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Tissue-resident memory T cells (TRM) are a specialized subset of long-lived

memory T cells that reside in peripheral tissues. However, the impact of TRM-

related immunosurveillance on the tumor-immune microenvironment (TIME)

and tumor progression across various non-small-cell lung cancer (NSCLC)

patient populations is yet to be elucidated. Our comprehensive analysis of

multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC

samples generated reliable, unique TRM signatures, through which we inferred

the abundance of TRM in NSCLC. We discovered that TRM abundance is

consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages,

and resting dendritic cells in the TIME. In addition, TRM signatures are strongly

associated with immune checkpoint and stimulatory genes and the prognosis of

NSCLC patients. A TRM-based machine learning model to predict patient survival

was validated and an 18-gene risk score was further developed to effectively

stratify patients into low-risk and high-risk categories, wherein patients with

high-risk scores had significantly lower overall survival than patients with low-

risk. The prognostic value of the risk score was independently validated by the

Cancer Genome Atlas Program (TCGA) dataset andmultiple independent NSCLC

patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration

exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME

immune responses related pathways, indicating a more active immune profile

benefitting from immunotherapy. However, the TRM signature revealed low TRM
abundance and a lack of prognostic association among lung squamous cell

carcinoma patients in contrast to adenocarcinoma, indicating that the two
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NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides

valuable insights into the complex interactions between TRM and TIME and their

impact on NSCLC patient prognosis. The development of a simplified 18-gene

risk score provides a practical prognostic marker for risk stratification.
KEYWORDS

tissue resident memory T cell, non-small-cell lung cancer, prognosis, tumor immune
microenvironment, machine learning
Introduction

Non-small cell lung cancer (NSCLC) accounts for ~85% of lung

tumors in adults and is a leading cause of death. Various immune

cell populations are present within the NSCLC tumor-immune

microenvironment (TIME) (1). Among them, tissue-resident

memory T (TRM) cells are a unique subset of T cells that

permanently reside within tissues (2–5). Associated with cell

surface markers including CD69, ITAG1 (CD49a), and ITGAE

(CD103), TRM are non-circulating memory T-cells residing in

various tissues that provide an intrinsic defense system

against antigens.

TRM are characterized by the expression of tissue-specific

homing molecules and immune exhaustion markers (6). TRM cells

could play a critical role in anti-tumor immune responses by either

directly attacking cancer cells or indirectly promoting the

recruitment of activated cytotoxic T cells to the tumor site (5, 7–

9). In addition, TRM cells exhibit transcriptional programs

associated with tissue-resident memory and display characteristics

of tumor neoantigen-specific T cells (10). Targeting TRM cells for

potential enhancement of immunotherapies has also been proposed

(11). Studies have demonstrated that TRM cells can synergize

with checkpoint inhibitors to improve anti-tumor responses.

Researchers have explored strategies like adoptive TRM cell

transfer, inducing TRM cell accumulation within tumors using

cytokines like IL-33, promoting T cells to express homing

receptors for tumor localization, and combining TRM cell-

targeting approaches with cancer vaccines (12, 13). These

strategies aim to harness the localized tumor surveillance and

rapid response capabilities of TRM cells, potentially leading to

improved efficacy of immunotherapies and durable anti-tumor

immunity (13–15). However, how to evaluate the TRM abundance

in the TIME of NSCLC patients, and the role of TRM in the TIME to

affect the tumor progression and patient prognosis are still unclear.

Therefore, a comprehensive understanding of how TRM cells shape

the NSCLC TIME and a robust gene signature for assessing TRM-

related influence and prognosis across independent patient cohorts

is much needed.

In this study, we comprehensively analyzed all publicly available

single-cell datasets to extract TRM-related signatures representative

of TRM abundance in the tumor milieu. A systematic evaluation of
02
available NSCLC single-cell and bulk RNA-seq datasets revealed the

relationship of the TRM with various immune cell populations in

TIME and with patient prognosis. A universal 18-gene risk score

derived from TRM signatures across independent datasets stratified

low- and high-risk NSCLC patients, distinguishing their survival.

