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Purpose: Epidemiological studies have demonstrated the clinical link between

Hunner interstitial cystitis (HIC) and autoimmune diseases (ADs), suggesting

potential shared genetic bases for their comorbidity. We aimed to investigate

the shared genetic architecture and causal relationships between HIC and ADs.

Methods: We conducted a genome-wide cross-trait study with ~170000

individuals of East Asian ancestry to investigate the shared architecture

between HIC and ADs. Bidirectional Mendelian randomization (MR) was used

to assess potential causal relationships and a multi-trait analysis of GWAS (MTAG)

was conducted to identify their associated pleiotropic loci. Fine-mapping

analysis narrowed candidate gene susceptibility loci and colocalization analysis

was performed to identify shared variants at specific locus. Lastly, transcriptome-

wide association (TWAS) and functional analysis were utilized to explore potential

shared gene-tissue associations.

Results: Through bidirectional MR analysis, we observed a positive causal effect

of AIH(ORIVW=1.09, PIVW=1.00×10
-3) and RA (ORIVW=1.47, PIVW<1.00×10

-4) on

HIC and a negative causal effect of UC on HIC (ORIVW=0.89, PIVW< 1.00×10-4).

Furthermore, we unveiled a robust positive causal effect of HIC on T1D

(ORConMix=1.05, PConMix=1.77×10
-3). Cross-trait meta-analysis identified a total
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of 64 independent SNPs associated with HIC and ADs. Functional analysis

revealed that the identified variants regulated gene expression in major tissues

belonging to the autoimmune system.

Conclusions: Our findings might offer insights into the shared underlying

etiology of HIC and ADs.
KEYWORDS

cross-trait analysis, genetic epidemiology, Mendelian randomization, Hunner-type
interstitial cystitis, autoimmune disorder
1 Introduction

Hunner interstitial cystitis (HIC) is a rare and challenging

chronic inflammatory bladder disease of uncertain etiology. It is

characterized by persistent bladder pain and lower urinary tract

symptoms (LUTS), such as urinary frequency and urgency, along

with the presence of Hunner ulcers on cystoscopy (1). HIC is a

subtype of interstitial cystitis (IC)/bladder pain syndrome (BPS),

which is a broadly defined chronic pelvic pain syndrome involving

the urinary system. IC encompasses various potential etiologies and

clinical phenotypes, with a global prevalence of approximately 10.6

cases per 100,000 individuals (2). The diagnosed prevalence in

females is about five times higher than in males. Among IC cases,

HIC accounts for 3.5% to 50% of all cases. The pathogenic

mechanisms underlying HIC remain unclear, although previous

studies have suggested that it involves complex interactions between

multiple mechanisms, including neural, endocrine, and immune

factors (1, 3). Immunoglobulin and complement deposition,

aggregation of restricted light-chain plasma cells, and

upregulation of pro-inflammatory genes/molecules involved in

innate and adaptive immune responses have been detected in the

bladder tissues of HIC patients (4–8).

Furthermore, IC may be a systemic disease and is often

comorbid with various autoimmune diseases (ADs). Numerous

studies have demonstrated an increased prevalence of multiple

ADs in IC patients, including rheumatoid arthritis (RA), systemic

lupus erythematosus (SLE), Sjögren’s syndrome (SS), inflammatory

bowel disease, and autoimmune thyroid diseases (9–12).

However, due to the observational nature of traditional

epidemiological studies, methodological limitations still exist in

current research on the comorbidity between IC and ADs. The

underlying pathological and physiological mechanisms, as well as

genetic associations, particularly specific shared genetic factors and

potential genetic causal effects between IC and ADs, require further

investigation. Genome-wide association studies (GWAS),

functional genomics research, and integrative analyses offer new

avenues for studying the genetic architecture of complex diseases.

These approaches can identify candidate pathogenic genes or tissue/
02
cell types and provide insights into the development of disease-

related biomarkers and targeted therapeutics.

In this study, we conducted a large-scale genome-wide cross-

trait association study with ~170000 individuals of East Asian

ancestry to investigate the shared architecture between HIC and

ADs, including atopic dermatitis (AD), autoimmune hepatitis

(AIH), allergic rhinitis (AR), asthma (AS), contact dermatitis

(CD), Graves’ disease (GD), Hashimoto’s thyroiditis (HT),

hypothyroidism (HY), hyperthyroidism (HYPE), myasthenia

gravis (MG), pollinosis (PO), psoriasis vulgaris (PV), rheumatoid

arthritis (RA), sarcoidosis (SA), systemic lupus erythematosus

(SLE), Sjögren’s syndrome (SS), type 1 diabetes mellitus (T1D),

ulcerative colitis (UC), uveitis (UV). We aimed to not only assess

the genetic correlation and potential causal relationship between

HIC and ADs but also to identify pleiotropic loci associated with

joint phenotypes. We hope our findings can help better delineate

the biological implications of shared genetic architecture between

HIC and ADs.
2 Materials and methods

2.1 Study population, design, and
data summary

The workflow of our analysis was shown in Figure 1. In brief,

there were three main parts in our study: causal inference analysis,

cross-trait meta-analysis and post-GWAS analysis between HIC

and the 19 autoimmune disorders.

