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Introduction: Sepsis is a complex clinical syndrome characterized by a

heterogenous host immune response. Historically, static protein and

transcriptomic metrics have been employed to describe the underlying

biology. Here, we tested the hypothesis that ex vivo functional TNF expression

as well as an immunologic endotype based on both IFNg and TNF expression

could be used to model clinical outcomes in sepsis patients.

Methods: This prospective, observational study of patient samples collected

from the SPIES consortium included patients at five health systems enrolled over

17 months, with 46 healthy control patients, 68 ICU patients without sepsis, and

107 ICU patients with sepsis. Whole blood was collected on day 1, 4, and 7 of ICU

admission. Outcomes included in-hospital and 180-day mortality and non-

favorable discharge disposition defined by skilled nursing facility, long-term

acute care facility, or hospice. Whole blood ELISpot assays were conducted to

quantify TNF expression [stimulated by lipopolysaccharide (LPS)] and IFNg
expression (stimulated by anti-CD3/CD28 mAb), which were then used for

assignment to one of four subgroups including an ‘immunocompetent’,

‘immunosuppressed endotype’, and two ‘mixed’ endotypes.
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Results: Whole blood TNF spot-forming units were significantly increased

in septic and CINS patients on days 4 and 7 compared to healthy subjects. In

contrast, TNF expression per cell on days 1, 4, and 7 was significantly lower in

both septic and critically ill non-septic (CINS) patients compared to healthy

subjects. Early increases in total TNF expression were associated with favorable

discharge disposition and lower in-hospital mortality. ‘Immunocompetent’

endotype patients on day 1 had a higher proportion of favorable to non-

favorable discharges compared to the ‘immunosuppressed’ endotype. Similarly,

‘immunocompetent’ endotype patients on day 4 had a higher in-hospital survival

compared to the ‘immunosuppressed’ endotype patients. Finally, among septic

patients, decreased total TNF and IFNg expression were associated with 180-

day mortality.

Conclusions: Increased ex vivo whole blood TNF expression is associated with

improved clinical outcomes. Further, the early ‘immunocompetent’ endotype is

associatedwith favorable discharge and improved in-hospital and 180-day survival.

The ability to functionally stratify septic patients based on blood cell function ex

vivo may allow for identification of future immune modulating therapies.
KEYWORDS

critical illness, late mortality, procalcitonin, IL-6, prediction modeling
Introduction

Sepsis is defined as a dysregulated host immune response to

infection leading to organ dysfunction (1, 2). The evolving

definition of the septic state involves a spectrum of severity

ranging from vital sign derangement to shock with end organ

damage or failure (2–4). There is an increased prevalence of

sepsis among high income countries, due in part to higher rates

of comorbidities and immunocompromise (5, 6). Despite the

increased incidence of sepsis, treatment remains largely

supportive with the primary tenants of the Surviving Sepsis Best

Practice Guidelines from 2021 focusing on early detection followed

by resuscitation, hemodynamic and ventilatory support, and

antimicrobial treatment (7). The immediate uncontrolled

inflammation responsible for early shock or multiorgan failure

has been attributed to both host innate and adaptive immune

responses, dictated by the patient’s immunologic phenotype (8).

Complexity in treating sepsis stems from the heterogeneity of

the host-specific phenotype and corresponding response. Such

complexity leads to challenges in treating the physiologic sequalae

of sepsis with immune modulation, requiring classification of septic

patients according to their heterogenous immune responses (9).

Current literature determines endotypes by the static timepoint of

hospital admission, with less data available regarding immunologic

status of patients throughout their clinical course (10–14).

Endotype classification of a presenting septic patient has both

prognostic value and broad therapeutic implications when

determining candidates for immunomodulatory therapy.
02
Enzyme-Linked ImmunoSpot (ELISpot) Assay quantifies

cellular production of cytokine in response to ex vivo stimulation.