Among NSCLC patients, the TRM signature has significant

prognostic value for lung adenocarcinoma but not lung squamous

cell carcinoma, suggesting that distinct TIME may drive different

therapeutic responses in the two lung cancer subtypes.
Materials and methods

Data utilized in this study

The level 3 TCGA RNAseq data and clinical information

involving the lung adenocarcinoma (LUAD, n=513) and lung

squamous cell carcinoma (LUSC, n=501) datasets were

obtained from TCGA on FireBrowse (gdac.broadinstitute.org/).

TCGA MAF files for gene mutation analyses were obtained from

https://gdc.cancer.gov/about-data/publications/pancanatlas. All

genes in which non-silent mutations occurred were considered to

be mutated. Total mutation burden was represented as the sum all

non-silent mutations in a given TCGA sample. Macrophage

regulation scores, leukocyte and lymphocyte infiltration scores,

and IFNg response and TGFb response scores for TCGA-LUAD

and TCGA-LUSC samples were downloaded as a Supplementary

File (Supplementary Table 1) from prior work (16). The gene

expression of 745 NSCLC patients and related clinical

information data were collected from the GSE67639 of the open

Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE67639).
Curation of immune-related genes (IRGs)

Immune-related genes (IRGs) were obtained from

Supplementary Table 6 by Charoentong et al. (17). All genes

from immune cells were collected (marker genes attributed to

cancer cells were excluded) and combined into a single list of 783

IRGs genes.
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Immune cell inference

Immune infiltration scores of six immune cells were calculated

using Binding Association with Sorted Expression (BASE) (18), a

rank-based gene set enrichment method. Previous publications

have detailed and validated immune cell infiltration using this

method (18–23). BASE uses immune cell-specific weight profiles

and patient gene expression data to infer immune cell infiltration

for each patient and immune cell type. The BASE orders genes for a

patient’s gene expression profile from high to low expression and

then uses weights from each immune cell weight profile to weigh the

patient’s gene expression values. BASE calculates two running

sums, one representing the cumulative distribution of the

patient’s weighted gene expression values (foreground function)

and another representing the cumulative distribution of the

patient’s complementary weighted (1-weight) gene expression

values (background function). In the presence of a high amount

of infiltrate from a specific immune cell type, the foreground

function increases quickly, as the highly expressed genes in a

patient’s profile tend to be the ones with high immune cell

weights, while the background function increases slowly. The

maximal absolute difference between the foreground and

background functions represents the immune infiltration level

and, after a normalization procedure, results in the final immune

infiltration score (19, 21). Similarly, BASE was used to calculate

single cell-based TRM scores using TRM signatures (see next section).
Generation of TRM signatures

NSCLC single cell RNA-seq datasets from human NSCLC were

obtained from previous publications (10, 24). Cluster annotations

were also obtained from these publications. For each NSCLC

cluster, a list of marker genes was provided by identifying genes

that are over-expressed in the corresponding cluster compared to all

the other clusters. These cluster-specific marker gene sets were used

as TRM signatures. In total, 20 human TRM signatures were defined,

including 10 CD8+ sources and 10 generalized TRM signature. The

signature gene expression and the proportion of cells expressing

these genes in the TRM8, TRM9, and TRM12 signatures were shown

in the sub tables of the Supplementary Table 2. Given a NSCLC

gene expression dataset, the BASE algorithm was used to calculate

sample-specific TRM scores for each signature. The TRM signatures

were represented as gene sets without assigning weights to the

member genes. In this case, the BASE algorithm degenerated into a

method like single-sample Gene Set Enrichment Analysis (ssGSEA)