The GWAS summary statistic of HIC includes a total of 153

cases and 46,087 controls (13). The 153 cases were recruited at

Tokyo University Hospital in Japan between 2018 and 2020. DNA

samples of controls were obtained from the Biobank Japan Project

(BBJ). The autoimmune diseases included AD(Ncase/Ncontrol=2472/

142192, AIH(Ncase/Ncontrol=85/166529), AR(Ncase/Ncontrol=7897/

153666), AS(Ncase/Ncontrol=13015/162933), CD(Ncase/Ncontrol=247/

161777), GD(Ncase/Ncontrol=2809/172656), HT(Ncase/Ncontrol=537/

172656), HY(Ncase/Ncontro l=1114/172656), HYPE(Ncase/
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Ncontrol=994/172656), MG(Ncase/Ncontrol=81/178630), PO(Ncase/

Ncontrol=18593/153666), RA(Ncase/Ncontrol=5348/173268), SA

(Ncase/Ncontrol=220/177667), SLE(Ncase/Ncontrol=317/175937), SS

(Ncase/Ncontrol=303/175599), T1D(Ncase/Ncontrol=1219/132032),

UC(Ncase/Ncontrol=314/178375), UV(Ncase/Ncontrol=125/174600),

the GWAS summary statistics of were obtained from NBDC

Human Database, with the Dataset ID hum0197.v3.gwas.v1 (14).

We used ANNOVAR (15) to annotate variants of GWAS summary

statistics based on ‘hg19 avsnp150’. Additional details for each

dataset can be found in Supplementary Table S1 and

Supplementary Notes.
2.2 Causal inference analysis

To identify independent genetic instruments, we utilized

the PLINK clumping function with the following parameters:

clump-p1 = 5e-8, clump-p2 = 0.01, clump_kb=500Kb, and

clump_r2 = 0.2. This allowed us to determine the top loci that

were independent of each other. To ensure statistical power due to

the limited number of instrumental variables (n<10), we employed

more lenient criteria for instrument variable selection: clump-p1 =

5e-6, clump-p2 = 0.01, clump_kb=500Kb, and clump_r2 = 0.2.
Frontiers in Immunology 03
Furthermore, we applied Steiger filtering to the instrumental

variables and excluded instruments with F-statistics<10.

We utilized several MR methods to examine the causal

relationships between each ADs and HIC. Our primary MR

analysis was the contamination mixture (ConMix) approach (16),

which explicitly modeled multiple potential causal estimates and

inferred multiple causal mechanisms associated with the same risk

factor that affects the outcome to different degrees. Additionally, we

also applied several sensitivity analyses to validate our results. The

MR-PRESSO (17) was employed to remove outliers and ensure

efficient use of valid IVs. MR-Egger regression (18) provided

estimates after the correction of pleiotropy. The weighted-median

(WM) estimator approach, as a median of the weighted estimates,

provides a consistent effect even if half of the IVs are pleiotropic

(19). The median-based method(MBE) proceeds by constructing a

kernel-weighted density of the variant-specific estimates, and taking

the maximum point of this density as the point estimate. A

confidence interval is obtained by bootstrapping (20). Finally, we

employed the inverse-variance weighted (IVW) method (21), which

is a robust approach. We corrected multiple testing for MR P-values

by the Bonferroni method, and a P-value of 0.00263 (0.05/19) was

considered as the significant level. A P-value less than 0.05 is

considered as the threshold indicating statistical significance. ADs
FIGURE 1

Overall study design. The GWAS summary statistics are retrieved from various published sources, then the bidirectional Mendelian randomization
(MR) analyses were employed to assess potential causal relationships. The multi-trait analysis of GWAS (MTAG), combining single-trait GWAS data,
was further conducted to investigate the underlying comorbidity mechanisms, followed by fine-mapping, colocalization analysis, transcriptome-wide
association (TWAS), functional analysis and transcriptome sequencing.
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that showed possible causal relationships with HIC were included in

the following analyses.

We also performed several sensitivity analyses to assess the

robustness of our results to potential violations of several MR

assumptions. a) Heterogeneity was estimated by the Cochran Q

test of IVW and MR-Egger; b) The horizontal pleiotropy was

estimated using MR-Egger’s intercept; c) The influential outlier

IVs due to pleiotropy was identified using MR-PRESSO’s outlier

test. After removing the outlier instrumental variables (IVs)

identified by MR-PRESSO, we conducted the MR analysis again.

The same approach was taken for the reverse MR which was

used to eliminate spurious results due to reverse causation.

Generally, all the analyses were conducted using R software 4.2.0.

The MR-PRESSO method was performed using the “MRPRESSO”

package. The IVW, MR–Egger, WM, ConMix and MBE methods

were performed using the “MendelianRandomization” package.

The forest plot of single SNP, funnel plot and scatter plot were

performed using the “TwoSampleMR” package.
2.3 Fine-mapping credible set analysis

We performed statistical fine-mapping using FINEMAP (22).

We computed LD in each locus using R package ‘LDlinkR’ (23)

based on genome build GRCh37 and the East Asian population of

1000 Genome project population. We defined a fine-mapping

region as the 3Mb (± 1.5Mb) window around each lead variant.

This window size is based on recommendations for fine-mapping

and colocalization analyses. We allowed up to 10 causal variants per

window and extracted the posterior inclusion probabilities (PIP) of

each variant using each method independently. The variants with

PIP>0.90, along with having LD r2>0.2 with the lead variant, are

considered the final candidate causal variants. We applied 3DSNP, a

comprehensive database for human noncoding variants annotation,

to annotate these causal variants (24).
2.4 Colocalization analysis

We extracted summary statistics for variants within 500 kb(±

250kb) of the index SNP at each of the shared loci between HIC and

ADs and performed colocalization analysis between HIC and each

ADs trait using R ‘coloc’ package (25) to calculate the probability

that the two traits shared a common genetic causal variant. We

caculated the posterior probability that the 2 traits were associated

with different causal variants(H3) or that the 2 traits were associated

and shared 1 common causal variant(H4). The posterior probability

for H3(PPH3) or H4(PPH4) that was greater than 0.5 was

considered colocalized (26).
2.5 Cross-trait meta-analysis

We then implemented a cross-trait meta-analysis of GWAS

summary data using Multi-Trait Analysis of GWAS (MTAG) (27),

a method for joint analysis of summary statistics from GWASs of
Frontiers in Immunology 04
different traits, to identify pleiotropic loci with strong signals