The use of different stimulants permits the quantification of both

innate and adaptive immune responses, making it ideal for

endotype classification (15, 16). Further, the ELISpot assay can be

performed efficiently enough to be used in clinical decision-making

(17). In this study, we tested the hypothesis that whole blood ex vivo

functional TNF expression alone as well as an immunologic

endotype based on both IFNg and TNF expression could be used

to identify clinical outcomes in sepsis patients. We further aimed to

determine whether deriving an immunologic endotype based on

both IFNg and TNF expression was associated with clinical

outcomes in septic patients.
Methods

Cohort selection

This is a secondary analysis of a prospective, observational study

conducted at five U.S. tertiary care, academic medical centers (SPIES

Consortium) (15). Patients were enrolled between February 2021 and

July 2022. One hundred and seven patients admitted to the ICU with

suspected sepsis (“septic”) and 68 patients admitted to the ICU

without suspected sepsis (critically ill, non-septic; “CINS”) were

included. Healthy control subjects were enrolled in the outpatient

setting. Enrollment occurred across five clinical sites, each within a

different healthcare system. Sepsis-3 criteria was used for sepsis
frontiersin.org
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definition (18). Diagnosis of sepsis versus non-sepsis was determined

by site specific physician-investigators. Through this verification, 18

patients were recategorized from “septic” to “CINS”, and 6 were

recategorized from “CINS” to “septic.” Specific exclusion criteria for

healthy outpatient controls included current treatment with

immunomodulators, anti-neoplastic therapies, or recent cancer

diagnosis within six months. Given that the current work

represents a secondary analysis of a previously published

prospective, observational study, patient demographic information

was included in the initial manuscript by Barrios et al. (15). Patient

characteristics were similar across all three groups with the specific

exceptions of the control cohort being disproportionately young and

female, and the septic cohort having a significantly higher Charleston

comorbidity index relative to the CINS cohort (15).
Blood sampling and processing

Samples of heparinized whole blood labeled timepoint 1 (T1/day

1, collected 0-72 hours from admission), timepoint 2 (T2/day 4,

collected 72-120 hours from admission), timepoint 3 (T3/day 7,

collected 120-192 hours from admission) and timepoint 4 (T4/day

14, collected 312-360 hours or 13-15 days from admission) were

collected. ELISpot assays were conducted with the TNF Immunospot

kit (16). Briefly, ex vivo activation of 5µL of whole blood was achieved

via lipopolysaccharide (LPS from E. coli, serotype O55:B5 at 1.25 ng/

mL, ENZO Life Sciences, Famingdale, NY) treatment for a duration

of 22 hours ± 10 minutes. ELISpot assay was initiated within one

hour of blood draw, with blood kept at room temperature on a rocker

table until processing was initiated. Samples were analyzed using a

CTL S6 Entry or S6 FluoroCore™ ELISpot reader utilizing identical

instrument settings and protocols at each clinical site. Whole blood

IFNg expression in response to ex vivo anti-CD3/CD28 mAb

stimulation was also conducted simultaneously on each sample

with results reported previously (15). All samples were analyzed in

duplicate. Quantitative outputs included the number of spot-forming

units (SFU) which represents the number of cells per 5 µl whole blood

sample that secrete the cytokine in question, spot size (mm2; SS)

which represents the amount of cytokine produced per stimulated

cell, and total expression (mm2; TE) which serves as a combined

metric of spot-forming units and spot size, using the Immunospot®

SC software suite version 7.0.30.4 (ImmunoSpot, Cleveland, OH).

SFUs are representative of individual blood cells producing TNF. SS

serves as a quantitative measure of TNF produced per cell.