(25). A high TRM score indicates that the corresponding TRM cells

are strongly infiltrated into the tumor.
Principal component analysis

Principal component analysis (PCA) was performed using the

prcomp R function. Principal component coordinates for each

sample were extracted using the factoextra R package (https://
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github.com/kassambara/factoextra). The percentage associated

with each principal component (PC) in PCA is calculated based

on the amount of variance that the component accounts for in the

original dataset. Mathematically, if there are n principal

components with eigenvalues l1, l2,…, ln, the percentage for

the first principal component (PC1) is calculated as:

PC1 percentage  = (l1 =(l1  +  l2  +… +  ln))*100

This percentage represents the proportion of the total variance

in the original data that is accounted for by the first principal

component. The same calculation is applied to the other PCs as

well. The percentage for the second PC (PC2) is calculated as:

PC2 percentage = (l2 =(l1  +  l2  +… + ln))*100

And so on for the remaining components. The percentages for

all the PCs should sum up to 100%, as they represent the

decomposition of the total variance in the dataset.

Principal component 1 (PC1) is the first principal component,

and it accounts for the largest possible amount of variance in the

dataset. A high PC1 percentage suggests that a significant portion of

the variation in the dataset can be captured by this single

component, which simplifies the interpretation of the data and

allows for visualization in a lower-dimensional space. PC1 was used

to represent TRM infiltration.
Estimation of stromal and immune scores

The gene expression data of LUAD and LUSC tissues in

derivation population were downloaded from the Genomic Data

Commons (GDC, available at: http://potal.gdc.cancer.gov/) Data

Portal. The FPKM (fragments per kilobase of exon per million reads

mapped) method was used to quantify gene expression. The

expression matrix for estimating the stromal and immune scores

was normalized by the ESTIMATE algorithm. Stromal and immune

scores were calculated by performing single-sample gene set

enrichment analysis. These scores formed the basis for the

Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression data (ESTIMATE) score (26).
Lasso Cox regression

The TCGA-LUAD dataset was randomly divided into a training

and testing set with a 1:1 ratio. The training set was analyzed to

identify potential prognostic genes and both the testing set and the

entire set were used for validation. First, univariate Cox-

proportional hazards regression analysis was used to evaluate the

association between the overall survival and the gene expression of

the gene set, which including the TRM signatures’ genes and 783

IRGs. Genes with a p-value of< 0.05 based on the log-rank test were

selected as candidate genes. Second, most minor absolute shrinkage

and selection operator (Lasso) Cox regression analysis from the R

glmnet package was employed to screen the genes most associated

with overall survival in a multivariate model, which resulted in 18
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genes (ABAT, AHSA1, BTN2A2, CCL20, CD109, CD200R1, CD70,

CLEC17A, FST, GNG7, HSPA4, HVCN1, KIR2DL1, LTK, NEFL,

RDX, and SIK1). These 18 genes composed the final risk score,

which is described as follows:

Riskscore =  o
n

i=0
bixi

where bi refers to the coefficients of each gene and xi represents

the expression value of the gene.
Survival analysis

For univariate and multivariate survival analyses, Cox

proportional hazards models were calculated using the “coxph”

function from the R “survival” package. Survival curves were

visualized using Kaplan-Meier curves using the “survfit” function

from the R “survival” package. Median immune cell infiltration

scores were used to stratify patients into “high” and “low” groups

for univariate analyses. For multivariate analyses, an infiltration

score of 0 was used as separator to stratify patients into “high” and

“low” groups. Differences in survival distributions in each Kaplan-

Meier plot were calculated using a log-rank test using the “survdiff”

function from the R “survival” package.
Enrichment pathway analysis

The R package fgsea, version 1.26.0 (27), was used to perform

GSEA with hallmark pathways from the Human Molecular

Signatures Database (MSigDB) (28) to investigate which hallmark

pathways were significantly (adjust P value< 0.05).
Statistical analyses

The Spearman correlation coefficient (SCC) was reported for all

correlation analyses as the assumptions underlying the Pearson

correlation (i.e., normal distribution, homoscedasticity or linearity)

were not met. SCC was calculated using the R function cor and

significance was assessed using cor.test. The sensitivity and

specificity of the diagnostic and prognostic prediction models

were analyzed by the ROC curve and quantified based on the area

under the ROC curve (AUC). All statistical tests were two-sided and

p-values< 0.05 were considered statistically significant. All statistical

analyses were performed using R software (version 4.2.0).
Data availability

All data available in this study is publicly available. These data

can be found at: gdac.broadinstitute.org/, https://gdc.cancer.