associated with ADs and HIC. By analyzing multiple traits

together, this approach increases the statistical power of detecting

genetic associations for each trait. The MTAG estimator is a variant

of the IVW meta-analysis that utilizes summary statistics from

single-trait GWASs and generates trait-specific associations

statistics. The resulting P-values can be considered as P-values

from a single-trait GWAS. We applied PLINK clumping function

parameters: -clump-p 5×10-8, -clump-r2 0.2 -clump-kb 500, to

determine top loci. The variant with the lowest p-value was

defined as the sentinel variant. A P-value of 5×10-8 was

considered as a genome-wide significance for cross-trait meta-

analysis and the significant SNP should also meet a requirement

that p value of 5×10-3 from both single traits.We then performed

functional annotation by Functional Annotation of Variants-

Online Resource (FAVOR) (28), an open-access variant

functional annotation portal for cross-trait meta-analysis.
2.6 eQTL mapping, tissue enrichment
analysis, and pathway analysis

To map the shared SNPs between HIC and ADs traits to specific

genes which they show a significant eQTL association with, we

conducted the eQTL mapping analysis using the Functional

Mapping and Annotation(FUMA) website (29), incorporating the

SNP2GENE function with the cis-eQTLs reported by DICE (30),

which were identified in 13 immune cell types isolated from 106

leukapheresis samples provided by 91 healthy subjects, and the eQTLs

reported by van der Wijst et al (31), which were identified from

25,000 peripheral blood mononuclear cells (PBMCs) from 45 donors.

To delve into the biological implications of the shared genes

among the ten trait pairs, we performed GTEx tissue enrichment

analysis within the clumping region for each trait identified by

MTAG, using the FUMA website based on 54 tissue types sourced

from GTEx(version 8) (29). Additionally, we utilized the FUMA

website to assess the enrichment of independent loci for each trait

pairing and to explore shared genes between ADs and HIC,

examining their association with Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) terms to elucidate

relevant biological pathways. The method for multiple testing

correction was BH with an adjusted p-value cutoff (0.05).
2.7 Transcriptome-wide association

To explore the potential shared gene-tissue associations between

ADs and HIC, we performed a TWAS using FUSION (R package),

based on 49 GTEx (version 8) multi-tissue expression weights.

FUSION adopts a Bayesian sparse linear mixed model (BSLMM)

(32) that combines Bayesian variable selection (BVSR) (33) and linear

mixed model (LMN) (34) with the normal mixture prior assumption

to train weights between observed gene expressions and cis-acting

genetic variants with reference dataset. This method tests the

association between predicted gene expression and phenotypes of

interest. Besides, we applied Benjamini-Hochberg correction for each
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trait’s all gene-tissue pairs on TWAS P-values, accounting for

multiple tests (false discovery rate < 0.05).
2.8 Extraction of TPM expression matrix of
genes of interest from the GEO database

The microarray datasets GSE11783 (6), GSE55235 (35),

GSE206364 (36), and GSE181674 (37) were extracted from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/). Specifically,

the GSE11783 dataset for HIC is based on the GPL570 platform,

the GSE55235 dataset for RA is based on the GPL96 platform, the

GSE206364 dataset for AIH is based on the GPL20301 platform,

and the GSE181674 dataset for T1D is based on the GPL21290

platform. We selected the TPM expression matrix of the genes of

interest and performed a Wilcoxon rank-sum test to compare gene

expression levels between the control and disease groups. The

inclusion details of the samples in each dataset are provided in

Supplementary Table S2.
3 Results

3.1 Causal inference between HIC and ADs

We explored the genetic relationship between HIC and ADs

using Bidirectional MR analyses to gain additional insights into

the genetic connections between these diseases. Bidirectional MR

analyses were first addressed to investigate the causal

relationship between HIC and ADs. The details were presented

in Supplementary Tables S3-4; Figure 1. Based on forward MR

analysis, we found that ADs might have a potential causal effect

on HIC. Specifically, genetically predicted AIH (ORIVW=1.09,

PIVW=1.00×10-3) and RA (ORIVW=1.47, PIVW<1.00×10-4)

exhibited significant positive causal effect on HIC. This result

was further validated in sensitivity analyses using other MR

methods. The forward MR analysis using the ConMix

approach revealed potential positive causal effects of SA

(ORConMix=1.16, PConMix=1.63×10
-2) and T1D (ORConMix=1.37,

PConMix=9.22×10
-3) on HIC despite not meeting the threshold

of FDR correction. However, the reverse MR analysis

revealed significant positive causal effects of HIC on T1D

(ORConMix=1.05, PConMix=1.77×10
-3), suggesting that HIC is

likely a risk factor of T1D (Figure 2).

Genetically predicted UC (ORIVW=0.89, PIVW< 1.00×10-4) has a

significant negative causal effect on the risk of HIC, which was

agreed by other MR methods (PWM<1.20×10
-4, PConMix=3.07×10

-3)

and sensitivity analysis using MR-PRESSO (ORPRESSO=0.89,

PPRESSO=2.23×10
-5). Additionally, a forward MR analysis using

the ConMix and Egger approach revealed a potential negative

causal effect of GD on HIC (ORConMix=0.81, PConMix=3.56×10
-2;

OREgger=0.80, PConMix=2.22×10
-2).

Reverse MR analysis revealed a positive causal effect of HIC on

RA. However, after correction using the outlier test in MR-PRESSO,

the aforementioned causal effects are no longer significant.
Frontiers in Immunology 05
Additionally, the reverse analysis revealed potential negative

causal effects of HIC on HT (ORConMix=0.95, PConMix=4.98×10
-2)

and SLE (ORConMix=0.92, PConMix=3.58×10
-2) after removing the

outliers identified by the PRESSO analysis (Figure 2). The detailed

results of the sensitivity analysis for MR can be found in

Supplementary Table S5 and Supplementary Figures S1-116.
3.2 Cross-trait meta-analysis between HIC
and ADs

After investigating the causal relationships between HIC and

ADs, we conducted cross-trait meta-analyses to identify individual

SNPs underlying the joint phenotypes based on MTAG(all these

SNPs fulfilled Psingle<5×10
-3, PMTAG<5×10

-8) to combine the

association evidence for HIC with ADs (Table 1 and Figure 3).

