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Exosomes represent a type of extracellular vesicles derived from the endosomal

pathway that transport diverse molecular cargoes such as proteins, lipids, and

nucleic acids. These cargoes have emerged as crucial elements impacting

disease diagnosis, treatment, and prognosis, and are integral to the process of

exosome formation. This review delves into the essential molecular cargoes

implicated in the phases of exosome production and release. Emphasis is placed

on their significance as cancer biomarkers and potential therapeutic targets,

accompanied by an exploration of the obstacles and feasible applications linked

to these developments.
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1 Introduction

Extracellular vesicles (EVs) are produced and released extracellularly by almost all cell

types and are widely distributed in various body fluids, such as urine, blood, breast milk,

saliva, cerebrospinal fluid, amniotic fluid, semen, etc (1–4). Extracellular vesicles can be

divided into three main subtypes, microvesicles (MVs), apoptotic vesicles, and exosomes,

based on their size, biogenesis pathways, and biological functions (5). Microvesicles,

measuring approximately 100–1000 nm in diameter, are directly released from the cell’s

plasma membrane (6). Apoptotic bodies, with diameters usually exceeding 1000 nm and

resembling platelets in size, are generated through apoptosis and comprise various

organelles, intracellular fragments, and cytoplasmic contents (7). Current evidence

suggests that exosomes are produced by endosomal pathways and released into

extracellular bilayer vesicles, a subgroup of small extracellular vesicles (sEVs) ranging

from 30 to 150nm in diameter (8). However, due to the limitations of current isolation

methods, most purified vesicles are usually less than 200 nm in diameter. Therefore, the

International Society for Extracellular Vesicles has recommended using “extracellular

vesicles” as a generic term (8). In this paper, “extracellular vesicles” primarily refers to

exosomes unless otherwise specified.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1417758/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1417758/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1417758/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1417758&domain=pdf&date_stamp=2024-06-25
mailto:wmy.gmu.kf@gmail.com
https://doi.org/10.3389/fimmu.2024.1417758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1417758
https://www.frontiersin.org/journals/immunology


Liu et al. 10.3389/fimmu.2024.1417758
The exosome biogenesis and release processes are tightly

regulated and achieved by the interplay of different effectors (9)

(Figure 1). These mainly involve endosomal sorting complex

required for transport (ESCRT)-dependent and ESCRT-

independent mechanisms (10). It is now understood that

exosome biogenesis begins with the endocytosis pathway, where

the plasma membrane invaginates to envelop cell membrane

proteins and some extracellular components to form early

endosomes (11, 12). Subsequently, early endosomes exchange

material with other organelles or further mature into late

endosomes (LEs), and late endosomal membranes invaginate to

formmultivesicular bodies (MVBs) containing intraluminal vesicles

(ILVs). Then, MVBs bind to lysosomes or autophagosomes for

degradation or are transported to the plasma membrane through

the cytoskeleton and microtubule network, fusing with the plasma

membrane and exocytosed to form exosomes (13–15). Among

these, the formation of ILVs, protection of MVBs from

degradation, and fusion of MVBs with the plasma membrane are

three key aspects in exosome biogenesis and release (16–18). There

is a rich literature available substantiating that exosomal cargo

molecules (proteins, lipids, and nucleic acids) regulate the whole

process (7, 10, 13, 19). However, little is currently known about how

these molecular cargo molecules regulate their biogenesis.

Early studies considered exosomes as waste material excreted by

cells to maintain homeostasis (20). Subsequent reports have shown

that exosomes can transport substances and transmit information

between cells, mediating many physiological and pathological

processes (21–23). In addition, these vesicles are involved in

immune regulation and intercellular communication and mediate

the progression of diseases such as cancer, metabolic diseases,

degenerative pathologies, and autoimmune conditions (2, 24–27).

It is widely believed that the key to the biological function of
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exosomes lies in their molecular cargo, including proteins, lipids,

and nucleic acids. These inclusions not only regulate the process of

exosome formation but can also reflect, to some extent, the

progression of diseases and act as mediators for treating certain

diseases (28). Wei et al. (29) explored novel exosomal biomarkers

for early diagnosis and prognosis of colorectal cancer. Plasma

samples were assayed and showed significantly higher expression

of CD9, CD63, and EpCAM in colorectal cancer (CRC) patients

compared to healthy and benign controls (AUC of 0.90 and 0.96,

respectively). Li et al. (30) reported that exosomal epinephrine A2

showed superior ability compared to circulating PSA in

differentiating between patients with prostate cancer and those

with benign prostate cancer, with an AUC of 0.906. The

composition of these exosomes may differ significantly between

healthy individuals and patients, suggesting certain molecular

cargoes in exosomes may be potential disease-specific markers.

Harnessing exosomes containing specific molecules to target

receptor-diseased cells may enable targeted disease treatment.

This paper explores the role of exosomal cargo molecules in

their biogenesis and release, summarizes the key role played by

these cargo molecules in disease diagnosis, and concludes with a

discussion of the challenges and potential applications of

exosome research.
2 Molecular cargoes regulating
exosome formation

Exosomes are found in biological fluids and act as carriers for

the transport of proteins, lipids, nucleic acids, and metabolites into

the pericellular environment, playing integral roles in various
A
B

FIGURE 1

Origin of exosomes and distribution of different exosomal cargo molecules. (A) Origin of exosomes. The ESCRT-dependent pathway, the lipid
raft and the four-transmembrane protein mechanism play a leading role, and the Rab protein further assists cargo sorting and exosome release.
(B) Exosome Common Cargo Molecules. Tetraspanin proteins (CD9, CD63, CD81), PD-L1, Integrins; Wnt protein, ALIX, Syntenin, HSPs, tenascin
C; GPC1, Rabs, Flotillin, DNA and RNA etc.
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physiological and pathological processes of the body (31, 32). In

addition, several cargo molecules play key roles in exosome

biogenesis and release. It has been reported that tetraspanins (e.g.,

CD9, CD63, CD81, CD82), major histocompatibility complex

(MHC) molecules, ESCRT proteins, and Rab proteins are mainly

involved (22, 33–35). An increasing body of evidence suggests that

lipid components such as ceramides, cholesterol, and phosphatidic

acid are also involved in this process (36–39). Molecular cargoes

associated with exosome biogenesis and release are summarized

in Table 1.
2.1 Proteins

2.1.1 Tetraspanins
Tetraspanins are integral membrane proteins with four

transmembrane structural domains abundantly found in cell

membranes. 33 different tetraspanins have been identified in

humans, some of which are involved in exosome membrane

formation (65). These proteins may interact laterally with

membrane molecules of lipids to form microregions rich in

tetraspanin transmembrane proteins (TMEM), which are required

to promote vesicle fusion and/or fission (66, 67). Likewise, they can

promote membrane bending and binding to actin, potentially via

the interaction of tetraspanins with Rho GTPases, affecting actin

structure and, consequently, alterations in membrane morphology

(68–70). In addition, tetraspanins also aid in the recruitment of

exosomal proteins and nucleotides, with CD molecules like CD9,

CD63, and CD81 widely recognized as exosomal biomarkers

influencing exosome biogenesis and composition (69, 71).