gov/about-data/publications/pancanatlas. caintergator.nci.

nih.gov, https://cgga.org.cn.
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Results

Custom TRM signatures representing the
TRM abundance in NSCLC from patient
single-cell data

Associated with cell surface markers including CD69, CD49a,

and CD103, TRM are non-circulating memory T-cells residing in

various tissues that provide an intrinsic defense system against

antigens. Developed from circulating effector memory T cells in

response to an antigen, TRM undergo rapid proliferation upon

reactivation with dual capability of both effector memory T cells

and memory T cells.

Binding Association with Sorted Expression (BASE), a rank-

based gene set enrichment analysis method (18–23), was performed

in conjunction with TRM signatures. Twenty TRM signatures, based

on gene expression, were isolated from TRM cell clusters to compile

data from various independent human NSCLC single-cell RNA-

sequencing (scRNA-seq) cohorts (10, 24) (Figure 1A). The twenty

TRM cell cluster gene sets are shown in Supplementary Table 3. This

process generated a manageable form of estimated abundance data,

validated in our previous studies (14, 20). Patients in TCGA-LUAD

were separated into high and low TRM abundance groups

(Figure 1B). The twenty TRM signatures have high correlation

with each other (Figure 1C).

Significant signatures were chosen for further analysis, and

individual signature survival analysis was conducted using

Lifelines KaplanMeierFitter to visualize the results. Three TRM

signatures (TRM8, TRM9, and TRM12) are most likely correlated

with NSCLC patients’ prognosis. Higher TRM abundance was

correlated with higher survival in the selected TRM signatures

(Hazard Ratio<1.0, Supplementary Figure 1A). When isolating

the three signatures into two high and low TRM infiltration

groups, the outcome is depicted in Figure 1D showing the two

groups are divided clearly and distinctly. The selected signatures

had positive correlations with key immune cells like T cells,

monocytes, memory B cells, naïve B cells, and especially strong

correlations with natural killer (NK) cells and CD8+ T cells, in

multiple independent cohorts (Figure 1E, Supplementary

Figure 2A). Some kinds of these immune cells are always

beneficial to patient prognosis, such as the CD8+ T cells

(Supplementary Figure 1C). These TRM signatures have very high

correlations with each other in multiple independent NSCLC

cohorts (Figure 1F, Supplementary Figure 2B).
TRM abundance is associated with the
expression of immune checkpoint and
stimulatory genes and immune
regulatory pathways

Principal component analysis for dimensionality reduction

captured the variance present in the highly correlated TRM

signatures. The first principal component (PC1) was highly
frontiersin.org
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correlated with all TRM signatures and captured 84.7% of the

variation in patients (Figure 1G, Supplementary Figure 1C), and

is better associated with patient prognosis (Figure 1H) than

conventional clinical variables including age and gender
Frontiers in Immunology 05
(Figure 1I). The PC1 could be suitable to represent the TRM

