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The connections between cancer stem cells (CSCs) and epithelial-mesenchymal

transition (EMT) is critical in cancer initiation, progression, metastasis, and

therapy resistance, making it a focal point in cancer theragnosis. This review

provides a panorama of associations and regulation pathways between CSCs and

EMT, highlighting their significance in cancer. The molecular mechanisms

underlined EMT are thoroughly explored, including the involvement of key

transcription factors and signaling pathways. In addition, the roles of CSCs and

EMT in tumor biology and therapy resistance, is further examined in this review.

The clinical implications of CSCs-EMT interplay are explored, including

identifying mesenchymal-state CSC subpopulations using advanced research

methods and developing targeted therapies such as inhibitors and combination

treatments. Overall, understanding the reciprocal relationship between EMT and

CSCs holds excellent potential for informing the development of personalized

therapies and ultimately improving patient outcomes.
KEYWORDS
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1 Introduction

Cancer stem cells (CSCs) are a subpopulation with stem cell-like

capabilities including self-renewal and differentiation capabilities.

These characteristics allow CSCs to be tumorigenic and to shape

tumor plasticity and heterogeneity (1). Therefore, CSCs are believed

to be involved in tumor initiation, progression, recurrence,

metastasis, and therapeutic resistance (2–4). Understanding the

unique properties of CSCs has become a focus of cancer research,

intending to develop targeted therapies that can effectively eliminate

these cells. The CSC theory integrates genomic medicine with the

broader context of the tumor microenvironment, emphasizing the

interplay between genetic mutations and epigenetic modifications,

cellular interactions, and extracellular signals. This holistic

approach underscores the importance of considering the tumor as

a complex ecosystem, where CSCs interact with other tumor cells

and the surrounding stroma (5). Such interactions can influence the

behavior of CSCs, including their ability to undergo epithelial-

mesenchymal transition (EMT), which is a biological process that

allows epithelial cells to acquire mesenchymal, stem cell-like

properties, enhancing their migratory capacity, invasiveness, and

resistance to apoptosis (6).

The correlation between CSCs and EMT is complex and

multifaceted and has garnered substantial attention due to its

implication in the orchestration of tumor heterogeneity and

malignancy (Figure 1). For instance, in triple-negative breast

cancer, tumor-associated macrophages have been found to

promote EMT and enhance CSC properties via the activation of
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CCL2/AKT/b-catenin signaling (7). Similarly, Connexin46

expression was found to enhance CSC and EMT properties in

human breast cancer MCF-7 cells (8). Furthermore, EMT signaling

and CSCs present emerging biomarkers and opportunities for

precision therapeutics, particularly in the context of prostate

cancer (9, 10). It has become imperative to investigate the

intricate relationship between EMT and CSCs in the context of

cancer, as this understanding has emerged as a critical area of

cancer research with significant implications for developing

precision medicine. It is now recognized that EMT contributes to

the acquisition of CSC traits in non-CSCs, promoting their self-

renewal and differentiation abilities, and enhancing their resistance

to therapy (11). Moreover, CSCs have been identified as critical

drivers of metastasis, and EMT plays a pivotal role in disseminating

these cells from the primary tumor to distant sites (12).

Comprehending the dynamic interplay between EMT and CSCs

is crucial for addressing the challenges of tumor heterogeneity,

metastasis, and therapy resistance in clinical practice. This

understanding forms the foundation for developing innovative,

personalized therapeutic approaches that can improve patient

outcomes and lead to more effective cancer management. EMT and

CSCs are intricately linked, with EMT enhancing CSC properties and

contributing to tumor heterogeneity and therapeutic resistance. Key

signaling pathways, including TGF-b and Wnt/b-catenin, and
transcription factors like Snail and SOX2, drive this interplay,

complicating cancer treatment. Personalized medicine, leveraging

insights into EMT-CSC dynamics, offers targeted strategies to

overcome resistance and improve patient outcomes.
FIGURE 1

Interconnected roles of cancer stem cells and epithelial-mesenchymal transition in cancer biology. Left side the orange lines represent the key roles
of cancer stem cells and the right side the blue lines represent the key roles of epithelial-mesenchymal transition in cancer progression and
characteristics. This figure was created with Biorender.com.
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2 The interplay between EMT
and CSCs