Previous studies have shown that tetraspanins are involved in

exosome production in an ESCRT-independent manner, mediated

by CD63 and unaffected by ESCRT, ceramide, and ubiquitination

pathways (16, 72). CD63 is widely thought to play an important role

in exosome formation. In this respect, CD63 knockdown in

HEK293 cells was found to reduce exosome production (73). In

the brains of patients with Down syndrome (DS), overexpression of

CD63 increased exosome release and attenuated endosomal

abnormalities (40). Importantly, CD63 may produce large protein

structural domains on the inner surface of late endosomes, which

then alter the physical properties of the membrane in an

invaginated manner, thereby affecting exosome secretion (41).

Current evidence suggests that CD81 is the most enriched protein

in exosomes (66). Interestingly, the cone-like structure of CD81,

which accommodates cholesterol molecules, can promote

membrane curvature changes. The aggregation of cone tetrameric

proteins induces them to bud inward toward the enriched regional

domains, contributing more to exosome formation (42). Other

tetraspanins that play a role in exosome biogenesis include CD9,

which interacts with the membrane metalloprotease CD10 to

enhance the exosome loading of CD10 (43). A recent study by

Chairoungdua et al. found that bone marrow dendritic cells

(BMDC) from CD9 knockout mice released fewer exosomes than

wild-type dendritic cells52, although the underlying mechanism has

not been elucidated (44). Besides, the recruitment of major

histocompatibility complex class II (MHC-II) to exosomes in
Frontiers in Immunology 03
TABLE 1 Role of related molecular cargoes in exosome formation.

Molecular
cargo type

Processes
involved

Role References

Tetraspanins

CD63 Exosome
biogenesis
and release

Alters the physical
properties of cell
membranes and
affects secretion

(40, 41)

CD81 Release
of exosomes

Promoting changes
in
membrane curvature

(42)

CD9 Exosome
formation

Increased exosome
content loading

(43, 44)

ESCRT

ESCRT-0 Release
of exosomes

Promote
deformation of
membrane structure
and raise ESCRT-1

(45, 46)

ESCRT-1 Release
of exosomes

Formation of
endosomal
membrane
structural domains

(47, 48)

ESCRT-2 Release
of exosomes

Promote film
deformation and
shrinkage, raise
ESCRT-III

(49–51)

ESCRT-3 Release
of exosomes

Powering membrane
remodeling through
ATP hydrolysis

(52–54)

Rabs

Rab11, Rab35 Exosome
biogenesis
and release

Promoting early
nuclear endosome or
circulating nuclear
endosome formation

(55)

Rab27A, Rab27B Exosome
biogenesis
and release

Promoting late
nuclear
endosome formation

(56, 57)

Rab5, Rab7 Release
of exosomes

Key molecules in
early and late nuclear
endosome formation

(58)

Ceramides

sphingomyelin Exosome
biogenesis
and release

Maintaining
membrane integrity
and stability

(59)

sphingosine
1-phosphate

Release
of exosomes

Promoting
spontaneous
membrane bending
and binding to
microstructural
domains

(60)

Phospholipase

phospholipase D Exosome
biogenesis
and release

Promote germination
of
intraluminal vesicles

(61, 62)

Cholesterol Exosome
biogenesis
and release

Exosome biogenesis
and release provide
driving forces

(63, 64)
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antigen-presenting cells (APCs) is independent of MHC-II

ubiquitination and depends on CD9-rich microstructural

domains (74). Notably, CD9 and CD82 interact with ceramide

and secrete b-linked proteins in exosomes, suggesting that

tetraspanin-mediated exosome biogenesis is closely related to

lipids (44). Future studies should focus on unraveling the specific

mechanisms of exosome biogenesis and release for different subsets

of tetraspanin molecules, which have potential as biomarkers and

can be targeted for therapeutic effects.

2.1.2 Endosomal sorting complex required
for transport

In recent years, ESCRT complexes have emerged as key players in

exosomal biogenesis by promoting the budding of ILVs and their

release into endosomes, thus promoting the formation of

multivesicular bodies (75). It has been established that ESCRTs

consist of four distinct protein complexes (ESCRT-0, -I, -II, and -III)

that bind to vacuolar protein sorting 4 (VPS4), Alix, and VTA1

proteins to promote vesicle budding and cargo sorting in MVBs (76)

(Figure 1). Protein ubiquitination is a key regulator that mediates the

sorting of ESCRT cargo into ILVs (77). The ubiquitinated cargo is

recognized and sorted by ESCRT-0 key subunit hepatocyte growth

factor-regulated tyrosine kinase substrates into phosphatidylinositol-3-

phosphate-rich (PI3P) endosomal compartments (78). Interestingly,

ESCRT-0, -I, and -II contain ubiquitin-binding subunits that link

ubiquitinated membrane proteins sorting to specific regions of the

endosome (45, 49). Importantly, ESCRT-0, -I, -II, -III, and Vps4 are

progressively recruited to function on the endosomal surface, thus

contributing to endosomal sorting and MVBs generation (46). First,

ESCRT-0 is recruited to the endosomal membrane by

monoubiquitinated transmembrane proteins to promote the

microdomain aggregation of ESCRT-0 in the vacuolar portion of the

nuclear endosome while deforming the membrane structure and

recruiting ESCRT-1 via the HRS PSAP structural domain interacting

with the subunit TSG101 of ESCRT-1 (79). Subsequently, ESCRT-0

and ESCRT-I aggregate cargoes beneath a flat protein lattice coating,

forming the substructural domain of the endosomal membrane (47,

48). Given that ESCRT-1 and ESCRT-2 are localized on the late

endosomal membrane, ESCRT-III is recruited, leading to membrane

deformation and constriction and, ultimately, microdomain budding

(49–51). Notably, it is now understood that cytoplasmic proteins are

engulfed by ILVs when ESCRT-1 and ESCRT-2 begin to invaginate to

form ILVs, although the mechanism of engulfment is unclear (80).