abundance (14). These results were then validated in an

independent NSCLC dataset, GSE67639 (Supplementary

Figures 2C, D).
B C

D E F

G H I

A

FIGURE 1

TRM cell abundance is positively associated with NSCLC prognosis. The PC1 score can represent TRM signatures, and it can represent the TRM cell proportion in
the NSCLC. (A) Utilizing multiple independent single-cell RNA-seq data from human NSCLC samples, we crafted 20 distinct NSCLC TRM signatures reflective
of TRM infiltration. (B) The infiltration distribution of the 20 TRM signatures in patients. (C) Heatmap of 20 TRM signatures we found and the correlation of them.
(D) The infiltration distribution of the TRM8, TRM9, and TRM12 signatures in patients. (E) The correlation of TRM8, TRM9, and TRM12 signatures with mainly
immune cells (natural killer (NK) cells, CD8+ T cells, monocytes, memory B cells, naïve B cells, and CD4+ T cells) in patients. (F) The correlation of the
selected TRM signatures with each other. (G) Principal Component Analysis (PCA) on the expression of the selected TRM signatures in NSCLC patients.
(H) Kaplan-Meier plot showing the association between overall survival and the first principle component (PC1) in NSCLC. (I) Forest plot depicting hazard ratios
of univariate Cox regression models evaluating the association between overall survival and several clinical variables. Figure 1A created with BioRender.com.
frontiersin.org
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The patients with high PC1 values also had hotter TIME, with

higher immune scores, ESTIMATE scores, stromal cell scores, and

lower tumor purity, which were evaluated by using the ESTIMATE

algorithm (26) (Figures 2A–D, respectively). PC1 is positively

correlated with various types of immune cells, immune checkpoint

and stimulatory genes (Supplementary Table 4), which were

identified and reported in the previous studies (29–32), respectively
Frontiers in Immunology 06
(Figures 2E, F). Furthermore, PC1 shows positive correlations with

many important immune-related pathways, like leukocyte

infiltration, lymphocyte infiltration, TCR richness, TCR Shannon,

macrophage regulation, stromal cell infiltration, and IFN-g response
(Figures 2G–L). These results corroborate the derived TRM signatures

and their association with key immune markers, suggesting that

tumors with higher TRM abundance may have more active TIME.
B C D

E F

G H

I J

K L

A

FIGURE 2

TRM cell abundance is associated with the expression of immune checkpoint and stimulatory genes and immune regulatory pathways. (A) Immune
score; (B) Stromal score; (C) Estimate score; (D) Tumor purity. (E) The Spearman correlation coefficient (SCC) between PC1 and immune cells.
(F) SCC between PC1 and immune checkpoint and stimulatory genes expressed in NSCLC. (G) SCC between PC1 and Th1, Th2, and macrophages
M1 cells. (H) SCC between PC1 and mast cells resting. (I) SCC between PC1 and leukocyte and lymphocyte infiltration. (J) SCC between PC1 and
immune infiltration score. (K) SCC between PC1 and TCR Shannon and richness. (L) SCC between PC1 and macrophage regulation and dendritic cell
(DC) resting. LUAD, lung adenocarcinoma.
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A prognostic tool of the risk score from an
18-gene panel for lung adenocarcinoma

Abundance data based on the TRM signatures is formed from a

large number of genes composing a final infiltration score. The

Lasso Cox regression model identified 18 genes significantly

associated with patient survival (Figures 3A, B).

A risk score based on these 18 genes was calculated in the form of

riskscore =  o
n

i=0
bixi, where corresponds to the weight of each gene and

xicorresponded to the expression of that gene in the patients’ cancer

tissues. The weights of the 18 genes are shown in Supplementary

Table 5. A higher weight represented more prognostic significance for

that gene. Weighted gene expressions were coalesced into a risk score

for each patient (Figure 3A). Each of the 18 genes is correlated with

patient survival (Figure 3B), the overall risk score provides a much

significant p-value as the low-risk patients had much higher survival

than the high-risk patients according to Kaplan-Meier analysis of

patients in TCGA-LUAD (p value =3e-11, HR =3.5, Figure 3C, left).