2.1 Characteristics of CSCs and EMT

CSCs are studied extensively for their role in tumor initiation,

progression, and metastasis. Cancer-specific stem cell growth is

regulated with the help of specific microenvironments, and

interaction with these microenvironments plays a key role in the

maintenance of CSC populations (13). This environment consists of

a variety of factors such as hypoxic regions, stromal cells, immune

cells, network of cytokines and growth factors, and the extracellular

matrix (ECM), which helps in supporting the stemness of these

CSCs by modifying the self-renewal pathways such as Wnt/b-
catenin, Notch, NF-kB, JAK/STAT and Hedgehog or by

hindering the transcriptional regulators such as NANOG, OCT-4,

and SOX-2 (13–16). CSC-enriched populations can be

distinguished by identifying specific normal stem cell markers

and some distinct markers such as CD133, CD24, CD44, EpCAM

(epithelial cell adhesion molecule), CD117, THY1, ALDH1, and

CD200 when they are isolated from solid or hematological tumor

tissues (16–21). Certain cancer cells have the flexibility to undergo a

reversible dedifferentiation process, such as epithelial to

mesenchymal transition(EMT), and convert from a differentiated

state to a stem cell-like state depending on the distinct

environmental stimulus (11). These cancer cells that have

undergone EMT become more invasive and metastatic due to the

presence of self-renewal EMT-mediating transcription factors such

as Snail, Zebi, SOX2, KLF4, and many others which were discussed

extensively before (13, 22). Numerous cellular processes, such as

migration, metastasis, invasion, ECM alteration, and apoptosis,

were controlled by EMT (12). EMT markers and stem cell

markers (Table 1) are found to be expressed in circulating tumor

cells in metastasized patients, which makes them potential targets

for treating cancer in a targeted approach (52).

EMT is an intricate and highly dynamic cellular process that

assumes a pivotal role in various physiological and pathological

contexts (53), encompassing embryonic development (54), chronic

inflammation (55), fibrotic diseases like renal fibrosis (56), as well as

cancer progression and metastasis (57). Traditionally, epithelial

cells were characterized as terminally differentiated with distinct

apical-basal polarity (58)serving protective, supportive, and

secretory roles (59, 60). However, recent findings show that

epithelial cells can undergo a series of changes that entail the loss

of cell polarity (61), disintegration of intercellular tight junctions

and adherent junctions, acquisition of migratory capabilities (62,

63), and the adoption of mesenchymal cell morphology and

attributes (64), culminating in what is defined as EMT. Therefore,

EMT is mainly characterized by the loss of polarity of epithelial cells

and the acquisition of mesenchymal properties (65), including

fibroblast-like appearance (66) and the upregulation of genes like

vimentin (67, 68), Snail (69), and osteopontin (70). Consequently,

cells transition towards a fibroblast-like morphology or outright

transformation into mesenchymal cells, accompanied by enhanced
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migration and metastatic potential (71). It is a complex dynamic

process, mainly manifested as, on the one hand, it occurs between

cells, leading to the relaxation of tight cell-cell junctions and ECM

degradation through enzymatic hydrolysis (63); on the other hand,

it occurs inside cells , involving profound cytoskeletal

reorganization, diminished keratin expression, actin filament

restructuring, and the induction of vimentin expression,

ultimately morphing cells into spindle-shaped fibroblast-like

entities (66, 68). These changes collectively amplify cellular

migratory and invasive capacities, thus constituting a foundation

for physiological and pathological phenomena.
2.2 Role of CSCs and EMT in tumor
initiation, progression and metastasis

Previous literature has speculated that even one CSC can be

enough to regenerate a tumor (6). However, in order to maintain

their stemness, CSCs required to be in exposure of specialized

microenvironments also known as stem cell niches (13, 72). Several

niches, such as hypoxic conditions, vascular niche etc, were studied

extensively to understand how these microenvironments were aiding

in maintaining the CSCs and reprogramming normal cancer cells to
TABLE 1 EMT and CSCs representative biomarkers and the principle
signaling pathway involved.