We identified a total of 64 independent SNPs. For HIC and

AIH, in total, we identified 1 independent SNPs. The most

significant SNP (rs564176274, PMTAG= 9.40× 10− 9, PHIC=

1.62 × 10− 5, PAIH= 3.23 × 10− 5) was located at the intergenic

region, which was near gene HLA-DQB1.For HIC and RA, we

identified 62 shared independent SNPs. The most significant SNP

(rs117530403, PMTAG= 2.91×10-131, PHIC= 3.29×10-3, PRA=

2.53×10-150) was located near gene HLA-DRB1.Notably, there

were three significant SNPs located in the exonic regions of HLA-

DQB1, HLA-DQB2 and HLA-C. For HIC and T1D, we identified 1

shared independent SNPs. The most significant SNP (rs9268831,

PMTAG= 2.52×10-8, PHIC= 1.81×10-3, PT1D= 4.26×10-6) was located

near gene HLA-DRA. For HIC and UC, We did not identify any

SNP that meets the significance threshold.
3.3 Fine-mapping to identify potential
causal variants and colocalization analysis

In fine-mapping potential causal variants underlying HIC and

ADs shared signals detected in the GWAS meta-analysis, we

nominate 5 putative causal variants at 1 locus, 286 causal variants

at 62 loci, 5 causal variants at 1 locus shared between AIH, RA, T1D

and HIC, respectively (Supplementary Tables S6-8). Further

colocalization analysis was conducted to ascertain whether the

genetic variants driving the association in 2 traits are the same or

different.We found 41 loci colocalized at different causal variants

within 500 kb(± 250kb) of the lead SNP. The only shared loci

between HIC and AIH and T1D demonstrated colocalization at

distinct causal variants (Supplementary Table S9).
3.4 Tissue-specific enrichment analysis,
pathway analysis, and eQTL mapping

The GTEx enrichment analysis independent tissue expression

was significantly enriched (FDR < 0.05) for expression of cross-trait

associated genes for HIC-RA, which included whole blood, spleen,

brain, and small intestine. However, no significant tissue
frontiersin.org
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TABLE 1 Cross-trait meta-analysis between HIC and Ads.

earest
Gene

Coloca Nearby gene
transcription

level

PPH3>0.5 PPH4>0.5 HIC ADs

LA-DQB1 yes no stable up

LA-DRB1 yes no unknown unknown

L662789.1 yes no unknown unknown

LA-DQB1 yes no stable up

LA-DRB1 yes no unknown unknown

SBP1-AS1 yes no unknown unknown

SBP1-AS1 yes no unknown unknown

L662789.1 yes no unknown unknown

L662789.1 yes no unknown unknown

LA-DRA yes no up up

NU1-61P yes no unknown unknown

LA-DQA1 yes no up up

LA-DQB2 yes no stable up

L662789.1 yes no unknown unknown

L671883.3 yes no unknown unknown

LA-DRB1 yes no unknown unknown

-DQB1-AS1;
LA-DQB1

yes no unknown up

TNXB no no stable down

LA-DQB2 yes no stable up

LA-DRA yes no up up

LA-DRB1 yes no unknown unknown

L671883.3 yes no unknown unknown

VARS no no unknown unknown

LA-DQB1 yes no stable up
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Trait pair SNP CHR Position ADs HIC MTAG Gencode
Comprehensive

Category

BETA P1 BETA P2 BETA P3

HIC&AIH rs564176274 6 32642025 0.92 3.23E-05 0.72 1.62E-05 0.02 9.40E-09 intergenic H

HIC&RA rs117530403 6 32566482 0.79 2.53E-150 0.5 3.29E-03 0.1 2.91E-131 intergenic

rs17427599 6 32667364 0.6 1.24E-138 0.61 9.90E-06 0.08 1.58E-128 intergenic

rs1140310 6 32632783 0.45 7.21E-83 0.73 6.50E-08 0.06 2.30E-84 exonic H

rs9270000 6 32552740 0.44 5.03E-80 0.38 4.71E-03 0.05 2.04E-72 intronic

rs2395166 6 32388275 -0.41 2.13E-70 -0.39 2.64E-03 -0.06 6.37E-65 intergenic

rs9268557 6 32389305 0.36 1.48E-68 0.41 5.85E-04 0.05 8.50E-65 intergenic

rs3104409 6 32683121 0.35 3.49E-58 0.46 2.52E-04 0.05 1.48E-56 intergenic

rs138679457 6 32667423 1.01 1.05E-42 1.27 2.42E-03 0.12 2.68E-41 intergenic

rs3129884 6 32410210 -0.33 8.45E-37 -0.56 1.78E-04 -0.05 6.03E-38 intronic

rs71536532 6 32523756 0.31 4.51E-37 0.41 3.99E-03 0.04 5.20E-36 intergenic

rs9271872 6 32595418 -0.34 5.16E-36 -0.45 1.70E-03 -0.05 1.01E-35 upstream H

rs9276571 6 32725620 0.28 1.42E-35 0.42 1.15E-03 0.04 1.30E-35 exonic H

rs1794269 6 32673894 0.26 1.54E-35 0.37 2.29E-03 0.04 4.32E-35 intergenic

rs2244020 6 31347451 -0.24 4.92E-31 -0.46 9.66E-05 -0.04 4.22E-33 intergenic

rs145244672 6 32556461 -0.35 2.35E-31 -0.56 1.20E-03 -0.05 7.59E-32 intronic

rs34386495 6 32626730 -0.44 4.99E-28 -0.76 6.54E-04 -0.06 3.02E-29 upstream;downstream HL
H