Furthermore, ESCRT-III proteins can form filaments that break down

ESCRT-III filaments and recycle ESCRT-III complexes via ATP

hydrolysis-derived energy in the presence of VPS4 ATPases

complexes, which together drive vesicle neck narrowing and ESCRT-

mediated membrane remodeling (52–54). Finally, the ESCRT-III

complex binds to Vps4 to drive membrane outgrowth away from

the cytoplasm while severing the membrane to release ILVs into the

lumen ofMVBs to form a closed vesicle (81). The above studies overlap

in their assertion that ESCRT-III is the main driver of

membrane remodeling.

Multiple lines of evidence support the key role of ESCRT

mechanisms in exosome formation. For example, deletion of
Frontiers in Immunology 04
HRS, ESCRT-0 subunit STAM1 (signal transduction adapter

molecule), and TSG-101 (tumor susceptibility gene 101) have

been reported to reduce exosome release from tumor cells (76,

82). However, the exact mechanism of exosome formation by

multiple components and associated proteins of the ESCRT

machinery remains unclear. Colombo et al. found that certain

components of the ESCRT machinery can selectively act on

subpopulations of MVBs and ILVs of exosomes by RNA

interference screening. However, the exact mechanism underlying

these findings has not been established (76). A recent study by

Giordano et al. documented the leptin/leptin receptor/Hsp90 axis as

an important regulator of exosome biogenesis in breast cancer cells,

mainly due to the interaction of TSG101, a key component of the

ESCRT-I fraction, with HSP90 (83). Nonetheless, whether this

mechanism is also applicable in other cell types remains to be

verified. Although the ESCRT mechanism has been shown to play

an important role in ILVs formation, how ESCRT proteins interact

to induce ILV outgrowth remains to be further investigated. AlP1/

Alix/Vps31, Tsg101/Vps23, and ubiquitinated proteins are widely

thought to be required for exosome release from dendritic cells

(DCs) (84, 85). In addition, ESCRT components can influence

functional changes by controlling exosome formation. For example,

the ESCRT-0 component HRS affects the antigen presentation

ability of dendritic cells by mediating dendritic cell exosome

biogenesis and/or release (50). Latent membrane protein 1

(LMP1) is an Epstein-Barr virus (EBV) oncoprotein that avoids

lysosomal degradation. Nkosi et al. found that overexpression of

LMP1 increased mRNA and protein expression of CD63, Syntenin-

1, HRS, ESCRT-III subunit CHMP6, TSG101, and Alix in

nasopharyngeal carcinoma cells, further enhancing EVs

production and release. However, knocking down ESCRT-

dependent components like Alix and HRS was found to reduce

the release of LMP1 EVs, cell proliferation and migration, and

tumor growth. This finding suggests that HRS recruits

ubiquitinated LMP1 to the endosomal membrane for EVs release

or lysosomal degradation (86).

2.1.3 Rab
Rab GTPases represent the most abundant protein family

within the Ras superfamily of GTPases that regulate vesicle

outgrowth, transport, and fusion processes by recruiting effector

proteins (55, 87). Several Rab GTPases have been shown to play

important roles in both exosome biogenesis and release, with Rab11

being the first Rab GTPase identified to be involved in exosome

release. Rab11 and Rab35 mainly mediate early endonucleosomal or

circulating endonucleosomal processes, while RAB27A and

RAB27B mainly mediate late endonucleosomal processes (55–57).

Importantly, the small GTPases Rab5 and Rab7 are critical for early

and late endosomes, respectively, and the class C vacuolar protein

sorting/homotypic fusion and protein sorting (VPS/HOPS)

complex mediates Rab5 to Rab7 conversion on endosomal

membranes (88). It has been reported that Rab11 is required for

sustained exosome release within the Drosophila neuromuscular

junction (89). Rab35 is present on the surface of oligodendrocytes in

a GTP-dependent manner, and inhibition of Rab35 function leads
frontiersin.org
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to the accumulation of endosomal vesicles within oligodendrocytes,

reducing the docking of MVBs to the plasma membrane and further

impeding exosome release (58). Notably, Rab27a can control the

docking of MVBs to the plasma membrane in different cell lines to

affect exosome release. For example, Rab27a can mediate the

docking of MVBs to the plasma membrane in Hela cells, neurons,

and podocytes (90, 91). Besides, Rab27a is involved in

submembrane actin cytoskeletal rearrangements, and is not

required to regulate exosome protein composition (92, 93). It has

been shown that Rab27b shares the same function as Rab27a in the

endosomal transport of MVBs, i.e., by facilitating the targeting of

MVBs to the cell periphery and docking with the plasma

membrane. In addition, Rab27a and Rab27b may lead to exosome

release via their corresponding effector proteins Slp4 and

Slac2b (90).

Although the cell type-dependent regulation of exosome release

by Rab proteins has been reported (18), it remains unclear which

specific cellular components these proteins act on. Even the role

played by the same protein in the release of exosomes differs across

cell types. For example, in retinal pigment epithelial cells (RPE1),

silencing Rab11 or Rab35 was found to inhibit anthrax toxin

exosome release, while silencing Rab27a did not affect exosome

release (94). In breast cancer cells, silencing Rab27a resulted in a

reduction in exosome release (95). Ostrowski et al. performed RNAi

screening of Rab GTPase family members in HeLa cells and found

that knocking down Rab27a or Rab27b significantly reduced the

amount of exosome release (90). In addition, Rab7 mediates

endosomal transport of MVBs to lysosomes and exhibits different

roles in cell type-dependent exosome release (58, 96, 97). Thus, the

regulation of exosome biogenesis and release by Rab GTPases

depends on their unique transport function and the specific cell

types in which they operate.
2.2 Lipids

Interestingly, lipid molecules in exosomes can promote

membrane invagination and induce spontaneous outgrowth of

ILVs, mainly due to their structural properties and metabolic

characteristics affecting membrane fluidity or curvature (13, 98,

99). At the same time, they may act as signaling molecules to

mediate exosome production and release (100). Notably, the

distribution of lipids in the two leaflets of the exosome bilayer is

asymmetrical, allowing exosomes to present different internal and

external signals (101, 102). Given that all EVs are formed by

cytoplasmic membrane outgrowth (inward or outward), their

lipid composition (ceramides, phospholipids, cholesterol, etc.)

may reflect the plasma membrane composition (100, 103).

However, the relative amounts of these lipids in the exosome

membrane may vary depending on the cell type and function of

the exosome.

2.2.1 Ceramides
Ceramide is a tapered lipid whose secretion is dependent on the

action of neutral sphingomyelinase (nSMase2). Once ceramide is
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produced from sphingomyelin (SM), it is readily converted to other

bioactive sphingolipids such as sphingosine and sphingosine 1-

phosphate (S1P) (59). Importantly, SM contributes to maintaining

membrane integrity and stability and is rich in lipid rafts that help

regulate cell signaling (104). It has been shown that inhibition of

neutral sphingomyelinase (nSMase2) inhibits ILVs outgrowth in

MVBs (105). Similarly, inhibition of nSMase2 in T cells and a

human embryonic kidney cell line (HEK293) reduced exosome

production and release (106, 107). Ceramide also caused

spontaneous bending of endosomal membranes and their binding

to microdomains, serving as a mechanism for ILVs sprouting (105).