Cancer
Type

Biomarkers
for EMT

Biomarkers
for CSC

Principle
Signaling
Pathway

Lung
Cancer

Snail (23), Slug,
Twist (24)

CD44+CD24- (25),
CD133+ (26)

TGF-b/Smad,
Wnt/b-catenin

Liver
Cancer

b-catenin (27)
CD133+ (28),
CD13+ (29),

CD45-CD90+ (18)

Wnt/b-catenin,
Notch

Esophageal
Cancer

Nanog,
SOX2 (30)

ALDH1A1+ (31) Wnt/b-catenin,
PTEN/PI3K/AKT

Breast
Cancer

Notch1,
Jagged 1 (32)

ALDH1A1+ (33),
CD44+CD24- (34)

Notch, PTEN

Gastric Cancer
GSK-3b, Snail,
Slug, Twist (35)

CD44+, CD133+,
ALDH1A1+ (36)

Wnt/b-catenin,
Hedgehog

Pancreas
Cancer

Snail, Twist,
SOX4 (37)

CD133+ (38),
CD105+ (39)

Wnt/b-catenin,
Hedgehog

Colon
Cancer

E-cadherin,
b-catenin (40)

Lgr5+ (41)
Wnt/b-catenin

Renal
Cancer

Slug, LEF (42)
CD133+ (43),
CD105+ (44)

Wnt/b-catenin,
Hedgehog

Prostate
Cancer

b-catenin (45),
CXCR4 (46)

CD44+ (47) TGF-b/Smad,
Hedgehog

Wnt/b-catenin,

Brain
Cancer

MMP1,
VIM (48)

CD133+, CD44+ (49) TGF-b/ Smad,
Notch

Leukemia AKT, VIM (50)
CD133+,

CD34+/CD38- (51)
TGF-b/Smad,
Hedgehog

Wnt/b-catenin,
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CSCs thereby promoting more tumor formations. One such example

of vascular niche involvement was a study that has demonstrated

CSC populations expressing CD133+ marker in brain, liver, and

pancreatic cancers produce increased levels of vascular endothelial

growth factor (VEGF) and stromal-derived factor-1 (SDF-1), which

stimulate angiogenesis thereby promoting metastasis (73–75).

Accumulating evidence shows EMT is associated with many

signaling pathways such as androgen receptor signaling, estrogen

receptor signaling, TGF-b (transforming growth factor b) signaling,
epidermal growth factor (EGF) signaling, Sonic hedgehog and WNT

signaling pathways and its role in the related tissue development,

wound healing and cancer (76, 77). Self-renewal pathways such as

NF-kB and the Wnt/b-catenin pathway were shown to contribute to

EMT activation, which is directly related to increased cancer

invasiveness and aggressiveness, resulting in poor patient outcomes

(20, 78). The interplay between CSC and EMT-involved pathways

was regulated at a genetic level (79).

In particular scenarios like breast cancer, CSCs identified as

BCSCs (Breast cancer stem cells) exist in specific development

states, the first one being in a mesenchymal state expressing

CD24-/CD44+ markers on their cell surface and the second being

in an epithelial cell-like state expressing an enzyme known as

Aldehyde dehydrogenase (ALDH) (80). A more significant

tumor-initiating capacity was observed in BCSCs expressing both

the marker and enzyme profiles (81).
2.3 Alteration of tumor heterogeneity,
plasticity and tumor
microenvironment alteration

Numerous literatures have shown that tumors contain explicit

cell populations that vary in multiple factors like karyotype,

phenotype, and chemoresistance (82–84). Sequencing studies have

shown distinct epigenetic characteristics of multiple cell clones

within the same tumor (85). This phenomenon is termed tumor

heterogeneity and is primarily orchestrated by producing various

phenotypically different subclones inside the tumor mass by CSCs

(86–88). EMT also contributes to cell plasticity and promotes intra-

tumor heterogeneity (89, 90).

