategies.
3.8 Formulation of a nomogram for precise
prognosis prediction in LUAD patients

To enhance the precision of predictive frameworks in

evaluating patient risks, our research integrated clinical-

pathological factors with risk scores utilizing both single-factor

and multifactorial Cox regression analyses, considering elements
B

C D

A

FIGURE 6

The relationship between PPP4C and immune cell infiltration. (A) Correlation analysis between PPP4C gene expression and immune cells.
(B) Evaluation of differences between PPP4C gene expression and immune cells. (C) Assessment of differences between PPP4C gene expression and
stromal score, immune score, and ESTIMATE score. (D) Correlation of PPP4C gene expression with stromal score, immune score, and ESTIMATE
score. (*P < 0.05, **P < 0.01, ***P < 0.001, ns, no significance).
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FIGURE 7

Construction of a risk score model. (A) Utilization of a Venn diagram to identify 267 intersecting genes from PPP4C-associated genes and immune
score-associated genes. (B) LASSO coefficient profiles. (C) Determination of the tuning parameter (log l) based on minimum criteria in the LASSO
analysis. (D) PCA analysis among different risk groups. (E) Kaplan-Meier survival analysis of patients in different risk groups in the TCGA cohort.
(F) ROC analysis of the TCGA cohort at 1-, 3-, and 5-years. (G) Kaplan-Meier survival analysis of patients in different risk groups in the GEO cohort.
(H) ROC analysis of the GEO cohort at 1-, 3-, and 5-years.
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like patient demographics. This examination demonstrated that in

lung adenocarcinoma (LUAD) scenarios, the derived risk score is an

essential independent prognostic factor (P < 0.001), whereas the

clinical-pathological stage was of secondary importance

(Figures 10A, B). Subsequently, a Nomogram was developed,

merging both staging data and risk assessments (Figures 10C).

The prognostic accuracy of this Nomogram was subsequently

confirmed through methods of calibration and decision curve

analysis (DCA). Calibration diagrams confirmed the Nomogram’s

ability to accurately reflect the actual survival rates of patients across

timeframes of 1, 3, and 5 years (Figures 10C). Moreover, the DCA

underscored that the Nomogram markedly surpasses either the risk

scores or the pathological staging alone in identifying high-risk

patients, thus delivering an enhanced net clinical benefit.
3.9 Investigating the impact of PPP4C gene
expression on cellular dynamics in LUAD

In investigating lung adenocarcinoma, a comprehensive study

was conducted to assess the differential expression of PPP4C and its

effects on cellular dynamics. The initial stage involved quantifying
Frontiers in Immunology 13
PPP4C expression in lung adenocarcinoma tissue as well as in

adjacent non-cancerous tissue, utilizing methods such as Western

blot analysis (Figures 11A, B), RT-qPCR (Figure 11C), and

immunohistochemistry (Figures 11D, E). The data revealed a

pronounced elevation of PPP4C levels in the tumor tissues

compared with the normal tissues, confirmed at both protein and

mRNA levels. Meanwhile, we also compared the expression of PPP4C

in normal lung epithelial cell lines and lung adenocarcinoma cell lines

by Western blot experiments. The results showed that PPP4C was

significantly overexpressed in all four lung adenocarcinoma cell lines,

which also laid the foundation for our subsequent cell function

experiments (Figures 11F, G). Subsequent experiments across

various lung adenocarcinoma cell lines were designed to clarify the

role of PPP4C. By creating cellular models that either overexpressed

(Figures 12A, C) or suppressed PPP4C expression (Figures 12B, D), it

was observed that increased PPP4C levels markedly enhanced the

proliferation (Figures 13A, B), and also the migration and invasion

capabilities of A549 and H1299 cells (Figures 13C, E). Conversely, a

reduction in PPP4C expression led to decreased these cellular

processes (Figures 13D, F). These results underscore the pivotal

influence of PPP4C in lung adenocarcinoma progression and

suggest its potential association with patient prognosis.
B C

D E

A

FIGURE 8

Risk scores in different groups. (A-C) T-stage, N-stage, and M-stage. (D, E) Pathological stage and age in the TCGA cohort. (*P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, ns, no significance).
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FIGURE 9