Notably, it has been shown that ceramide does not directly affect the

maturation and exosome formation of MVBs but may be related to

S1P. S1P is a sphingosine phosphorylation product catalyzed by

sphingosine kinase (SphK) and is an important factor in the

formation and maturation of MVBs (60). S1P receptors on MVBs

are critical for sorting cargo into ILVs and S1P receptor activation

regulates downstream signaling of Cdc42 and Rac1 activity in Rho

family GTPases. The signaling cascade mediated by Gbg subunits/
Rho family GTPases promotes F-actin formation on MVBs,

facilitating the sorting of cargo into ILVs. It is highly conceivable

that F-actin formation is instrumental in cargo sorting for ILVs. In

addition, they found that downregulating specific siRNAs of S1P

receptor or SphK2 in HeLa cells resulted in reduced content of ILVs

protein cargoes such as CD63, CD81, and flotillin 2 in MVBs (108).

However, the potential mechanism of how S1P enters into MVBs to

activate the receptor remains to be further elucidated. This also

suggests a role for S1P in classifying ILVs as MVBs for exosome

release or entry into the lysosomal degradation pathway. Although

the interaction between ceramide and S1P has been previously

reported to mediate the process of autophagy induction via the

mTOR pathway (109), little is currently known about how both

regulate the autophagic lysosomal and exosomal release pathways.

Furthermore, in a hepatocyte lipotoxicity model, ceramide

transport from early endosomes to MVBs mediated by the

ceramide transporter protein StAR-associated lipid transfer

domain 11 (STARD11) led to ILVs outgrowth and regulated

exosome biogenesis (110). In melanoma cells, exosome

production is reportedly unaffected by ceramide deficiency (16).

Further research is warranted to determine whether ceramide-

induced intraluminal vesicle budding in different cell types acts

on specific subpopulations of multivesicular bodies. Wei et al.

reported that RAB31 could drive the membrane budding of

MVBs into the lumen to form ILVs dependent on ceramide in an

ESCRT- and tetra-transmembrane protein-independent manner,

which was mainly associated with the release of Flotillin protein

from lipid raft microdomains (17). This finding suggests that

multiple mechanisms may mediate exosome formation.

2.2.2 Phospholipids
Phospholipids also play a significant role in exosome biogenesis

and release. Similar to sphingomyelinase (SMase), phospholipase D

(PLD) decreases the size of the headgroup in membrane lipids

(100). PLD2 in endosomes and exosomes activates phosphatidic

acid (PA). This conical phospholipid stimulates ILVs to bud
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independently of the ESCRT mechanism, mainly due to the

negative curvature of the PA head group, which is smaller and

may form a cone that facilitates intraluminal bud emergence (111,

112). Importantly, PA can promote membrane rearrangement by

generating negative membrane curvature to interact with proteins

and by interacting with cargo molecules associated with

transporting MVBs and fusion. In addition, PA can facilitate the

flipping of endosomal to luminal membranes to aid ILV outgrowth

(105, 113, 114). The interaction of PA with syntenin has been

reported to trigger the recruitment of syndecan, CD63, and ALIX in

the membrane to stimulate the budding process of ILVs (115). In

addition, Wu et al. showed that sphingomyelinase interacts with PA

to enhance ceramide production and promote ILVs germination in

an ESCRT-independent manner (61). Recently, it has been shown

that Ral GTPases work synergistically with ARF6 to activate PLD on

the membrane of MVBs, which in turn affects PA levels to promote

ILV budding (62). Similarly, it has been shown that overexpression

of PLD2 leads to increased exosome release, which is mainly

associated with PA (116, 117). While studies have demonstrated

that phospholipase D regulates various cellular functions through

the production of phosphatidic acid, its specific involvement in

mediating the formation of intraluminal vesicles and exosome

release is still not fully understood, nor is it clear whether PLD

primarily acts through PA or in conjunction with other signaling

pathways to play a key role in these processes (118, 119).

2.2.3 Cholesterol
Cholesterol plays an important role in exosome biogenesis and

release by regulating membrane stability (63, 120). In addition,

cholesterol is highly enriched in circulating endosomes (121).

Möbius et al. used gas-producing podolysin O to label cholesterol

and investigate cholesterol distribution in the endocytic pathway of

human B lymphocytes. Cultured B lymphocytes were found to

contain both cholesterol-positive and cholesterol-negative MVBs.

Interestingly, those cholesterol-rich MVBs could fuse with the cell

surface to release exosomes, suggesting that the cholesterol content

in MVBs controls exosome release. Besides, some MVBs contained

up to 63% endosomal cholesterol (64). Another study revealed that

cholesterol might recruit and/or activate different proteins by

directly altering the intrinsic fusion properties of the membrane,

which in turn facilitates exosome release (122). For example, the

ESCRT complex may induce the formation of ordered membrane

microstructural domains in a cholesterol-dependent manner,

further facilitating ESCRT complex-mediated membrane

outgrowth (123). Exosome release is reportedly reduced in

bronchial epithelial cell lines (BEAS-2B) due to the cholesterol-

lowering effect of statins (124). Similarly, treatment of a

hepatocellular carcinoma cell line (Huh-7) with cholesterol

decreased the number of MVBs co-localized with lysosomes and

stimulated the release of M1-polarized exosomes from THP-1

monocytes (125). Thus, cholesterol content within the endosomal

membrane may drive exosome biogenesis and release. The exact

mechanism of cholesterol in exosome biogenesis and release is yet

to be determined. Moreover, other influencing factors include the
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parent cell type, the nature of the initial stimulus, and the

microenvironment (102).

In summary, exosome biogenesis and release is a complex

process that may vary depending on cargo or cellular origin.

Furthermore, the process of regulating exosome biogenesis and

release involves the coordination of multiple different molecular

cargo and signaling mechanisms, with the ESCRT-dependent

pathway and lipid raft and four-transmembrane protein

mechanisms playing a dominant role, and Rab proteins further

aiding cargo sorting and exosome release.
2.3 Other regulatory factors

It is well-established that cargo molecules are not the sole

regulators of exosome formation. Indeed, the extent of exosome

formation and release is influenced by microenvironmental factors,

such as hypoxia and eosinophilia. Cargo sorting, transport of MVB,

and fusion with the plasma membrane are key steps in exosome

release, which may be affected by hypoxia. Cargoes and cargo-

sorting machinery are the first regulators of exosome release, and

hypoxia may mediate their activity (3). In a recent study, double

immunofluorescence analysis confirmed that RAB22A was

enriched in microvesicle membranes, suggesting that RAB22A is

a carrier of MVs and an elevation in RAB22A expression,

dependent on Hypoxia-inducible factors, is crucial for promoting

heightened MV formation in hypoxic environments (126).