Both EMT and CSC properties were related in tumors

exhibiting resistance to cytotoxic T-lymphocytes (91). Tumor-

associated macrophages (TAMs), a part of the stem niche in the

tumor microenvironment, contributed to EMT characterization

(92). Other studies have also indicated that TAMs can induce

chemoresistance in myeloma cell lines by directly interacting with

malignant cells and inhibiting the activation of caspase-dependent

apoptotic signaling (19).

Overexpression of drug transporter proteins of the ABC family

(mainly MDR1, ABCG2, and ABCB1) on the cell surface of various

CSCs has been shown to contribute to chemo-drug resistance and

promote disease relapse (93, 94). Self-renewal and cell proliferation

signaling pathways like JNK were shown to be upregulated in CSCs

and contribute towards cancer resistance by reducing the

generation of intracellular ROS caused by 5-fluorouracil and

gemcitabine (95, 96).
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3 Molecular mechanisms and
regulatory factors of EMT

3.1 Characteristics of EMT

The regulation of EMT involves a variety of molecular

mechanisms and regulatory factors. Several key signaling pathways

and transcription factors have been identified as central players in

controlling EMT and its association with cancer stem cells (CSCs).

For example, transforming growth factor-b (TGF-b) signaling is a

potent inducer of EMT, promoting downregulation of E-cadherin

and upregulation of N-cadherin and vimentin, thereby driving cells

toward a mesenchymal phenotype development (97, 98). In addition,

the Wnt/b-catenin pathway activates EMT-associated transcription

factors such as Snail and Twist, suppressing epithelial markers and

acquiring stem cell-like properties (99, 100). Furthermore,

transcription factors such as Nanog, OCT4, SOX2, and KLF4,

which are critical for maintaining stem cell pluripotency, have been

found to interact with EMT regulators to enhance the stem-like

characteristics of cancer cells (101–103).

Tumors are composed of heterogeneous cell populations.

Under normal circumstances, maintaining the homeostasis of

various tissues and organs in the body is based on self-renewal,

multidirectional differentiation and proliferation of CSCs are all

modulated by intricate regulatory mechanisms. However, the

interplay of various stimulating factors in vivo and in vitro, in

conjunction with the influence of CSCs, can trigger genetic

mutations, promoting the development of tumors (5). In fact,

CSCs tend to accumulate numerous gene mutations, which lead

to the loss of normal regulation of cells, excessive proliferation, and

even metastasis (2–4). Essential signaling pathways governing

cellular division and differentiation, such as Notch, Wnt/b-
Catenin, Ras/Raf/Mek/Erk, exert substantial influence within the

context of CSCs (104). Altered or hyperactive signaling through any

of these pathways can disrupt standard cellular regulatory

mechanisms, leading to the occurrence of tumors (105). The

complex network of molecular mechanisms and regulatory factors

that control EMT and its association with CSCs highlights the

complexity of this process and its importance in cancer biology.
3.2 Signaling pathways and transcription
factors regulating EMT and CSCs

EMT is a complex process regulated by a network of signaling

pathways and transcription factors intricately involved in

controlling CSCs (Figure 2). Among these pathways, TGF-b
stands out as a prominent inducer of EMT in various cancer

types. TGF-b activates downstream Smad signaling, leading to

upregulating transcription factors such as Snail, Slug, and Twist

(106). These EMT-associated transcription factors actively

downregulate E-cadherin while promoting the expression of

mesenchymal markers, including N-cadherin and vimentin (107–

109). Consequently, the epithelial cells undergo a metamorphosis

toward a mesenchymal phenotype. TGF-b is paramount in EMT,

often serving as a positive control in inducing EMT in experimental
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setups (109). In addition, TGF-b can enhance the self-renewal

ability of CSCs, contributing to tumor progression and treatment

resistance. As a pleiotropic cytokine, TGF-b exists in three subtypes:
TGF-b1, TGF-b2, and TGF-b3 (110), with TGF-b1 being the