rs2856451 6 32011358 0.23 2.66E-28 0.39 1.10E-03 0.03 3.56E-29 intronic

rs9276653 6 32746414 0.3 2.05E-26 0.57 4.49E-04 0.05 5.25E-28 intergenic H

rs3135393 6 32408842 -0.31 6.79E-25 -0.7 7.31E-05 -0.05 1.36E-27 intronic

rs114015773 6 32537468 -0.43 7.21E-26 -0.79 5.84E-04 -0.06 2.33E-27 intergenic

rs9501588 6 31347020 -0.29 2.71E-25 -0.59 2.97E-04 -0.04 3.25E-27 intergenic

rs909267 6 31746548 -0.39 1.26E-24 -0.77 4.66E-04 -0.06 2.36E-26 intronic

rs58770498 6 32631029 -0.43 1.58E-24 -0.82 5.41E-04 -0.06 3.52E-26 intronic H
N
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TABLE 1 Continued

earest
Gene

Coloca Nearby gene
transcription

level

PPH3>0.5 PPH4>0.5 HIC ADs

LA-DQB1 yes no stable up

SBP1-AS1 yes no unknown unknown

L645933.3 no no unknown unknown

LA-DRA yes no up up

NOTCH4 no no stable stable

PRRT1 no no unknown unknown

CL3,SFTA2 yes no stable unknown

INC01149 yes no stable unknown

HCG9 no no stable stable

TRIM39,
IM39-RPP21

no no unknown unknown

PSMB9 yes no up up

HCP5 yes no unknown up

HLA-C yes no up up

OR5V1 no no stable unknown

INC00243 yes no unknown unknown

GABBR1 no no stable stable

HCP5 yes no unknown up

L662890.1 no no unknown unknown

IST1H4H no no unknown unknown

ZSCAN9 no no stable stable

BTN3A1 no no up up

TAPBP yes no up up

INC00240 no no stable unknown

L009179.1 no no unknown unknown
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Lyu
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
4
.14

178
9
9

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
7

Trait pair SNP CHR Position ADs HIC MTAG Gencode
Comprehensive

Category

BETA P1 BETA P2 BETA P3

rs1794493 6 32639578 -0.21 2.61E-24 -0.41 7.19E-04 -0.03 8.07E-26 intergenic H

rs6912701 6 32383573 -0.31 3.37E-25 -0.51 2.88E-03 -0.05 8.69E-26 intergenic

rs9267224 6 31454406 -0.24 5.71E-25 -0.4 2.97E-03 -0.03 1.46E-25 ncRNA_intronic

rs62405787 6 32414473 -0.32 3.21E-21 -0.83 3.06E-05 -0.05 1.48E-24 intergenic

rs6907458 6 32171288 -0.42 4.17E-22 -0.79 1.06E-03 -0.06 1.37E-23 intronic

rs204999 6 32109979 -0.41 2.27E-22 -0.7 2.63E-03 -0.06 2.64E-23 intergenic

rs57224109 6 30909461 -0.39 1.79E-21 -0.78 6.48E-04 -0.06 2.79E-23 intronic M

rs2596463 6 31413726 -0.38 5.69E-21 -0.73 1.57E-03 -0.06 2.48E-22 ncRNA_exonic

rs74209185 6 29967538 -0.36 8.22E-20 -0.82 2.89E-04 -0.05 3.76E-22 intergenic

rs3129838 6 30306553 0.36 3.33E-20 0.71 1.32E-03 0.05 9.98E-22 intronic
TR

rs4148878 6 32822186 -0.39 4.03E-20 -0.74 2.00E-03 -0.06 2.01E-21 intronic

rs73728586 6 31435428 -0.34 5.70E-19 -0.73 7.48E-04 -0.05 6.87E-21 ncRNA_intronic

rs113792081 6 31235775 -0.28 7.13E-18 -0.67 3.53E-04 -0.04 3.11E-20 downstream

rs74294664 6 29355277 -0.34 9.59E-18 -0.81 3.74E-04 -0.05 4.38E-20 intronic

rs141074112 6 30782977 0.51 9.31E-19 1 3.11E-03 0.07 6.23E-20 ncRNA_intronic

rs111508444 6 29603512 -0.35 1.18E-17 -0.79 6.10E-04 -0.05 9.20E-20 intergenic

rs60056504 6 31415258 -0.34 5.30E-18 -0.64 3.87E-03 -0.05 4.02E-19 ncRNA_intronic