Additional laboratory analyses included whole blood total

leukocyte and absolute monocyte/PMN counts on EDTA-

anticoagulated whole blood utilizing facility-specific Clinical and

Diagnostics Laboratory or a research Beckman-Coulter Dx500 or

Dx900 hemocytometer 24 (Beckman-Coulter, Brea, CA). Cytokine

and additional plasma protein analyses, including serum soluble

programmed death-ligand 1 (sPD-L1) were conducted at the

University of Florida Sepsis and Critical Illness Research Center

(SCIRC) utilizing the Luminex MagPix® platform (Bio-Rad,

Hercules, CA).
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Clinical outcome data collection

The primary outcome of the study was 180-day mortality,

which was verified by clinical records, telephone follow-up with

either the patient or designated contact, and the US Social Security

Death Index. Secondary outcomes included all-cause in-hospital

(30-day mortality and unfavorable discharge disposition (defined as

discharge to skilled nursing facility, long-term acute care facility, or

hospice). Clinical data collection was performed at each clinical site

and entered into Research Electronic Data Capture (REDCap)

software (REDCap, Nashville, TN) and laboratory testing

endpoints entered into an electronic case report form (eCRF) by

approved research staff (REDCap™, Vanderbilt University). Data

were managed primarily by research team members at the

University of Florida Clinical and Translational Science Institute

(CTSI). Results from blood sampling and processing were also

entered into the eCRF including ELISpot, total leukocyte counts,

absolute monocyte/PMN counts, and plasma protein and cytokine

concentration data.
Endotyping patients by ELIspot

Four patient endotypes were defined prospectively in the sepsis

and CINS cohorts based on their initial (T1) ELIspot results.

Specifically, patients were assigned either an elevated (+) or

suppressed (-) ELIspot if the total expression (TE) was greater or

less than the median value obtained from healthy subjects,

respectively. Patients who had both increased LPS-stimulated

TNF and anti-CD3/CD28 mAb-stimulated IFN-g expression

compared to healthy subjects (TNF+/IFNg+) were defined as

being ‘immune competent’. In contrast, patients with ex vivo TNF

and IFNg expression below median values from healthy subjects

(TNF-/IFNg-) were defined as having an ‘immunosuppressed’

endotype. Patients with one of two ‘mixed’ endotypes had ex vivo

TNF or IFNg expression that was either greater and less than

(TNF+/IFNg-), or less than and greater than (TNF-/IFNg+)
median values from healthy subjects.
Statistical analysis

Statistical analysis included Fisher’s exact (categorical variables)

and Mann-Whitney or Kruskal-Wallis ANOVA tests (continuous

variables) as indicated. Area under the receiver operating

characteristics curve (AUROC) values with 95% confidence intervals

(computed with 2000 stratified bootstrap replicates) were used to

assess discrimination. Multivariate Cox regressions were performed to

construct a combination of metrics, and then the combined metric

was assessed for improved overall performance. Post hoc tests were

performed for continuous outcomes using the Dunn test. For post hoc

analyses of categorical outcomes, separate 2 × 2 Fisher’s exact tests

were performed. All significance tests were 2-sided, with a raw p value

of less than or equal to 0.05 were considered statistically significant.

Analyses were performed using the R Project statistical package,
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version 4.1.0 (R Project for Statistical Computing, Vienna, Austria).

Data is reported as mean ± SD.
Results

LPS-stimulated TNF expression measured
as SFU and SS

There were no significant differences noted in TNF SFU when

comparing the septic and CINS cohorts to the healthy subject

cohort at timepoint 1 (0-72 hrs). (Figure 1A) At timepoint 2 (73-

120 hrs), compared with the healthy cohort, both the septic (956 ±

339 vs. 747 ± 172, p<0.001) and CINS (965 ± 318 vs. 747 ± 172,

p<0.01) patient cohorts demonstrated a significantly higher number

of TNF SFU compared to healthy subjects. (Figure 1B) At timepoint

3 (121-192 hrs), compared with the healthy cohort, both the septic

(950 ± 320 vs. 747 ± 172, p<0.001) and CINS (1112 ± 317 vs. 747 ±

172, p<0.0001) patient cohorts demonstrated a significantly higher

number of TNF SFU compared to healthy donors. Given that SFU

represents a quantitative measurement of TNF-producing cells, this

data supports an increase in cells secreting TNF in CINS and septic

patients at the T1 and T2 timepoints.