extensively studied variant. Its presence is widespread in diverse

tumors, exerting regulatory effects on diverse cellular processes such

as immunosuppression, growth inhibition, EMT, and cell migration

(111, 112). The role of TGF-b varies throughout tumorigenesis; in

the early stages, it operates as a tumor suppressor, while in advanced

tumors, it facilitates tumor growth (113, 114). TGF-b-induced EMT

signaling pathways in tumor cells can be divided into two types

according to whether Smad protein is involved, Smad-dependent

classic TGF-b signaling pathway and Smad-independent TGF-b
signaling pathway. In the TGF-b/Smad signaling pathway, TGF-b
binds to specific receptors on the cell membrane, inducing

phosphorylation of Smad2/Smad3, followed by heterotrimer

formation with Smad4 (115). This complex translocate to the

nucleus, upregulating transcription factors like Snail/Slug and

Twist (106) . Concurrent ly , E-cadherin express ion is

downregulated, effectively controlling EMT at the transcriptional

level (97). For Smad-independent signaling pathways, on the other

hand, alternate EMT-associated pathways like integrin, PI3K/AKT,

and mitogen-activated protein kinase (MAPK) (116). TGF-b’s
interaction with its transmembrane receptor activates PI3K,

which generates the secondary messenger PIP3, subsequently

phosphorylating AKT. This leads to AKT translocating to the

nucleus, hindering GSK-3b-mediated degradation of b-catenin or

activating nuclear factor-kB, thereby influencing EMT (117, 118).

In addition to the PI3K/AKT signaling pathway, TGF-b’s
involvement extends to the Ras-Raf-MAPK pathway, where

downstream transcription factors, including extracellular signal-
Frontiers in Immunology 05
regulated kinases 1/2 (ERK1/2) and p38MAPK, facilitate EMT by

modulating downstream target gene transcription (116).

The Wnt/b-catenin pathway emerges as a pivotal regulator of

EMT and CSC. In the Wnt/b-catenin signaling pathway, the Wnt

protein binds to the corresponding transmembrane receptors,

thereby inhibiting GSK-3b activity (118). This stymies the

degradation of b-catenin, resulting in its intracellular

accumulation. When b-catenin accumulates to a certain extent, it

enters the nucleus, which collaborates with lymphoid enhancer

factor/T cell factor (LEF/TCF) transcription factors to activate

genes pertinent to EMT (119, 120). This sequence leads to the

suppression of E-cadherin expression and facilitates EMT

progression. In the process of EMT, an important molecular

event is the downregulation of E-cadherin, and the transcription

factor Snail can bind to the E-cadherin promoter region to inhibit

the expression of E-cadherin (121). E-cadherin is a typical single

transmembrane glycoprotein, which can regulate the adhesion

between Ca2+-dependent cells and play an essential role in cell

polarization and tissue formation (122). Downregulation or

inhibition of E-cadherin expression will turn on EMT and lead to

tumor invasion and metastasis. Batlle et al. determined that in many

tumors, E-cadherin is considered to be the target gene directly acted

by Snail, which directly binds to the E-box sequence of the

promoter region of E-cadherin, which reduces the expression or

defect of E-cadherin, thereby triggering EMT (123). In addition,

Zhang et al. found that antisense Snail prevents the occurrence of

EMT, and the process can be reversed by silencing the expression of

Snail protein (124). Furthermore, the transcription factor Snail can

indirectly upregulate the expression of matrix metalloproteinase

(MMPS) family members MMP-1, MMP-2, and MMP-7, inhibit

matrix synthesis, accelerate matrix component decomposition, and
FIGURE 2

Signaling pathways regulating EMT. The primary signaling and crosstalk of the TGF-b/Smad signaling pathway, Wnt/b-catenin signaling pathway,
Hedgehog signaling pathways, and their regulatory roles in cellular processes are illustrated. This figure was created with Biorender.com.
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increase cell invasion ability (125). Therefore, Snail induces EMT

and plays an essential role in tumor invasion and metastasis.