rs77875080 6 28716551 -0.32 1.51E-15 -0.79 6.41E-04 -0.05 9.38E-18 intergenic

rs73395314 6 26276214 -0.29 7.92E-15 -0.79 3.58E-04 -0.05 2.49E-17 intergenic

rs3757183 6 28191859 -0.32 3.75E-15 -0.72 2.00E-03 -0.05 7.75E-17 upstream

rs6901118 6 26399586 -0.33 3.10E-15 -0.71 2.64E-03 -0.05 8.88E-17 intergenic

rs12664430 6 33272677 0.28 9.51E-12 1.16 4.13E-06 0.05 5.85E-16 intronic

rs9357029 6 26970402 0.32 2.17E-14 0.72 2.87E-03 0.05 5.99E-16 ncRNA_intronic

rs143272041 6 27661068 -0.31 4.04E-14 -0.71 2.40E-03 -0.05 8.78E-16 upstream
N

T
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H

U

L

L
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TAG Gencode
Comprehensive

Category

Nearest
Gene

Coloca Nearby gene
transcription

level

P3 PPH3>0.5 PPH4>0.5 HIC ADs

1.74E-15 intergenic BTN3A1 no no up up

5.04E-15 intronic MICB no no up up

5.93E-15 intronic COL11A2 yes no stable stable

6.09E-15 ncRNA_intronic AL671883.3 yes no unknown unknown

5.11E-13 intergenic PSMB9 yes no up up

2.28E-12 intergenic AL662789.1 yes no unknown unknown

9.62E-12 intergenic AL021917.1 no no unknown unknown

2.44E-11 intergenic HLA-DOA yes no up stable

3.93E-11 downstream ABCF1 no no stable down

6.28E-11 exonic HLA-C yes no up up

1.35E-10 ncRNA_exonic AL645933.2 yes no unknown unknown

1.81E-10 intronic C2 no no up up

4.47E-10 intergenic TRIM31-AS1 no no unknown unknown

6.02E-09 intronic HLA-DRB1 yes no unknown unknown

2.01E-08 intergenic HCG24 yes no unknown unknown

2.52E-08 intergenic HLA-DRA yes no up up

to the large number of shared independent SNPs between the HIC-RA trait pair; aColocalization analysis was conducted based on three
tion.
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Trait pair SNP CHR Position ADs HIC M

BETA P1 BETA P2 BETA

rs56139485 6 26417851 -0.31 4.98E-14 -0.67 3.70E-03 -0.05

rs9267352 6 31463128 -0.16 5.86E-13 -0.41 1.15E-03 -0.03

rs2855502 6 33149308 -0.23 2.43E-10 -1.1 9.01E-07 -0.04

rs9266533 6 31341777 -0.26 3.56E-12 -0.8 2.27E-04 -0.04

rs7767732 6 32853277 -0.18 1.52E-11 -0.42 4.97E-03 -0.03

rs112136957 6 32682165 0.24 8.64E-10 0.82 3.82E-04 0.04

rs989134 6 26336224 0.21 1.14E-09 0.63 1.44E-03 0.03

rs3135196 6 32997577 -0.25 2.41E-07 -1.48 2.67E-06 -0.05

rs1264429 6 30565101 -0.19 3.19E-09 -0.57 2.24E-03 -0.03

rs1050437 6 31239585 -0.13 2.82E-09 -0.35 4.19E-03 -0.02

rs3094588 6 31362341 -0.15 2.33E-08 -0.5 9.52E-04 -0.02

rs147593461 6 31877763 0.42 1.22E-08 1.37 2.81E-03 0.07

rs1015465 6 30086340 -0.14 3.45E-08 -0.45 2.45E-03 -0.02

rs34017414 6 32554085 0.15 2.94E-06 0.7 1.81E-04 0.02

rs12528890 6 33089603 0.12 2.20E-04 1.05 1.91E-07 0.03

HIC&T1D rs9268831 6 32427748 0.19 4.26E-06 0.37 1.81E-03 0.02

P1 is the autoimmune disorders’ single-trait P value, P2 is the HIC single-trait P value, P3 is the P value of MTAG analysis. *Du
windows: ± 250kb, a posterior probability for H3 (PPH3) or H4 (PPH4) greater than 0.5 was considered indicative of colocaliza
e
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enrichment was identified for HIC-AIH, HIC-UC, and HIC-T1D

meta-analysis (Supplementary Figures S117-120).

In terms of GO, we observed that pathways were primarily

associated with antigen processing and presentation, immune

processes mediated by lymphocytes, leukocytes, B cells, and T cells,

production of immunoglobulins, and regulation of cell cytotoxicity,

among others. Additionally, in KEGG pathways, we identified

enrichment of shared loci between HIC and autoimmune diseases

in immune response processes such as antigen processing and

presentation, allograft rejection, intestinal immune network for IgA

production, natural killer cell-mediated cytotoxicity, as well as

autoimmune diseases including graft-versus-host disease, type 1

diabetes mellitus, autoimmune thyroid disease, viral myocarditis,

asthma, systemic lupus erythematosus, and leishmania infection

(Supplementary Tables S10-13, Supplementary Figures S121-128).

To explore whether the significant SNPs shared between HIC

and ADs had a downstream functional impact, we extracted the

eQTL data corresponding to the significant SNPs found in each

HIC and ADs trait pair from the immune cell eQTL data and the

PBMCs eQTL data. Among the 62 shared SNPs between HIC and

RA (Supplementary Table S14), we identified 10 SNPs associated

with the expression of nearby genes. Notably, increased expression

was observed for the symbol genes BTN2A2, BTN3A1, FLOT1,

DDR1, HLA-DQA2, HLA-DQB2, HLA-DRB5, HLA-DQA1, and

HLA-DPA1. For HIC and T1D (Supplementary Table S15), we

identified 1 SNP (rs9262670) associated with the increased
Frontiers in Immunology 09
expression of HLA-DQA2 and HLA-DQB2 in monocytes, CD4 T

cells, CD8 T cells and B cells.
3.5 Shared genes between HIC and ADs
from TWAS

We then examined shared TWAS genes between HIC and ADs in

specific tissues. After BH correction, we identified 5 TWAS-

significant genes between HIC with RA, 4 genes for UC and 2 for

T1D (Supplementary Tables S16-18). Notably, the cross-trait meta-

analysis of HIC-RA has identified HLA-DOA as genome-wide

significant (rs3135196, PMTAG= 2.44×10-11, PHIC= 2.67.00×10-6,

PRA= 2.41×10-7). HLA-DPB1 was also significant in the cross-trait

meta-analysis of HIC and RA (rs12528890, PMTAG= 2.01×10-8, PHIC=

1.91×10-7, PRA= 2.20×10-4). Notably, although PSMB8 is not

significant in the MTAG analysis, both PSMB8 and PSMB9 belong

to the gene encoding the proteasome 20S subunit. Additionally,

PSMB9 is significant in the MTAG analysis of HIC-RA.
3.6 The transcriptomic expression levels of
shared genes between HIC and ADs.