Although microvesicles are different from exosomes, this study

provided some insights into the hypoxic regulation of exosomal

cargo, which influences exosome release. Exosomal markers, such

as tetraspanin membrane proteins (CD81 and CD63) and TSG101,

are also good indicators of hypoxic regulation. Many researchers

have demonstrated that hypoxia leads to upregulation of

tetraspanins. For example, CD63 and GLUT-1 overexpression are

hallmarks of hypoxic states and are associated with poor prognosis

in patients with gastrointestinal mesenchymal tumors (127). These

studies indirectly support the idea that hypoxia may influence cargo

loading and subsequent exosome release. In addition, the low pH

and acidic microenvironment result from hypoxia, and these

features contribute to exosome release and uptake (128). This

phenomenon implies that hypoxia can indirectly facilitate

exosome release and uptake. Another indirect example is that

hypoxia induces exosome release in a calcium-dependent manner

involving MCT1 and CD147 (129).
3 Exosomal molecular cargoes as
diagnostic disease biomarkers

Exosomal components provide valuable insights into the

biological state of a cell and may carry information about the

health status of an organ or tissue. An increasing body of evidence

suggests that exosomal contents could be harnessed to diagnose

various diseases (130–134) (Figure 2). Table 2 summarizes several
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major classes of molecular cargo that may be biomarkers for

common clinical diseases.
3.1 Exosomal proteins

Exosomal proteins are widely considered as promising

biomarkers for various diseases, given that they encompass a

diverse repertoire of protein molecules that mirror the attributes

of their originating cells (154). Over the years, exosomal proteins

have been identified in different body fluids (e.g., serum, plasma,

urine, saliva, and cerebrospinal fluid) exhibiting huge potential as

diagnostic tumor biomarkers. For example, Glypican-1 (GPC1), a

cell surface proteoglycan belonging to the acetyl heparan sulfate

proteoglycan family (155). It has been proposed that GPC1-positive

exosomes are highly expressed in the sera of pancreatic cancer

patients and the exosomal protein GPC1 (AUC= 1.0) yields

significantly better performance than CA19–9 (AUC = 0.739) in

differentiating pancreatic cancer patients from healthy controls

(28). Importantly, CA19–9 serum levels exhibited limited ability

to distinguish between patients with intraductal papillary mucinous

neoplasm (PCPL) and healthy controls, whereas GPC1-positive

serum exosomes yielded 100% sensitivity and specificity across all

stages of pancreatic cancer (e.g., carcinoma in situ, stage I, and

stages II-IV) (28). Similarly, exosomal protein GPC1 expression was

significantly increased in both plasma and tissue specimen types in

patients with colorectal cancer; both returned to normal after

surgical treatment (135). Another study suggested that
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downregulated serum levels of exosomal Gastrokine 1 (GKN1)

protein may be a valid biomarker for diagnosing gastric cancer

(GC) (136).

A recent study by Kugeratski et al. analyzed the exosome

proteome in 14 human cell lines and showed that commonly

used exosome biomarkers, including CD9, CD63, and CD81, were

not commonly present in exosomes from different cell types.

However, ALIX, TSG101, and syntenin-1 were present in

exosomes from these 14 different cell types, which ruled out the

possibility that proteins expressed in very low abundance in these

cell lines could be used as exosome markers (132). This finding

suggests the heterogeneity in the composition of the four

transmembrane proteins across different cell types and indicates a

potential mechanism by which ALIX, TSG101, and syntenin-1 are

associated with exosome biogenesis. Syntenin-1 was the most

abundant protein in the exosome proteome across different cell

lines (132), emphasizing the potential of syntenin-1 as a universal

exosome biomarker. Notably, Hoshino et al. performed proteomic

analysis of extracellular vesicles and granules (EVP) in 426 human

samples from tissue explants (TE), plasma, and other body fluids.

Their analysis revealed that the levels of CD63 and flotillins exhibit

heterogeneity in plasma and tissue-derived EVPs. Moreover, the

study found that plasma-derived extracellular vesicles were

enriched with immunoglobulins, a protein family that can

effectively differentiate between normal samples and those from

various cancer types. It was also found that plasma-derived

extracellular vesicles were filled with immunoglobulins, which

constitute the predominant family of proteins distinguishing
FIGURE 2

Exosomal molecular cargoes as diagnostic disease biomarkers. Exosomes are distributed in various tissues and organs of the body, including the
lungs, kidneys, heart, stomach, pancreas, liver, intestines and prostate. Exosome contents of tumor origin are used to diagnose pancreatic,
colorectal, gastric, renal cell, non-small cell lung and prostate cancers.
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normal samples from cancer samples and different cancer types.

Additionally, these EVPs were rich in leucine-rich repeat protein 26

(LRRC26), the ATP-dependent translocase ABCB1 (ABCB1), the

bile salt export pump (ABCB11), the adhesion G protein-coupled

receptor G6 (ADGRG6), bridging granulin-1 (DSC1), desmoglein-1

(DSG1), keratin, type II epidermal Hb1 (KRT81), and fibrinogen-
Frontiers in Immunology 08
like protein B (PLGLB1). These proteins were only present in

plasma-derived EVP from pancreatic cancer (PaCa) patients, but

not in tumor tissue (TT) and adjacent normal tissue (AT)-derived

EVP or were expressed at extremely low levels, suggesting the

potential of these proteins as specific tumor-associated EVP

proteins. In addition, they showed that EVP proteins could
TABLE 2 Exosomal molecular cargo as a diagnostic biomarker for disease.