Variations among immune characteristics. (A) Illustration of immune cell infiltration differences between patients in different risk subgroups.
(B) Comparison of immune score differences between patients in different risk subgroups. (C) Calculation of differences in immune cell abundance
among different risk subgroups of patients based on MCPcounter. (D) Evaluation of immune checkpoint-associated gene expression differences
among patients in different risk groups. (E, F) Kaplan-Meier survival analysis and immunotherapy response in patients from different risk groups of the
IMvigor210 cohort. (G, H) Analysis of tumor mutation burden differences and correlation in the TCGA cohort of patients. (*P < 0.05, **P < 0.01, ***P
< 0.001, ns, no significance).
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4 Discussion

PPP4C, a member of the phosphatase enzyme family, demonstrates

widespread expression across diverse human tissues, suggesting its

implication in crucial biological processes. Its conservation throughout

evolution underscores its putative involvement in fundamental

physiological mechanisms (51). Prior investigations have noted an

upregulation of PPP4C expression in numerous cancer types,

including colorectal, breast, and pulmonary malignancies (52–55).

Within the oncogenic landscape, heightened PPP4C expression

correlates with the modulation of pivotal signaling cascades such as
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mTOR, JNK, and NF-kB, while its depletion may instigate cellular

apoptosis (56–58). Notably, PPP4C-mediated augmentation of the ERK

pathway fosters lung cancer cell proliferation and impedes apoptotic

mechanisms, thereby exacerbating clinical prognosis (59). These insights

underscore the potential of PPP4C as a promising therapeutic target

across diverse cancer types. Nonetheless, further investigation is

imperative to delineate the impact of PPP4C on the immune milieu in

lung adenocarcinoma and elucidate its interplay with other

oncogenic determinants.

This investigation employed diverse methodologies,

encompassing RNA sequencing data analysis, weighted gene co-
B

C D

E

A

FIGURE 10

Nomogram in LUAD. (A, B) Univariate and multivariate cox regression analysis of risk scores and clinicopathological characteristics. (C) Construction
of a nomogram combining risk score and clinicopathological staging. (D) Calibration curves for 1-, 3- and 5-years for Nomogram. (E) Decision curve
for nomogram. ***P< 0.001.
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expression network analysis (WGCNA), and single-cell

transcriptome sequencing, to identify pivotal genes within

patients afflicted with LUAD and assess their impact on the

tumor’s immune milieu. The study revealed a conspicuous

escalation in the levels of PPP4C gene among individuals with

LUAD, a phenomenon associated with an unfavorable prognosis, a

conclusion substantiated by experimental verification. Moreover, an

exploration into the nexus between PPP4C gene expression and the

tumor’s immune milieu was conducted. The results elucidate a
Frontiers in Immunology 16
direct correlation between heightened PPP4C expression and

diminished immune scores, underscored by a negative correlation

between PPP4C expression and immune score. Furthermore, an

augmented presence of regulatory T cells (Tregs) was observed in

specimens exhibiting elevated PPP4C expression. The dampening

of immune response by Tregs emerges as a pivotal tactic employed

by tumors to evade immune surveillance, a factor potentially

underpinning the adverse prognosis for LUAD patients with

heightened PPP4C expression (60). These revelations furnish
B C

D E

F G

A

FIGURE 11

Expression of PPP4C in tumor tissues and normal tissues. (A, B) Western blot detection of PPP4C expression in lung adenocarcinoma tissue and
normal tissue. (C) PCR detection of mRNA expression levels of PPP4C in tumor and normal tissues. (D, E) IHC staining and quantitative analysis of
lung adenocarcinoma tissues and normal tissues. (F, G) Western blotting to detect differences in PPP4C expression in human normal lung epithelial
cells BEAS-2B and four types of human lung adenocarcinoma cells A549, H1299, PC9 and H1975. (***P < 0.001, ****P < 0.0001).
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crucial insights into comprehending the role of PPP4C in LUAD

and its ramifications for therapeutic interventions.