At timepoint 1, both the septic (6.7 ± 2.1 mm2 vs. 7.8 ± 1.9 mm2,

p<0.01) and CINS (6.6 ± 1.9 mm2 vs. 7.8 ± 1.9 mm2, p<0.01) patient

cohorts demonstrated a significantly smaller TNF SS compared to

the control cohort. At timepoint 2, both the septic (6.7 ± 1.8 mm2 vs.

7.8 ± 1.9 mm2, p<0.001) and CINS (6.7 ± 1.7 mm2 vs. 7.8 ± 1.9 mm2,

p<0.01) patient cohorts demonstrated a significantly smaller TNF

SS compared to the control cohort. At timepoint 3, both the septic

(6.6 ± 1.7 mm2 vs. 7.8 ± 1.9 mm2, p<0.001) and CINS (6.5 ± 1.4 mm2
Frontiers in Immunology 04
vs. 7.8 ± 1.9 mm2, p<0.001) patient cohorts demonstrated a

significantly smaller TNF SS compared to the control cohort.

Given that SS represents a quantitative measurement of TNF

produced per cell, this data supports decreased TNF production

per cell in CNS and septic patients at the T1, T2, and T3 timepoints.
Correlation of LPS-stimulated total TNF
expression with discharge and mortality

In septic patients examined at timepoint 1, total TNF expression

was not different between septic patients who survived 180 days

versus those who expired. However, at timepont 2, total TNF

expression was significantly higher in the cohort of patients

characterized by 180-day survival compared to the cohort

characterized by in-hospital mortality (6394 ± 2026 mm2 vs. 4682 ±

1779 mm2, p<0.01). (Figure 2A) Receiver Operating Characteristic

curve demonstrated a significant association between survival to

discharge and total TNF expression measured at timepoint 2

(AUC=0.76, p<0.01). (Figure 2B) At timepoint 3, total TNF

expression was significantly higher in the cohort of patients

characterized by survival to discharge compared to the cohort

characterized by in-hospital mortality (6480 ± 2122 mm2 vs. 4756 ±

2384 mm2, p=0.03). At timepoint 3, total TNF expression was

significantly higher in the cohort of patients who survived to

discharge compared to those who suffered in-hospital mortality

(648 ± 2122 mm2 vs. 4756 ± 2384 mm2, p=0.03). Receiver

Operating Characteristic curve demonstrates a significant

association between survival to discharge and total TNF expression

measured at timepoint 2 (AUC=0.72, p=0.04). No significant

difference was noted in total TNF expression at timepoints 1 or 4
FIGURE 1

LPS-stimulated TNF expression as determined by ELISpot spot forming units (SFU) and spot size (SS) in Sepsis, and CINS patients at timepoints 1, 2,
and 3 following ICU admission, and in healthy control subjects. Values represent mean and individual subject responses for TNF SFU (A) and SS (B) at
T1, T2, and T3. T1: healthy cohort n=45, CINS n=67, septic n=103; T2: healthy cohort n=45, CINS n=55, septic n=90; T3: healthy cohort n=45, CINS
n=45, septic n=77. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, as determined by Kruskal-Wallis ANOVA and post hoc analyses using Dunn’s
test. SFU, spot-forming units.
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between the survival to discharge and in-hospital mortality cohorts.

(Supplementary Table 1) No significant associations in total TNF

expression at timepoints 1 or 4 and in-hospital mortality were noted

by ROC curve. (Supplementary Table 2).

In septic patients examined at timepoint 1, total TNF expression

was significantly higher in the cohort of patients characterized by a

favorable discharge compared to the cohort with an unfavorable

discharge (6209 ± 2380 mm2 vs. 5115 ± 2578 mm2, p=0.03).