Molecular cargo Expression Diseases Source Separation
method

AUC Clinical
significance

References

Protein

GPC1 ↑ Pancreatic cancer Serum Ultracentrifugation 1.0 Early diagnosis and
prognostic monitoring

(28)

GPC1 ↑ Colorectal cancer Serum/Tissue Ultracentrifugation – Early diagnosis (135)

GKN1 ↓ Gastric cancer Serum Ultracentrifugation 1.0 Early diagnosis and
prognostic monitoring

(136)

CP, PODXL ↑ Renal cell carcinoma Urine Ultracentrifugation 1.0 Early diagnosis (137)

Tim-3/Galectin-9 ↑ NSCLC Plasma Ultracentrifugation – Early diagnosis (138)

mRNA

CTGF, ↑ Prostate cancer Serum Ultracentrifugation 0.86 Early diagnosis and
prognostic monitoring

(139)

CAV1 ↓ Prostate cancer Serum Ultracentrifugation 0.81 Early diagnosis and
prognostic monitoring

(139)

MT1-MMP ↑ Gastric cancer Serum Sedimentation
method

0.78 Diagnosis, treatment
and prognosis

(140)

EGFR ↑ Glioblastoma Serum Ultracentrifugation – Diagnosis (141)

miRNA

miR-423-5p ↑ Gastric cancer Serum Precipitation
method

0.76 Early diagnosis and
prognostic monitoring

(142)

miR-19b-3p/miR-
106a-5p

↑ Gastric cancer Serum Ultracentrifugation 0.82 Early diagnosis and
prognostic monitoring

(143)

miR-9-5p ↓ Alzheimer's diagnosis Serum Ultracentrifugation – Diagnosis (144)

miR-133a ↑ Coronary
artery disease

Serum Ultracentrifugation – Diagnosis (145)

lncRNA

UEGC1 ↑ Gastric cancer Plasma Ultracentrifugation 0.87 Early diagnosis (146)

HOTTIP ↑ Gastric cancer Serum Ultracentrifugation 0.82 Early diagnosis and
prognostic monitoring

(147)

GC1 ↑ Gastric cancer Serum Ultracentrifugation 0.90 Early diagnosis (148)

CCAT1 ↑ Gastric cancer Serum Ultracentrifugation 0.89 Early diagnosis (149)

Lipids

Phosphatidylserine and
lactose ceramide

↑ Prostate cancer Urine Ultracentrifugation 0.98 Early diagnosis (150)

glycerophospholipid Prostate cancer Cell
supernatant

Ultracentrifugation – Diagnosis (151)

Glycerophospholipids,
glycerolipids

↓ Hereditary a-trypsin-
like disorders

Urine Ultracentrifugation – Early diagnosis (152)

Acid sphingomyelinase ↑ Multiple Sclerosis Cerebrospinal
fluid

Ultracentrifugation 0.77 Early diagnosis (153)
↑, Upregulation; ↓, Downregulation.
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distinguish cancers during early stage disease for pancreatic (PaCa)

and lung (Luca) adenocarcinoma, highlighting their potential as

biomarkers for early cancer detection (156).

Raimondo et al. performed proteomic analysis of urinary

exosomes from patients with renal cell carcinoma (RCC) and

healthy controls. They found that matrix metalloproteinase 9

(MMP9), copper cyanine (Cp), podocalyxin (PC), DKK 4, and

carbonic anhydrase IX (CAIX) were significantly enriched in RCC,

while Aquaporin-1 (AQP-1), extracellular matrix metalloproteinase

inducer (EMMPRIN), enkephalinase (CD10), dipeptidyl peptidase

1 and Syntenin-1 expression were significantly decreased. The

diagnostic accuracy of CP and Podocalyxin (PODXL) for renal

cell carcinoma was significantly higher, with AUC values equal to 1

(137), suggesting the potential clinical application of CP and

PODXL protein molecules for diagnosing renal cell carcinoma.

Interestingly, Sun et al. identified members of the membrane-linked

protein family (Annexin A1, A2, A3, A5, A6, A11), nitrogen

permease regulator 2-like protein (NPRL2), carcinoembryonic

antigen-associated cell adhesion molecule 1 (CEACAM1), mucin

1 (MUC1), in salivary exosomes from lung cancer patients by

proteomic analysis, in addition to Prominin-1 (PROM1), histone

H4 (HIST1H4A) and tumor necrosis factor alpha-inducible protein

3 (TNFAIP3), which have been identified as biomarkers associated

with lung cancer (157). Plasma exosomal Tim-3 and Galectin-9

protein molecules exhibited significantly higher levels in patients

with non-small cell lung cancer (NSCLC) than in healthy controls.

Importantly, exosomal Tim-3 and Galectin-9 expression levels were

positively correlated with clinicopathological characteristics such as

patient age, tumor size, distant metastasis, and cancer stage. In

addition, exosomal Tim-3 was associated with lymph node

metastasis. Therefore, exosomal Tim-3 and Galectin-9 may be

potential biomarkers for clinical applications in NSCLC (138).

Diabetes mellitus and its associated complications are metabolic

diseases with high morbidity that result in poor quality of health

and life. A meta-analysis showed that circulating exosomes released

by platelets, monocytes, and endothelial cells were significantly

increased in diabetic patients; however, exosomes from leukocytes

did not differ between diabetic patients and controls (158). In

diabetic nephropathy patients, it was observed that the number of

urinary podocyte exosomes was significantly higher compared to

alterations in other biomarkers, including urinary albumin or renin

(which serves as an early indicator of glomerular injury) (159).

These findings suggest that exosomal proteins have huge

potential as diagnostic biomarkers. Future studies should focus on

expression levels of disease-specific proteins and further refine

current techniques to detect exosomal cargo proteins.
3.2 Exosomal mRNA

Messenger RNA (mRNA), transcribed from a strand of DNA as

a template, represents a class of single-stranded ribonucleic acid

that carries genetic information and directs protein synthesis.

mRNA is not only an important exosome cargo but also serves as

a functional regulator in the process of exosome derivation from

cancer cells (160). To compare the performance of circulating
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exosomal messenger RNA (emRNA) versus tissue mRNA in the

differential diagnosis of prostate cancer (PCa), Ji et al. used

sequencing and other methods, which demonstrated unique

expression patterns between emRNA and tissue mRNA. However,

circulating emRNA performed better as a diagnostic biomarker for

PCa patients. Receiver operating characteristic curve (ROC)

analysis showed that the AUC values for circulating emRNA in

screening and diagnosis of PCa patients were 0.948 and 0.851,

respectively. Furthermore, six molecules in emRNA, including

CDC42, IL32, MAX, NCF2, PDGFA, and SRSF2, were

upregulated during the screening and diagnosis of PCa patients

compared to healthy controls (161). Similarly, Shephard et al.