The prognostic significance of the risk score was further supported by

the independent dataset, GSE67639, where survival once again

significantly favors the low-risk patients (Figure 3C, right). More

low-risk patients have a high TRM abundance and have survived

(Supplementary Figures 3A, B). The predicted AUC reached 0.79,

0.77, and 0.84 in 1, 5, and 10 years, respectively (Figure 3D). Taken

together, lower risk patients had significantly higher survival; the 18-

gene risk score is a strong independent prognostic risk factor for

patients with NSCLC (Figure 3).
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Performance of the risk model with
respect to clinicopathological factors

The risk model proves effective with respect to patient cohorts

separated into male patients and female patients (Figures 4A, B), age

over and under 50 (Figures 4C, D), high and low tumor stage

progression (Figures 4E, F), and TNM cancer staging (T stages in

Figures 4G and H, N stages in Figures 4I and J, and M stages in

Figures 4K and L, respectively). T is assigned based on the extent of

involvement at the primary tumor site, N for the extent of involvement

in regional lymph nodes, and M for distant spread. Furthermore, in the

multivariate model, the risk score maintained its significance and

significantly outperformed the other clinical variables, including

gender, age, stage, and stages T, N, and M (Figure 4M). Therefore, the

18-gene risk model remains an effective prognostic tool when weighed

against current clinicopathological factors for patient prognosis.
The risk score correlated with immune cell
infiltration and regulatory pathways

The risk model correlated with immune cell infiltration and

relevant immune pathways (Figure 5). Low-risk patients have

markedly higher infiltration of lymphocytes, mast cells, and memory

B cells (p value = 2.0-e4, 1.5e-4, 0.012, respectively), whereas high-risk

patients have higher infiltration of neutrophil and macrophages M2 (p

value = 0.002 and p value = 0.003, respectively), suggesting more

beneficial TIME characteristics for patients with low-risk scores
B

C

D

A

FIGURE 3

Stratified survival analysis of the 18-gene risk score model and Kaplan-Meier survival analysis for the patients in independent datasets by the 18-gene
risk score model. (A) Development of a TRM risk score for NSCLC patients by Lasso Cox regression analysis. (B) The forest plot of the 18 genes in the
risk model. (C) Patients in the TCGA-LUAD and GSE67639 cohorts. (D) Time-dependence of NSCLC in 1, 5, and 10 years, respectively.
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(Figure 5A). Notably, low-risk scores correspond to a high number of

Th17 cells, but a lower number of Th2 cells and macrophages M2

infiltration (Figures 5B–D, respectively), whereas high-risk scores are

positively correlated with TGF-beta response, wound healing, mast cell

activation, and tumor proliferation (Figures 5E-H, respectively) and

negatively correlated with patients’ overall survival time and

progression-free interval (PF1) time (Figures 5I, J, respectively).
The patients with low risk scores and high
TRM abundance exhibit enrichment for
active immune pathways

The 18-gene risk score was further evaluated against various

Gene Ontology biological processes (GOBPs) by the gene set

enrichment analysis (GSEA) and the associated Molecular
Frontiers in Immunology 08
Signatures Database (MSigDB) (28). The NSCLC patients with

low risk scores and high TRM abundance are associated with the

upregulation of various T cells, natural killer cells, and lymphocytes

related immune pathways (Figure 6A). Especially, these patients

showed a similar correlation with pathways such as T cell and

lymphocyte chemotaxis (Figures 6B, C), affirming the connection

between PC1, risk, and patient prognosis.
Differential TRM abundance and its
prognostic value in lung adenocarcinoma
compared with lung squamous
cell carcinoma