(Figure 3A) Receiver Operating Characteristic curve demonstrated a

significant association between discharge favorability and total TNF

expression measured at timepoint 1 (AUC=0.62, p=0.03). (Figure 3B).
Frontiers in Immunology 05
No significant difference in total TNF expression at timepoints 2, 3, or

4 between the favorable and unfavorable discharge cohorts was noted.
Endotype classification associations with
demographic, clinical, and
serum differences

Receiver Operating Characteristic curves utilizing a Cox

regression at timepoint 2 were stratified into endotypes of septic

patients based on their TNF and IFNg total expression (TE). In septic
FIGURE 2

LPS-stimulated total TNF expression at timepoint 2 is associated with in-hospital mortality. (A). Comparison of in-hospital mortality of the septic
patient cohort. (B) Area under the Receiver Operator Curve (AUROC) for total LPS-stimulated TNF expression in differentiating in-hospital mortality.
**P < 0.01, as determined by unpaired Mann-Whitney test. AUROC=0.7572, p=0.0059.
FIGURE 3

Total LPS-stimulated TNF expression at timepoint 1 is associated with discharge. (A). Comparison of favorable and non-favorable discharge patient
populations in the septic patient cohort. (B) Area under the Receiver Operator Curve (AUROC) for total LPS-stimulated TNF expression in
differentiating favorable vs. unfavorable discharge. *P < 0.05, as determined by unpaired Mann-Whitney test. AUROC curve=0.6218, p=0.0345.
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patients whose total TNF and IFNg expression was below the median

value from healthy subjects, they were designated as being

‘immunosuppressed’ (TNFa-/IFNg-), for septic patients whose TE

was above the median TNF and IFNg TE from healthy subjects were

defined as being ‘immune competent’. Finally, for septic patients who

had either TNF or IFNg total expression above the median for healthy

subjects, with the other below the median for healthy subjects (TNF-/

IFNg+, TNF+/IFNg-), they were defined as a ‘mixed’ endotype.

Fisher’s exact test demonstrated a significant difference in

differential discharge rates across the four endotypes at timepoint 1

(p=0.01). (Supplementary Figure 1A) Patients with the ‘immune

competent’ endotype (TNF+/IFNg+) were significantly younger

compared to patients with the immunosuppressed endotype (TNF-/

IFNg-) (52 ± 15 years vs. 63 ± 15 years, p=0.0461). (Supplementary

Figure 1B) Patients with the ‘immune competent’ (TNF+/IFNg+)
endotype had a significantly lower T1 SOFA score compared to

‘immunosuppressed’ (TNF-/IFN-g-) endotype at timepoint 1 (4.4 ±

3.1 vs. 7.7 ± 4.2, p=0.0063). (Supplementary Figure 1C) Similarly

patients with the ‘immune competent’ endotype had significantly

lower serum sPD-L1 compared to ‘immunosuppressed’ endotype at

timepoint 1 (209.3 ± 173.9 pg/mL vs. 424.2 ± 452.0 pg/mL,

p=0.0366). (Supplementary Figure 1D).

Fisher’s exact test demonstrated a significant difference with

regard to in-hospital mortality across the four endotypes at

timepoint 2 (p<0.01). (Supplementary Figure 2A). Patients with the

‘immune competent’ endotype had a significantly lower T2 SOFA

score compared to the ‘immunosuppressed’ endotype at timepoint 2

(3.2 ± 3.0 vs. 6.3 ± 4.0, p=0.0113). (Supplementary Figure 2B) Patients

with the ‘immune competent’ endotype also had significantly lower
Frontiers in Immunology 06
plasma IFNg concentrations compared to patients with the ‘immune

suppressed’ endotype at timepoint 2 (48 ± 20 pg/mL vs. 65 ± 36 pg/

mL, p=0.0499). (Supplementary Figure 2C) Finally, patients with the

‘immune competent’ endotype had significantly lower plasma TNF

concentrations compared to patients with the ‘immunosuppressed’

endotype at timepoint 2 (20 ± 13 pg/mL vs. 29 ± 13 pg/mL,

p=0.0372). (Supplementary Figure 2D).

Receiver Operating Characteristic curve utilizing a combined

metric constructed by a Cox regression with TNF and IFNg at T2
demonstrated high predictive quality in determining 180-day

mortality with an AUC of 0.813 (CI 0.7173-0.9094, p<0.001).