Indeed, the significance of Snail’s involvement extends beyond

EMT, encompassing various processes within tumor initiation

and embryonic morphogenesis (126). Snail can initiate EMT from

different pathways, and Snail plays a central role in this process,

coordinating the induction of different signaling pathways.

Experiments have observed that normal stem cell proliferation is

disordered when the Wnt pathway is abnormally activated, and

even tumor proliferation is formed. On the contrary, Fatima et al.

shut down the Wnt signaling pathway of cells, reduced the content

of b-catenin in liver cancer cells, and observed that the proliferation

of liver cancer cells was weakened (127, 128). The Wnt signaling

pathway plays a crucial role in colorectal carcinogenesis and has

emerged as a target for stem cell therapy against colon cancer.

Moreover, the process of EMT is also affected by transcription

factors that play an essential role in stem cell pluripotency. These

factors, including Nanog, OCT4, SOX2, and KLF4, constitute

pivotal determinants for maintaining the undifferentiated state of

embryonic stem cells (101–103). Aberrant expression of these

factors within the context of cancer cells can profoundly propel

EMT processes and promote CSC properties. Specifically, Nanog,

emerging as a standout influencer, has been shown to directly

regulate EMT-related genes and promote the stemness of cancer

cells (101, 102). The Notch pathway is highly conserved in the

process of biological evolution, comprising Notch receptors

(Notch1-4), Notch ligands (Jagged 1, Jagged 2, Delta-likeligand1-

4) and CSL (DNA binding protein), dividing into CSL-dependent

pathway and CSL-independent pathway (129). Its primary roles

encompass the maintenance of stem cell existence and initiating

postnatal embryonic or fetal cell differentiation. The Notch pathway

affects cell differentiation, proliferation, and apoptosis, constituting

a pivotal determinant in the genesis of malignant tumors (130).

Likewise, OCT4 and SOX2 have been discerned to interact

collaboratively with EMT transcription factors, thereby

intensifying cancer cells’ plasticity and stem-like attributes. The

hedgehog signaling pathway is essential in CSCs, mainly in basal

cell tumors (131). This pathway is regulated by two receptors,

namely Patched and Smoothened (SMO), positioned on the target

cell membrane (132). Patched receptors inhibit the activation of the

Hedgehog pathway, while SMO receptors promote the activation of

the Hedgehog pathway. Activation of SMO receptors triggers

downstream Hedgehog target gene activation, thereby delineating

an intricate regulatory landscape governing cellular proliferation

and survival (133, 134).

The intricate interplay among signaling pathways, such as TGF-

b and Wnt/b-catenin, along with transcription factors including

Snail, Nanog, OCT4, SOX2, and KLF4, controls the EMT process

and the development of CSCs. Many factors regulate the occurrence

of EMT in tumor cells. After undergoing EMT, tumor cells can

migrate to adjacent organs or distant sites, concurrently conferring

resistance against conventional chemotherapy and drug treatment.

Understanding the convoluted regulatory networks that control

EMT and CSCs can provide valuable insights into tumor

progression, metastasis , and resistance to therapeutic

interventions. However, studies have shown that EMT is not an
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irreversible process, and reversing or inhibiting EMT may be an

effective way to inhibit tumor cell migration or distant metastasis

(135). Targeting these pathways and factors holds great promise in

developing novel and personalized cancer therapies. Further

research in this area will help advance our knowledge and

improve clinical outcomes for cancer patients.
4 Clinical implications of EMT and
CSCs: biomarkers and
targeted therapies