We further validated the differences in the expression of shared

genes between the disease and control groups at the transcriptomic
FIGURE 2

Causal inference between ADs on HIC using bidirectional Mendelian Randomization (MR) analysis. (A) Causal effect of ADs on HIC. (B) Causal effect
of HIC on ADs. AIH, Autoimmune hepatitis; GD, Graves’ disease; HT, Hashimoto’s thyroiditis; RA, Rheumatoid arthritis; SA, Sarcoidosis; SLE, Systemic
lupus erythematosus; T1D, Type 1 diabetes mellitus; UC, Ulcerative colitis; IVW, Inverse-variance weighted method; MBE, mode-based estimate.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1417899
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lyu et al. 10.3389/fimmu.2024.1417899
level (Figure 4). After excluding pseudogenes and different transcripts,

we found that among the shared genes identified through cross-trait

meta-analysis,HLA-DQB1, a shared gene between HIC and AIH, was

upregulated only in AIH, but the difference was not statistically

significant in HIC (Supplementary Figure S129). HLA-DRA was

significantly upregulated in HIC, RA, and T1D. Seven shared genes

between HIC and RA trait pairs, including BTN3A1, C2, HLA-C,

HLA-DQA1, PSMB9, MICB, and TAPBP, were significantly

upregulated in both HIC and RA (P<0.05). However, HLA-DOA

was upregulated only in HIC, while HLA-DQB2, HLA-DQB1, and

HCP5 were upregulated only in RA. Additionally, ABCF1 and TNXB

were significantly downregulated only in RA.
4 Discussion

We conducted, to the best of our knowledge, the first

comprehensive assessment of the shared genetics between HIC

and ADs in the East Asian population by analyzing large-scale

GWAS summary data using multiple statistical genetic approaches.

Through bidirectional MR analysis, we investigated the causal

relationships between HIC and several ADs. Notably, we observed

a significant positive causal effect of AIH and RA on HIC, which is

consistent with previous epidemiological findings. A nationwide

population-based study conducted in Taiwan also indicated an

association between IC/BPS and the development of RA.

Furthermore, our study unveiled a robust positive causal effect of

HIC on T1D. In contrast, in the MR analysis, we observed a

significant negative causal effect of UC on HIC, which diverges

from previous epidemiological reports (12).

Moreover, several ADs, including GD, SA, and SLE,

demonstrated statistical significance in the bidirectional MR

analysis with HIC. However, these results did not pass the

multiple corrections. Interestingly, although previous

epidemiological reports have suggested a common comorbidity
Frontiers in Immunology 10
between Sjögren’s syndrome and IC, we did not observe a

significant correlation in our causal inference. This discrepancy

might be due to the relatively small sample size of GWAS studies on

Sjögren’s syndrome.

We also identified 64 independent loci shared between HIC and

AIH, RA, and T1D at genome-wide significant level. We

highlighted HLA region (several sentinel SNPs) for its significant

role in between HIC and ADs. HLA region harbors more than 200

genes located close to each other on chromosome 6, one of the most

extensively studies regions in human genome that contains

abundant pleiotropy for many complex diseases, especially

involved in the immune-related process (38). The genome-wide

association study has identified that three amino acid positions in

human leukocyte antigen HLA-DQB1 and one amino acid position

inHLA-DPB1 were associated with the increased risk of HIC, which

revealed that genetic contributions to HIC risk that may be

associated with class II MHC molecule antigen presentation.

Notably, there is no significant difference in the transcriptional

levels of HLA-DQB1 and HLA-DPB1 between the HIC and control

groups, suggesting that the associated risk SNPs may contribute to

disease by affecting protein function rather than regulating gene

transcription levels. Furthermore, Tseng et al. compared global gene

expression profiles in bladder epithelial cells between patients with

HIC and normal controls, and observed upregulations of major

histocompatibility complex (MHC) class I(HLAF) and class II

(HLA-F, HLA-DQB1, HLA-DRB1, HLA-DPA1, HLA-DOA, HLA-

DMA and HLA-DRA) molecules in bladder epithelial from IC and

ulcerative IC area.

In this study, we also confirmed that HLA-DQB1 is the most

significant locus in the MTAG analysis of HIC-AIH. Additionally,

we have uncovered distinct potential susceptibility loci between

HIC and different ADs, with the majority of these loci being located

within the HLA region mentioned above. Specifically, we

emphasized several genes, including overlapping loci across trait

pairs such as HLA-DRB1, HLA-DRA and two genes that were
FIGURE 3

Circular Manhattan Plot of Multi-Trait Analysis for HIC and ADs GWAS meta-analysis. (A) Manhattan plot for cross-trait meta-analysis between AIH
and HIC; (B) Manhattan plot for cross-trait meta-analysis between RA and HIC; (C) Manhattan plot for cross-trait meta-analysis between T1D and
HIC; (D) Manhattan plot for cross-trait meta-analysis between UC and HIC; AIH, Autoimmune hepatitis; RA, Rheumatoid arthritis; T1D, Type 1
diabetes mellitus; UC, Ulcerative colitis; HIC, Hunner-type interstitial cystitis.
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significant in both MTAG and TWAS analysis, namely HLA-DOA

and PSMB9.

HLA-DRA is the most significant loci shared between HIC and

T1D, and it also exhibited significance between HIC and RA. HLA-

DRA is one of the HLA class II alpha chain paralogues, playing a

crucial role in antigen presentation (39). Notably, DRA lacks

polymorphisms in the peptide binding region and acts as the sole

alpha chain for DRB1, DRB3, DRB4, and DRB5. The HLA-DR4

(DRB1*0405–DQB1*0401) and HLA-DR9 (DRB1*0901–

DQB1*0303) haplotypes were primarily associated with T1D in

East Asian populations (40). Genetic variation at the HLA-DRB1

gene is associated with RA, and HLA-DRB1*0404, *0405 have also

been found to exhibit strong associations with RA in Asians (41).