(Figure 4) The sensitivity for predicting 180-day mortality is

0.800 while the specificity is 0.667.
Discussion

Key findings

This prospective, multi-center observational study has

demonstrated that the host immune response to critical illness, as

defined by ex vivo whole blood production of TNF, varied in

response to critical illness (Figures 1, 2) and was associated with

long-term clinical outcomes including discharge disposition and in-

hospital mortality (Supplementary Figures 1, 2). Whole blood

stimulated ex vivo with LPS demonstrated increased TNF

production in both septic and CINS cohorts when compared to

healthy subjects.

There was time-dependent variation in TNF production in both

septic and CINS cohorts, with increased numbers of TNF-

producing cells in both the septic and CINS cohorts at day 4 and

7 compared to the healthy subjects (Figure 1). Interestingly, the

amount of TNF produced per leukocyte was greater in the healthy

subjects compared to the septic and CINS cohorts at all timepoints

out to seven days (Figure 1). When considering clinical outcomes,

TNF expression measured at day 1 was higher in patients who

ultimately had a favorable discharge disposition compared to those

patients with an unfavorable discharge disposition. Further, total

TNF expression measured at day 4 was higher in patients who

survived to discharge when compared to the in-hospital mortality

cohort. (Supplementary Figures 1, 2).

Endotypes were established as described herein. Differential

discharge rates were statistically different between endotype cohorts

at day 1 and mortality was different between endotype cohorts at

day 4. The ‘immune competent’ endotype cohort (TNF+/IFNg+)
was significantly younger than both the ‘immunosuppressed’

(TNF-/IFNg-) and one of the ‘mixed’ (TNF+/IFNg-) cohorts and

had a lower SOFA score than the ‘immunosuppressed’ endotype at

day 1. The ‘immune competent’ cohort had a lower SOFA score

than the immunosuppressed cohort at day 4. The immune

competent cohort also had lower plasma sPD-L1 at day 1, as well

as lower plasma IFNg and TNF at day 4 compared to the

immunosuppressed cohort at the same respective timepoint.

Finally, total TNF and IFN-g expression at day 4 demonstrated

high predictive quality in determining 180-day mortality (Figure 4).
FIGURE 4

Area under the Receiver Operator Curve (AUROC) using both TNF+

and IFNg+ on day 4 following ICU admission in differentiating 180-
day mortality. A multiple Cox regression to predict survival time
using both total TNF and IFNg was conducted to construct a
combined metric. When predicting 180-day mortality using the
constructed metric, AUROC curve was 0.8133, 95% confidence
interval was 0.7173-0.9094. p=0.0001.
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Context

ELISpot is a well-established tool with the capability to assess

immunologic function in various pathologic conditions (19–22)

and has been specifically used to assess the immunologic status of

the septic and critically-ill patients (16, 23–25). Our multi-

institutional consortium has previously utilized ELISpot to

characterize patients based on ex vivo IFNg production following

targeted T cell receptor stimulation and the relationship of the

subsequent immunologic phenotype to clinical outcomes (26). The

present study utilizes ELISpot analysis with in vitromeasurement of

LPS-stimulated TNF as an additional metric of host immune

activation within the same cohort of prospectively collected

human whole blood samples. While previous studies have utilized

ELISpot to quantify cell activation and secretion of TNF in response

to LPS treatment, they have done so in either highly enriched

polymorphonuclear cells (PMN), peripheral blood mononuclear

cells (PBMC), or isolated B cells (27–29). Previously, our group

compared the ability of the whole blood ELISpot with a more

traditional ELISpot assay using PBMCs in sepsis. IFNg and TNF

ELISpot assays on whole blood and PBMCs were undertaken in

control, critically ill non-septic, and septic patients. Whole blood

ELISpot was easy to perform, and results were generally comparable

to PBMC-based ELISpot. However, the whole blood ELISpot assay

revealed that non-monocyte, myeloid populations are a significant

source of ex vivo TNF production (16). As in our previous study,

then, a major advantage of the current approach has been the use of

whole blood (rather than a single isolated cell type), which allows

for the assessment of an integrated immunologic function from all

blood components including leukocytes, erythrocytes, platelets,

plasma proteins, and metabolites.