The research on EMT-related signaling pathways provides a

direction for treating tumors and has also become the main target

of clinical new drug development. Studies have found that integrin-

linked kinase can activate AKT to lead to EMT, and down-regulating

integrin-linked kinase can inhibit EMT and metastasis of tumor cells

in endocrine cancer (136). Similarly, cysteine protease inhibitor C

(CystC) modulates the TGF-b signaling pathway across both normal

and tumor cells (137). The Ras pathway also suggests targets for the

research of tumor therapeutic drugs. For example, farnesyltransferase

inhibitors play an anti-tumor effect by inhibiting the binding of Ras to

the cell membrane and have been applied to the treatment of various

tumors (138). Src kinase inhibitors such as dasatinib can effectively

inhibit the growth of cells undergoing EMT, thereby inhibiting tumor

growth (139). Based on the close relationship between EMT and all

aspects of tumor metastasis, designing targeted intervention strategies

for the core regulatory mechanisms of EMT has become a research

hotspot in metastasis treatment. The initial strategy to intervene in

EMT is to directly block or reverse EMT to allow cells to regain their

epithelial cell characteristics. This is exemplified by interventions

like ADH-1 targeting N-cadherin (140), Fresolimumab targeting

TGF-b (141), Catumaxomab targeting EpCAM (142), and GN-25

targeting Snail (143).

Furthermore, the landscape of tumor therapy has been

redefined through the advent of RNA interference and (miRNA)

silencing strategies. For example, the targeted silencing of Snail gene

expression through short hairpin RNA has demonstrated the

potential to reverse EMT and inhibit in vivo tumor growth (144).

Similarly, the utilization of small interfering RNA targeting TGF-b
has shown promise in attenuating tumor metastasis in vivo,

substantiating the prospect of impeding EMT initiation via the

inhibition of TGF-b secretion within the tumor cell matrix.

Krutzfeldt et al. proposed that precise silencing of endogenous

miRNAs and RNA antagonists could also silence specific miRNA

expressions in vivo (145). Therefore, using miRNA as a therapeutic

target to inhibit the occurrence of EMT is also a new strategy for

tumor treatment.

Further research on EMT-related regulatory factors will help

better understand the mechanism of tumor cell EMT and provide a

new direction for understanding the mechanism of tumor

metastasis and recurrence. Consequently, the multifaceted

research imparts novel insights with the potential to reshape the

approach to tumor treatment. Reducing the drug resistance of

tumor cells by inhibiting EMT of tumor cells can be used as a

supplement to conventional tumor therapy and become a new
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personalized tumor treatment method. Developing new anti-tumor

drugs targeting EMT will be a new research direction.

Currently, the conventional cancer treatment modalities

encompass surgical excision, chemotherapy, radiotherapy,

ablation, and a combination of these methodologies. While these

approaches have substantially enhanced the overall survival rate of

cancer patients, the persisting challenge remains cancer recurrence.

Although traditional approaches manage to eliminate the bulk of

cancer cells, the enduring presence of cancer stem cells (CSCs),

constituting a minute fraction of the total cellular population,

invariably leads to cancer recurrence. The comprehensive

eradication of these CSCs is a pivotal requisite for attaining

curative outcomes. Consequently, CSCs are recognized as the

origin of the occurrence and development of malignant tumors.

By dissecting the attributes of CSCs, the potential emerges to

elucidate the pertinent CSC surface markers, formulate tailored

therapeutics targeting specific entities, and unearth novel avenues

for malignancy management. In clinical spheres, the development

of therapeutics and treatments singularly aimed at CSCs has gained

traction, thereby conferring a degree of selectivity towards CSCs

while preserving the homeostasis of normal stem cells. This

selection arises from the observation that CSCs, equipped with

ATP-binding cassette (ABC) transporters, can efflux drugs from

their cytoplasm, thereby fortifying themselves against drug toxicity,

endowing them with an inherent resistance to conventional

chemotherapeutics and radiation therapy, along with a propensity

for angiogenesis promotion.