HLA-DOA, a member of the HLA class II alpha chain

paralogues, exhibited a significant association between HIC and

RA, as well as in TWAS analyses of HIC-RA, HIC-T1D and HIC-

UC. HLA-DOA forms a heterodimer with HLA-DOB. The

heterodimer, HLA-DO, is localized in lysosomes of B cells and

regulates HLA-DM-mediated peptide loading on MHC class II

molecules (42). Okada et al. found that HLA-DOA, a non-

classical HLA gene, was an independent risk factor on ACPA-

positive RA and demonstrated a cis-eQTL effect of the causal

variant in Japanese population (43). Furthermore, HLA-DOA has

also been confirmed as a susceptibility locus within MHC with a

moderate contribution to T1D that is independent of HLA-DRB1

locus (44).
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PSMB9 and PSMB8 encode beta subunits of the proteasome and

are located within the class II region of the MHC. The proteasome is

primarily responsible for cleaving class I MHC peptides in an ATP/

ubiquitin-dependent process within a non-lysosomal pathway (45).

Li et al. identified PSMB9 as a diagnostic marker for RA using a

machine learning approach (46). Furthermore, we also observed

AL662789.1 and AL671883.3, which are human DNA sequences

derived from clone XXbac-254F23 on chromosome 6 and clone

CH501-248L24 on chromosome 6, respectively. These sequences

were found to be shared by more than one pair of HIC and ADs.

However, there is currently limited research on these genes.

This study possesses several notable strengths. Firstly, most of

the cross-trait studies now focus on the European population, and

this is the first analysis to identify the shared genetic architecture of

HIC and ADs using a large-scale observational GWAS dataset

consisting exclusively of East Asian samples, after identifying ten

GWAS sources (details were shown in Supplementary Table S1).

Furthermore, we utilized multi-omics statistical methods such as

MTAG and TWAS to identify novel genes and pathways associated

with both HIC and ADs. The novel genes we discovered may serve

as potential drug targets for the treatment of the disease, although

further validation is required. Notably, they could offer new

diagnostic and therapeutic avenues for patients with HIC,

particularly those with comorbid autoimmune disorders.

We would like to acknowledge several potential limitations in

our study. Firstly, the limited sample size of participants with each
FIGURE 4

Boxplots of Shared Genes with Significant Differential Expression Between Control and Disease Groups (A–I) Boxplots of shared genes with
significant differential expression between HIC and the control group (BTN3A1, C2, HLA-C, HLA-DOA, HLA-DRA, HLA-DOA1, PSMB9, MICB, TAPBP);
(J). Boxplot of the shared gene with significant differential expression between AIH and the control group (HLA-DQB1); (K–W). Boxplots of shared
genes with significant differential expression between RA and the control group (ABCF1, TNXB, TAPBP, PSMB9, MICB, HLA-DRA, HLA-DQB2, HLA-
DQB1, HLA-BQA1, HLA-C, HCP5, C2, BTN3A1); (X). Boxplot of the shared gene with significant differential expression between T1D and the
control group.
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mental disorder and the restriction to individuals of East Asian

ancestry have limited the statistical power of our GWAS analysis,

which may limit the generalizability of our findings to other

ancestral populations. Secondly, the lack of GWAS data for other

subtypes of IC, such as non-ulcerative IC, has hindered our ability

to investigate and differentiate the genetic associations between

different subtypes of interstitial cystitis and immune-related

disorders. Thirdly, it is important to consider common non-

genetic risk factors for the occurrence of hypersensitivity HIC and

ADs, such as medication and environmental factors. Our current

study focused solely on evaluating shared genetic factors between

HIC and ADs, and future research should investigate shared

environmental factors between these conditions.
5 Conclusion

Our study provides evidence of a genetic correlation and

causality between HIC and ADs. We identified genetic loci

associated with both HIC and autoimmune disorders, as well as

potential causal relationships between disease trait pairs, thereby

enriching our understanding of HIC and shedding light on the

shared genetic etiology of HIC and autoimmune disorders. In

addition, we discovered multiple potential common biological

mechanisms that can enhance our knowledge of the link between

HIC and ADs. These discoveries open up new avenues for future

research on functional validation, disease prevention, and clinical

treatment strategies.
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Glossary

HIC Hunner-type interstitial cystitis
Frontiers in Immunol
AD Atopic dermatitis
ADs Autoimmune disorders
AIH Autoimmune hepatitis
AR Allergic rhinitis
AS Asthma
ATP Adenosine triphosphate
BH Benjamini-Hochberg correction
CD Contact dermatitis
ConMix Contamination mixture method
eQTL Expression quantitative trait locus
FDR False Discovery Rate correction
FUMA Functional Mapping and Annotation of GWAS
GD Graves’ disease
GO Gene Ontology
GTEx Genome-Tissue Expression project
GWAS Genome-wide association studies
HLA Human leukocyte antigen
HT Hashimoto’s thyroiditis
HY Hypothyroidism
HYPE Hyperthyroidism
IC/BPS Interstitial cystitis/bladder pain syndrome
IVW Inverse-variance weighted method
KEGG Kyoto Encyclopedia of Genes and Genomes
LD Linkage disequilibrium
ogy 14
LUTS Lower urinary tract syndrome
MBE Meidan-based method
MG Myasthenia gravis
MHC Major histocompatibility complex
MR Mendelian randomization
MR-PRESSO Mendelian Randomization Pleiotropy RESidual Sum

and Outlier
MTAG Multi-trait analysis of GWAS
NBDC National Bioscience Database Center
OR Odds ratio
PBMC Peripheral blood mononuclear cell
PIP Posterior inclusion probabilities
PO Pollinosis
PV Psoriasis vulgaris
RA Rheumatoid arthritis
SA Sarcoidosis
SLE Systemic lupus erythematosus
SNP Single nucleotide polymorphism
SS Sjögren’s syndrome
T1D Type 1 diabetes mellitus
TWAS Transcriptome-wide association studies
UC Ulcerative colitis
UV Uveitis
WM Weighted-medium
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