Clinical sepsis is known to involve the release and propagation of

circulating proinflammatory cytokines, including TNF, early in the

septic process (30). The mechanism by which TNF contributes to the

global milieu of sepsis and how it may relate to clinical outcomes,

however, remains ambiguous. Several studies have implicated single

nucleotide polymorphisms of the TNF coding sequence as a potential

protective factor against severe sepsis (30, 31). While the use of

laboratory testing to quantify TNF has demonstrated efficacy as a

screening tool for clinical sepsis, it is not routinely used in a

diagnostic or prognostic capacity (32). In the present study, we

utilized a diluted whole blood ELISpot assay to quantify both the

number of TNF-producing cells (represented by SFU) and amount of

TNF released per cell (represented by SS). In doing so, we

demonstrated that the amount of TNF released per cell was lower

in the septic and CINS patients than in the control cohort at the 1-, 4-,

and 7-day post-admission timepoints. This finding is concordant

with and may potentially be explained by previous literature

describing the phenomenon of “immunoparalysis” in sepsis, where

lymphocyte apoptosis and endotoxin tolerance in surviving

lymphocytes results in decreased overall secretion of inflammatory

cytokines including TNF and IFNg (33–35). Interestingly, the

number of TNF-releasing cells as measured by SFU was elevated in

septic and CINS patients at both the 4- and 7-day post-admission

timepoints. Though this may seem to contradict the principle of

immunoparalysis, the decreased SS and increased SFU in septic and
Frontiers in Immunology 07
CINS patients may represent a higher degree of endotoxin tolerance

and lower contribution from lymphocyte apoptosis as measured by

ELISpot in this analysis. Finally, in considering total patient TNF, we

found higher TNF at the day-1 post-admission timepoint is

associated with a favorable discharge disposition and higher TNF

at the day-4 post-admission timepoint is associated with improved

survival to discharge. These data further support the proposition that

TNF quantified by ELISpot holds the potential for prognostic use in

septic and critically-ill patients and that patients less phenotypically

inclined to immunoparalysis may have superior clinical outcomes.

The complexity of clinical sepsis and diversity of immunologic

endotypes between patients leads to challenges in treatment (9). As

previously outlined, these different endotypes may result in

variation in cytokine release by way of differences in either

lymphocyte apoptosis or endotoxin tolerance, culminating in

significant variation in clinical outcomes (33–35). Given the

heterogenous nature of the immunologic response to sepsis, it

may be beneficial to classify patients in order to target treatment.

Previous classification systems grouped patients by plasma

concentration of immunologic markers, including TNF,

interleukin-6 (IL-6), and IL-8 at the time of hospital admission

(10–12). Subsequent literature has utilized transcriptomic data from

patient leukocytes and sorted into endotypes named Sepsis

Response Signatures (SRS) 1 and 2, noting differences in relative

immunosuppression and mortality profile between the groups (13).

Finally, the Molecular Diagnosis and Risk Stratification of Sepsis

(MARS) consortium utilized genome-wide blood gene expression

profiles to group patients into endotypes MARS1-4 for adult

patients and MARS1, 2, and 4 for pediatric patients. This

endotyping system included more granularity in regard to

immunosuppression of the innate, adaptive or both host immune

responses (14). Current endotype systems have utilized the single

timepoint of hospital admission rather than incorporating repeat

testing, which more accurately reflects the dynamic physiology of

the critically-ill patient. The present study utilized ELISpot data

from patient whole blood, including total TNF and IFNg expression
to group patients into TNF high low, and IFNg high (+) or low (-).

The cutoff values were established as the median value from a

population of healthy controls (Supplementary Figure 3). We

developed a novel endotype method based on peripheral whole

blood sampling, which is easily repeatable at timepoints throughout

a patient’s clinical course. This endotype nomenclature combines

the predictive ability of two unique components of a patient’s

immunologic phenotype, with each patient classified as being

‘immunosuppressed’ (TNF-/IFNg-), ‘mixed’ (TNF+/IFNg-, TNF-/
IFNg+), or ‘immune competent’ (TNF+/IFNg+). The two distinct

“mixed” endotype groups were maintained as separate groups given

the potential prognostic value held by each in representing a

competent function of each specific immunologic endotype.