Compared with paclitaxel, a commonly used chemotherapeutic

drug for breast cancer, salinomycin demonstrated a significantly

greater inhibitory effect on the growth of murine mammary tumors

in breast cancer xenografted nude mice (146, 147). Salinomycin

achieved this by targeting the EMT processes crucial for CSC

maintenance and metastasis (148). Its efficacy is about 100 times

greater than that of paclitaxel, due to its ability to inhibit EMT,

thereby reducing the expression of key EMT markers such as Snail,

Slug, and Twist (84, 149, 150). This process diminishes the CSC

population, which is essential for tumor initiation, progression, and

metastasis (151). Notably, the absence of breast cancer stem cell-

associated gene expression, particularly the CD44+CD24-

phenotype was observed with salinomycin treatment, further

emphasizing its specific action against CSCs (152, 153). This

heightened effect correlates with downregulating genes critical for

CSC function, such as ALDH1 (154) and the ABC transporter genes

(155, 156). Additionally, studies have shown that salinomycin

disrupts the Wnt/b-catenin signaling pathway, which is often

upregulated in CSCs, thereby enhancing its ability to target and

eliminate these cells (157, 158). In contrast, paclitaxel primarily

targets rapidly dividing cells but does not specifically affect the EMT

or CSC pathways, which contributes to its reduced efficacy against

CSCs (159, 160). Meanwhile, studies reported the capacity of

pancreatic stem cells to undergo differentiation into functional

pancreatic cells post-transplantation and play an essential role in

the recovery of pancreatic endocrine function and the repair of

pancreatic cell damage (161, 162). In addition, a small molecule

Hedgehog signaling pathway inhibitor, cyclopamine, reduced

acetaldehyde dehydrogenase by preventing aberrant pancreatic
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cancer Hedgehog signaling, which is often linked to CSC

maintenance (163). This pharmacological approach presents

promise in pancreatic cancer therapy by targeting pathways

essential for CSC survival and EMT, similar to the mechanism of

action of salinomycin in breast cancer.

Studies have shown that miRNA, combined with suitable

carriers, can repair multiple disease-related abnormal pathways by

restoring miRNA expression and targeting CSC (164), offering a

novel approach to tumor therapy. In vitro assays and xenograft mice

models demonstrated the effectiveness of inhibitors targeting

signaling pathways like Wnt/b-catenin, Notch, and Hedgehog in

effectively inhibiting CSC self-renewal (165, 166). The future focus

of CSC research must be the development of precision drugs

designed to selectively kill tumor cells to achieve the goal of

eradicating tumors.
5 Summary

A growing body of research has illuminated the intricate and

reciprocal relationship between EMT and CSCs, shedding light on

their profound implications for cancer biology. EMT promotes CSC

properties in non-CSCs, leading to tumor heterogeneity and

enhanced metastatic potential (89, 90). Notably, EMT-induced

phenotypic changes, including the loss of epithelial characteristics

and the acquisition of mesenchymal traits, parallel the emergence of

CSC traits (2–4). Moreover, the emergence of CSCs through EMT is

closely linked to therapy resistance, as CSCs are known to be

resilient to conventional treatments. EMT-driven CSCs often

exhibit increased drug efflux mechanisms and the ability to evade

the cytotoxic effects of therapeutic agents, presenting a formidable

challenge in clinical oncology (93, 94).

Further investigations have unveiled the regulatory networks

that govern the crosstalk between EMT and CSCs, highlighting key

signaling pathways and transcription factors that serve as central

orchestrators (97, 98). The TGF-b and Wnt/b-catenin pathways,

among others, have been identified as critical inducers of EMT and

are closely linked to CSC properties. Moreover, transcription factors

such as Snail, Slug, Nanog, OCT4, SOX2, and KLF4 play pivotal

roles in driving EMT-associated transformations and enhancing

CSC properties (101–103). This intricate web of molecular

mechanisms underscores the complexity of the EMT-CSC

interplay. Disrupting this interplay is crucial for cancer therapy,

potentially overcoming therapeutic resistance.

Additionally, the emergence of personalized medicine is

intimately linked to understanding the EMT-CSC relationship.

Through advanced research methods, it is now feasible to identify

EMT-CSC subpopulations within individual tumors (167, 168).

This provides a foundation for developing tailored treatments

targeting a patient’s tumor’s specific molecular and cellular

characteristics. Personalized therapies may involve a combination

of EMT and CSC-targeted agents to maximize treatment efficacy

while minimizing side effects.

In conclusion, the reciprocal relationship between EMT and

CSCs has profound implications for developing targeted cancer

therapies and personalized medicine. By disrupting this intricate
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interplay, we have the potential to transform the landscape of

cancer treatment, offering new hope for patients and improving

clinical outcomes.
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