demonstrated the potential of serum-derived EV-mRNA in the

differential diagnosis of prostate cancer. Among them, increased

serum-derived EV-mRNA CTGF molecules or decreased EV-

mRNA CAV1 molecules were strongly correlated with the rate of

disease progression, and the AUC values for CTGF and CAV1 were

0.8600 and 0.8100, respectively. However, serum PSA did not

predict disease progression, suggesting that EV-mRNA CTGF and

CAV1 are superior to PSA (139). Another study showed that serum

exosomal membrane type 1 matrix metalloproteinase (MT1-MMP)

mRNA was significantly upregulated in patients with gastric cancer

compared with healthy controls and patients with chronic gastritis

or atypical hyperplasia, with an AUC value of 0.788, sensitivity of

63.9% and specificity of 87.1%, compared with an AUC value of

only 0.655 for serum CEA. In addition, the combination of

exosomal (MT1-MMP) mRNA combined wi th CEA

(AUC=0.821) was significantly better than (MT1-MMP) mRNA

or CEA alone in identifying GC patients. Importantly, serum

exosome (MT1-MMP) mRNA was significantly associated with

tumor differentiation, depth of infiltration, lymphatic metastasis,

distal metastasis, and TNM stage (140). Recently, it has been

suggested that exocrine epidermal growth factor receptor (EGFR)

mRNA may be a potential predictor of glioblastoma (141).
3.3 Exosomal miRNA

miRNAs represent a class of small endogenous non-coding RNAs

consisting of 18–24 nucleotides. It is widely acknowledged that

miRNAs delivered to recipient cells can regulate various genes by

blocking translation and inducing mRNA degradation (162). Recent

studies have revealed that exosomal miRNAs may be potential

biomarkers for certain cancers. For instance, Yang et al. found that

serum exosomal miR-423–5p levels were highly expressed in patients

with gastric cancer, with AUC values of 0.763, 0.596 and 0.607 for

exosomal miR-423–5p, serum CEA and CA-199, respectively,

suggesting that serum exosomal miR-423–5p may be a potential GC

diagnostic biomarker (142). In a recent study, six miRNAs were found

to be significantly highly expressed in the serum exosomes of GC

patients. The AUC values of these six miRNAs were 0.627 (miR-10b-

5p), 0.652 (miR-132–3p), 0.637 (miR-185–5p), 0.683 (miR-195–5p),

0.637 (miR-20a-3p) and 0.652 (miR-296–5p). In addition, the

combination of these six miRNAs improved the diagnostic accuracy

in GC patients (AUC=0.703) (163). Another study found that serum

exosomal miR-19b-3p and miR-106a-5p levels could distinguish GC
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patients from healthy controls, with AUC values of 0.813 and 0.806,

respectively. Similarly, miR-19b-3p combined with miR-106a-5p

demonstrated robust diagnostic power (AUC=0.826) (143). The

findings of the above studies suggest that exosomal miRNAs

represent potential biomarkers for certain diseases.

In recent years, exosomal miRNAs in Alzheimer’s diagnosis

(AD) have attracted extensive attention from researchers. A case

study found that 71 miRNAs were significantly different in CSF

exosomes from normal controls (19 upregulated, 33

downregulated) (164). Another study documented more miRNA

abnormalities in AD plasma exosomes (73 upregulated, 342

downregulated) (165). Among the downregulated miRNAs, mir-

9–5p exhibited significantly lower levels in the blood of AD patients

(144). In the context of coronary artery disease (CAD), exosomal

miR-133a was found to be elevated in injured myocardium and

dead cardiomyocytes (145). Recently, Liu et al. (166) revealed the

therapeutic role of circulating endothelial cell-derived microvesicle

miRNAs, especially miR-92a-3p, in regulating the phenotypes of

ECs and vascular smooth muscle cells under atherosclerotic

conditions, which could be a candidate marker for the predicting

prognosis of CAD.
3.4 Exosomal lncRNA

In addition to miRNAs, exosomal lncRNAs have attracted

interest as potential diagnostic biomarkers. Long-stranded non-

coding RNAs (lncRNAs) have been documented in the nucleus or

cytoplasm of cells and can interact with DNA, RNA, or proteins

(167). Several studies have suggested that exosomal lncRNA may

have huge potential as a diagnostic biomarker for cancer. For

example, plasma exosome lncUEGC1 was significantly

upregulated in patients with stage I or II gastric cancer, and

plasma exosome lncUEGC1 (AUC = 0.8760) yielded significantly

better performance than serum CEA (AUC = 0.6614) in diagnosing

patients with early gastric cancer, indicating that exosomal

lncUEGC1 may be a potentially highly sensitive biomarker in

diagnosing early GC (146). In addition, serum exosomal long-

chain non-coding RNA HOTTIP was found to be a potential

diagnostic marker for gastric cancer, with an AUC value of 0.827,

higher than CEA, CA19–9, and CA72–4 (AUC values of 0.653,

0.685 and 0.639, respectively). Importantly, HOTTIP expression

levels were significantly correlated with the depth of gastric cancer

infiltration and TNM stage (147). Another study confirmed that

high expression of circulating exosomal long-stranded non-coding

RNA-GC1 (lncRNA-GC1) could distinguish patients with early

gastric cancer from healthy controls, and ROC curve analysis

showed that exosomal lncRNA-GC1 (AUC=0.9033) exhibited

superior diagnostic performance than serum CEA, CA72–4 and

CA19–9 (AUC values= 0.5987, 0.6816 and 0.6482, respectively)

(148). In addition, LINC00152 was significantly elevated in the

plasma exosomes of gastric cancer patients. Elevated exosomal

LINC00152 has been reported to be a potential diagnostic

indicator of gastric cancer with an AUC value of 0.657 (168).

Similarly, Xiao et al. demonstrated that the serum EVs of gastric
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cancer patients exhibited a significantly elevated expression level of

lncRNA CCAT1 in comparison to healthy individuals, as well as

patients with chronic gastritis or atypical hyperplasia. The AUC for

EV lncRNA CCAT1 alone was 0.890, with a sensitivity of 79.6% and

specificity of 92.6%. When combined with carcinoembryonic

antibody, the AUC value increased to 0.910, with a sensitivity of

80.5% and specificity of 92.6%. In addition, EV lncRNA CCAT1

may promote GC cell proliferation, migration, and invasion

through c-Myc or Bmi-1 upregulation (149).
3.5 Exosomal lipids

Lipid molecules in exosomes are mainly used to maintain their

external morphology. Lipid molecules in EVs have been reported to

protect nucleic acid and protein contents from harmful stimuli in

the extracellular environment and function as biologically active

molecules involved in tumor biological processes (169, 170). It has

been suggested that exosome lipid molecules may also serve as

potential biomarkers for cancer patients (171–175). In this context,

Skotland et al. showed that urine exosomal lipid molecules (such as

phosphatidylserine and lactose ceramide) could be used as prostate

cancer biomarkers (150). Subsequently, Brzozowski et al. analyzed

exosomes released from non-tumorigenic (RWPE1), tumorigenic

(NB26), and metastatic (PC-3) prostate cell lines, and found

significant differences in the abundance of lipid species across

these three different prostate species. The abundance of

diacylglycerol (DG) and triacylglycerol (TG) species was reduced

in EVs from both NB26 and PC-3 cell lines compared to EVs from

the RWPE1 cell line. However, EVs in the NB2 and PC-3 cell lines

were enriched in glycerophospholipids compared to EVs in the

RWPE1 cell line. In addition, ceramide and SM species did not

differ significantly in these three cell lines (151). Exosomal lipid

components have been detected in hepatocellular carcinoma

(HepG2/C3a and Huh7 cells), melanoma (B16-F10 cells),

glioblastoma (U87 cells), and pancreatic cancer (AsPC-1 cells)