Given the significance of PPP4C in prognosis and its impact on

the tumor immune microenvironment, we have devised a risk

evaluation framework integrating PPP4C with genes associated

with immune scoring. This framework serves as a robust

prognostic tool, providing insights into patients’ probable

response to immunotherapy. Integrating this risk assessment with

conventional TNM classifications substantially enhances the

predictive capacity of the model. Our investigation encompasses

14 genes pivotal in lung adenocarcinoma (LUAD). Notably,

DOCK4 emerges as a suppressor of tumor growth by modulating

tumor cell adhesion and invasiveness (61). Moreover, EFHD2

garners attention for its indispensable role in activating immune

cells and promoting cancer dissemination (62). METTL7A and

MT2A, among other genes, correlate with the prognostic landscape

of LUAD patients, implicating their potential impact on disease

outcomes (63–65). These revelations underscore a nuanced

interplay between these genes and PPP4C’s involvement in

LUAD, underscoring the necessity for further exploration to

elucidate their functions.

In summary, this study elucidates key genetic markers that impact

prognostic outcomes and the immunological microenvironment in

patients diagnosed with Lung Adenocarcinoma (LUAD) by integrating

single-cell analysis and multi-omics strategies. And the regulatory effect

of PPP4C on lung adenocarcinoma cells was verified by differential
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expression assay and cell function assay. These findings pave the way

for identifying new therapeutic targets and prognostic indicators for

managing LUAD. Despite the reliance on publicly available datasets,

these findings provide valuable insights for further investigations into

the oncological significance of PPP4C. Future studies should consider

integrating advanced techniques such as machine learning algorithms,

spatial transcriptome analysis, and further experimental validation to

unravel the biological mechanisms of PPP4C in cancer. These efforts

aim to strengthen the basis of precision oncology.
5 Conclusion

In patients diagnosed with LUAD, a robust correlation has been

established between the levels of PPP4C and the intricacies of the

tumor microenvironment’s immune landscape. Elevated PPP4C

concentrations serve as harbingers of unfavorable prognostic

outcomes, thereby fostering the proliferation and metastasis of

lung carcinoma cells. The development and implementation of a

risk assessment paradigm centered on PPP4C afford precise

prognostic capabilities for individuals afflicted with LUAD,

concurrently facilitating the meticulous evaluation of the efficacy

of immunotherapeutic interventions. This scholarly inquiry has not

only elucidated the intricate pathways governing immune responses

in LUAD but also delineated a strategic blueprint for the efficacious

management of cancer.
B

C D

A

FIGURE 12

PPP4C overexpression and knockdown in lung cancer cells. (A, C) PPP4C overexpression in A549 and H1299 cell lines. (B, D) PPP4C knockdown
experiment in A549 and H1299 cell lines. (*P < 0.05, **P < 0.01, ***P < 0.001, ns, no significance).
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FIGURE 13

Experimental validation of PPP4C function in lung adenocarcinoma cell line. (A, B) Colony formation assay showed that the proliferation ability of
A549 and H1299 cells with PPP4C overexpression was significantly enhanced, while the proliferation ability of cells in the PPP4C knockdown group
was significantly decreased. (C, D) The wound healing assay showed that the cell migration ability was significantly increased in the PPP4C
overexpression group compared with the control group, whereas it was significantly reduced in the knockdown group. (E, F) Transwell assay showed
that the invasive ability of cells in the PPP4C overexpression group was significantly elevated, in contrast to a significant decrease in the invasive
ability of cells in the knockdown group. (*P < 0.05, **P < 0.01, ***P < 0.001).
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