Lung adenocarcinoma (LUAD) and lung squamous cell

carcinoma (LUSC) are two main subtypes of NSCLC. The TRM
B C D

E F G H

I J K L

M

A

FIGURE 4

Stratified survival analysis of the 18-gene risk score model in clinicopathological factors. (A) The risk model in male patients. (B) The risk model in
female patients. (C) The risk model in the elderly (age > 50). (D) The risk model in the young (age ≤ 50). (E) The risk model in low tumor stage
patients. (F) The risk model in high tumor stage patients. For the TNM cancer staging system, TNM stands for Tumor, Nodes, and Metastasis. T is
assigned based on the extent of involvement at the primary tumor site, N for the extent of involvement in regional lymph nodes, and M for distant
spread. (G) The risk model in low T stage patients. (H) The risk model in high T stage patients. (I) The risk model in low N stage patients. (J) The risk
model in high N stage patients. (K) The risk model in low M stage patients. (L) The risk model in high M stage patients. (M) Multivariate independent
prognosis analysis in NSCLC cohort.
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abundance are positively correlated with various anti-tumor

immune cells in both subtypes, but its correlation with B cell

mediated immunity pathways are noticeably different between

LUAD and LUSC (Figure 7A, Supplementary Figure 4). In

contrast to LUAD (Figure 3C), neither the TRM PC1 nor the 18-

gene risk score was able to distinguish any difference in survival

among LUSC patients (Figures 7B, C). Furthermore, the TRM score
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distinguished prognostic differences for both smoker or non-

smoker populations respectively in LUAC (Figure 7D) but not in

LUSC (Figure 7E). The TRM marker genes expression seem to be

much lower in LUSC than in LUAD patients (Figure 7F). The

immune score, stromal score, and ESTIMATE score (26), indicators

of how hot or cold the TIME is, are also lower in LUCS than LUAD

(p = 1e-18, 2.5e-11, and 6.1e-17, respectively, Figures 7G).
B C D

E F G

H I J

A

FIGURE 5

Risk model is most associated with immune cells in NSCLC. (A) Immune cell infiltration in low-risk vs high-risk patients. (B) The Spearman
correlation coefficient (SCC) between risk score and Th2 cells; (C) SCC between risk score and Th17 cells; (D) SCC between risk score and
macrophages M2 cells; (E) SCC between risk score and the transforming growth factor beta (TGFb) response; (F) SCC between risk score and wound
Healing; (G) SCC between risk score and mast cells activated; (H) SCC between risk score and tumor proliferation; (I) SCC between risk score and
overall survival (OS) time; (J) SCC between risk score and Progression-Free Interval (PFI) time.
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Discussion

TRM are a specialized population of T cells that reside in

peripheral tissues, especially in the lung and skin (33, 34). Our

comprehensive meta-analysis generated signatures of TRM

abundance in NSCLC patients using available single-cell RNA-

sequencing (scRNA-seq) data. We provide evidence that TRM

signatures are indicative of prognosis and immune responses in

NSCLC. A higher TRM abundance was correlated with higher

survival and better prognostic outcome in NSCLC patients.

Furthermore, the TRM signatures demonstrated strong

correlations with the presence of immune cells such as the CD8+

T cells and NK cell in the TIME, which are known to impact patient

prognosis (35). Higher TRM abundance in the TIME is associated

with higher degree of immune infiltration and ‘hotter’ TIME

(Figure 3). Infiltration by leukocytes, lymphocytes, stromal, and

DC cells are positively correlated with TRM whereas Th2 cells and

M2 macrophages are negatively correlated with TRM in NSCLC

patients (Figure 2).

An 18-gene risk score for lung adenocarcinoma prognosis was

developed, which are associated with T cell functions and

demonstrate significant associations with patient survival (36–49).

The risk model has better prognostic associations than various

clinicopathological factors, such as the gender, age, and stages.
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Similar patterns and immune regulation results were observed in

low- vs high- risk patients and high- vs low- TRM abundance

patients (Figure 6). The roles of most genes in activation,

metabolism, regulation, inflammation of T cells, and other

immune functions, have been solidly established in literature (36–

49). For example, ABAT-dependent mitochondrial anaplerosis is

critical for T cell-mediated inflammation (36), AHSA1 is involved

in the T-cell activation pathway and related pathways (37), and

BTN2A2 can inhibit the proliferation of CD4 and CD8 T-cells

activated by anti-CD3 antibodies, T-cell metabolism, IL2, and IFN-

g secretion (42). CCL20 is responsible for the chemotaxis of

dendritic cells (DC), effector/memory T-cells, and B-cells (43).