(176–179). Besides cancer, other diseases can be detected by

analyzing exosomal lipids in body fluids. For example, Glover

et al. showed reduced levels of exosomal lipid molecules such as

glycerophospholipids, glycerolipids, and sterols in the urine of

patients with hereditary a-trypsin-like disorders (152). Similarly,

overexpression of the exosomal lipid molecule, acidic

sphingomyelinase, in the cerebrospinal fluid of patients with

multiple sclerosis exhibited a significant correlation with disease

severity, thereby opening up new possibilities for diagnosing and

managing this condition (153). Among them, phosphatidylcholine

(PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI),

SM, cholesterol, and ceramide are the common exosomal lipid

molecules with significantly different expression in different

diseases (101, 125, 180, 181). In addition, EV-derived

sphingolipids in tumor cells promote endothelial cell migration

and angiogenesis during tumor growth and metastasis (182).

In summary, exosomal nucleic acid, protein, and lipid

molecular cargoes have promising applications as cancer

diagnostic biomarkers (Table 2). While tissue biopsy remains the
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definitive method for diagnosing tumors, it is an invasive procedure

and has certain limitations, especially regarding the amount of

tissue that can be sampled. The ideal diagnostic approach should be

able to accurately identify tumor-specific biomarkers through non-

invasive techniques, ideally at the pre-metastatic stage (183).

Most molecules currently employed as diagnostic tumor

markers rely on identifying the presence of marker molecules that

are expressed at significantly higher levels than those found in

healthy individuals. For instance, PSA is a diagnostic biomarker for

prostate cancer, and CEA is associated with gastrointestinal cancers.

Usually, these biomarkers show substantial increases, primarily

during the advanced stages of tumor progression.

It is important to acknowledge that current diagnostic methods

can be influenced by various factors, leading to potential false

negatives or false positives. Therefore, there is a need to enhance

their sensitivity and specificity. However, exosomes offer promising

advantages in this regard. They are present in various body fluids,

exhibit stability, and carry molecular cargoes that reflect genetic or

signaling alterations in cancer cells. Detecting exosomes as

biomarkers at earlier disease stages could potentially improve the

accuracy of cancer diagnosis, reducing the reliance on invasive

biopsies. The clinical significance of using exosomes as biomarkers

for cancer detection cannot be understated and warrants further

exploration and research (184, 185).
4 Discussion

Exosomes play a vital role in both physiological and

pathological processes, as they are released by diverse cell types

and can be found in nearly all body fluids. Acting as messengers in

cell-to-cell communication, exosomes play a vital role in normal

physiological and pathological processes. Exosome biogenesis and

release is a complex process in which molecular cargoes play an

important role. It is now understood that the ESCRT-dependent

pathway and the lipid raft and tetra-transmembrane protein

mechanisms play a dominant role, with Rab proteins further

aiding cargo sorting and exosome release. Likewise, lipid

components such as ceramide, cholesterol, and phosphatidic acid

are involved in the process. There is growing evidence supporting

the potential advantages of using exosomal molecular cargoes in

disease diagnosis. Exosomal contents can directly mirror the status

of secretory cells. Their small size enables them to traverse the

body’s tissue barriers and they are prevalent in various body fluids,

rendering them easily detectable in clinical settings. Moreover,

exosomes feature a lipid bilayer structure that shields their

contents from enzymatic degradation in the bloodstream. There is

growing evidence that the tumor microenvironment may influence

exosome content and alter organismal status. It has been suggested

that in the presence of hyperglycemia, exosomal macrophages could

participate in the development of muscle insulin-resistance and

chronic inflammat ion (186) . This sugges t s that the

microenvironment may be related to exosome biogenesis.
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Although tissue biopsy remains the gold standard for cancer

diagnosis, its limitation has been gradually revealed in the era of

precision cancer therapy. Thereinto, exosomes show the superiority

of high sensitivity, specificity and stability compared to other

biological components of liquid biopsy like CTCs and ctDNA.

For the past few years, a growing number of studies report that

exosomal nucleic acid and protein play a pivotal role in

tumorigenesis and tumor progression, which indicate that they

can serve as a diagnostic or prognostic biomarker. Nonetheless, the

studies concerning exosomal lipids and metabolites as diagnostic or

prognostic markers are insufficient. Though metabolomic or

lipidomic profiling of exosomes in some cancer types including

prostate cancer and pancreatic cancer has been conducted the

performance of identified exosomal metabolites or lipids in

clinical diagnosis and prognosis prediction remains to be further

evaluated in a larger sample size meanwhile their roles in

tumorigenesis and tumor progression should be explored.

Indeed, obtaining pure and homogeneous exosomes for

comprehensive analysis remains a challenge, thus limiting the

clinical application of exosomal cargo molecules. The most

difficult aspect of exosome research is their isolation and

acquisition. Addressing this challenge will significantly advance

exosome research. Fortunately, an exciting method has been

developed to directly capture exosomes from plasma, serum, or

urine. This approach utilizes a range of exosomal membrane

proteins, making it possible to isolate exosomes with minimal

sample preparation, eliminating the need for vesicle separation

(187). Therefore, future strategies for the study of exosome

contents can be divided into two categories: (1) isolation and

purification of exosome contents for further study of exosomes.

This approach is limited by the difficulty of obtaining high-purity

exosomes with current technology; (2) immunocapture methods

can capture exosomes directly in body fluids and be used for

analysis of the contents. However, this method requires the

targeting of specific specific antibodies, and the sensitivity of the

antibodies used and possible inhibitors of the reaction can affect the

accuracy of the results. In addition, exosomes found in body fluids

display a remarkable degree of heterogeneity, underscoring the

significance of tracking their source. Variations in the expression

of specific contents in these exosomes may provide insights into

their origins. In the future, it would be valuable to explore the

possibility of categorizing exosomes in body fluids based on their

content, akin to the classification of blood cells. If this can be

achieved, these exosomes may serve as a valuable tool for the

diagnosis and treatment of diseases.
5 Conclusion

In summary, exosomal cargo molecules play an important role

in their biological origin. In addition, exosomes present an exciting

research avenue with potential applications in disease prevention,

diagnosis, and therapeutic approaches.
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