CD109 could activate T cells (44). CD200R1 might play an

important role in immunoregulation, which suppress T cell

function and inflammation through DC apoptosis and

polarization of macrophages toward M2 subtype (45). Tregs

stably-expressing CD70 will lost their regulatory functions but

activates cytolytic T cells instead (46). FUT4 was reported to be

involved in PD-1-related immunosuppression and could affect

operable lung adenocarcinoma pat ient survival . The

overexpression of HVCN1 on CD8+ T cells could enhance

adoptive T cell transfer immunotherapy (47), and KIR2DL1 plays

a unique opposite function in CD4+ T cells when interacting with

SHP-2 and/or SHP-1 proteins (48). The other 8 genes, CLEC17A,
B C

A

FIGURE 6

Gene Set Enrichment Analysis (GSEA). (A) Low-risk patients with significant up-regulated T cell, NK cell, and Lymphocyte -related pathways in the
NSCLC. (B) T cell chemotaxis pathways are significantly up-regulated in low- vs high- risk patients. (C) Lymphocyte chemotaxis pathways are also
significantly up-regulated in low- vs high- risk patients.
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FST, GNG7 (49), HSPA4 (38), LTK (39), NEFL, RDX (40), and

SIK1 (41), have been associated with general immune or tumor

suppression pathways (38–41, 49). The correlation between

immune response and some of the genes in the 18-gene list like

CCL20, CD109 and CD200R1 were also identified in other studies

(50–52). Given the significant correlations with TRM observed in the

current multi-omics study, those genes related to tumor immunity

and T cell interaction that have not been well-studied will be applied
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for future biological investigation. We compared the results of PC1,

risk model, and the risk model ROC using TRM8,9,12 and TRM9,12,

respectively. There are no significant differences between them. The

performance of the risk model based on TRM8,9,12 (AUC = 0.79,

0.77, and 0.84 in 1, 5, and 10 years, respectively) is better than

TRM9,12 (AUC = 0.77, 0.73, and 0.74 in 1, 5, and 10 years,

respectively), for the NSCLC patient prognosis (Figure 3,

Supplementary Figure 5).
B C

D E

F G

A

FIGURE 7

The TRM abundance difference between the LUAD and LUSC. (A) The T cell, NK cell, and immune response related pathways are significantly up-
regulated in low- vs high- risk of LUSC and LUAD patients. (B) High PC1 vs low PC1 LUSC patient survival. (C) High risk vs low risk in LUSC patient
survival. (D) High risk vs low risk in LUAD smoker patients and non-smoker patients. (E) High risk vs low risk in LUSC smoker patients and LUSC non-
smoker patients. (F) TRM marker genes expression difference between the LUAD and LUSC patients. (G) Immune score, Stromal score, and Estimate
score, respectively.
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Surprisingly, the TRM risk model was strongly predictive of

prognosis and survival in lung adenocarcinoma but not in lung

squamous cell carcinoma at all, although both are categorized as

NSCLC. The potential cause could be that the TIME of lung

squamous cell carcinoma has lower TRM abundance and a colder

TIME than lung adenocarcinoma as our analytical scores indicate.

Understanding the nuanced roles of TRM in TIME in lung cancer

subtypes may aid the efficacy of emerging treatment

approaches (53–55).

Altogether, the study highlights the importance of TRM in the

TIME and their potential as a prognostic tool for NSCLC. In

addition to cancer, our analytical method may also be applied to

understanding the potential role of TRM in other immune-related

diseases, such as rheumatoid arthritis, systemic lupus erythematosus,

type 1 diabetes, multiple sclerosis, psoriasis, inflammatory bowel

disease, autoimmune thyroid disease, etc. (56–58).
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