Following stratification by endotype, we identified a significant

difference in both favorable discharge disposition and in-hospital

mortality by endotype group at ICU admission days 1 and 4,

respectively. Further, we noted that patients in the ‘immune

competent’ cohort on ICU admission day 1 were younger and had a

lower SOFA score when compared to those in the ‘immunosuppressed’

cohort. A lower SOFA score was also noted in the ‘immune competent’
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cohort compared to the ‘immunosuppressed’ cohort when endotype

was completed on ICU admission day 4. These data reinforce that

patients with less immunosuppression may belong to a younger

population and have less organ-failure related morbidity throughout

their clinical course. Additionally, plasma sPD-L1 was found to be

significantly higher in the ‘immunosuppressed’ cohort compared to the

‘immune competent’ cohort on ICU admission day 1. sPD-L1 has been

demonstrated in cancer cells to serve as a marker for cellular

exhaustion following prolonged cytokine exposure, similar in nature

to the principle of immunoparalysis (36, 37). Therefore, higher sPD-L1

levels in the ‘immunosuppressed’ cohort supports a possible endotypic

propensity toward immunosuppressed in these patients. Interestingly,

plasma concentrations of both TNF and IFNg were higher in the

‘immunosuppressed’ cohort compared to the ‘immune competent’

cohort on ICU admission day 4. While these data may seem

immediately contrary to what we would expect based on endotype

classification, this finding is concordant with the current understanding

of septic immunosuppression and our previously reported increased

levels of sPD-L1 in the ‘immunosuppressed’ cohort. As discussed

previously, a key component of immunosuppression seen in the

septic patient is leukocyte exhaustion (34). Given that our

‘immunosuppressed’ cohort was defined by a lower ex vivo response

to leukocyte stimulation following whole blood collection, a potential

mechanism for such a perceived discrepancy is a higher propensity

toward leukocyte exhaustion in vivo prior to sample collection in the

‘immunosuppressed’ cohort. Higher levels of systemic circulating

cytokines in patients with an ‘immunosuppressed’ endotype, then,

could possibly be a contributor to leukocyte exhaustion and

immunosuppression, as measured by ex vivo ELISpot assay, rather

than a downstream effect of immunologic activity. This proposed

mechanism is supported by increased leukocyte exhaustion as

measured by sPD-L1 in the ‘immunosuppressed’ cohort. Such a

mechanism is speculative based on the current data and requires

further study with titration of specific immunologic stimulation in

patients of each endotype classification.

There are limitations to our study that require discussion. Sample

size was limited despite multicenter enrollment given improved

outcomes of septic and critically-ill patients over the past two

decades (38, 39). As with our previous study, discriminatory

analysis was completed only on the septic patient cohort given the

exceedingly low 180-day and in-hospital mortality rates of the CINS

patients (4% and 1%, respectively). Another limitation of our study

was the disproportionately younger age and female predominance of

the healthy (control) cohort compared to the septic and CINS patent

cohorts, despite matching efforts. However, the median age of the

control study was above 45 years, an age above which incidence of

more adverse outcomes have been shown to occur in critically-ill

patients (38). Finally, while the present study represents a novel

method of patient classification based on endotypes with the potential

for prognostication, the precise cellular signalling mechanisms

underlaying immune competency and immunosuppression as

described by the ELISpot assay require further research.
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SUPPLEMENTARY TABLE 1

Total TNF expression at timepoints 1-4 and association with favorable
discharge. AUROC, Area Under Receiver Operator Characteristic, ROC,

Receiver Operator Characteristic, F, favorable, NF, Non-favorable.

SUPPLEMENTARY TABLE 2

Total TNF at timepoints 1-4 and association with in-hospital mortality.
AUROC, Area Under Receiver Operator Characteristic, ROC, Receiver

Operator Characteristic, S, Survivor (in-hospital), NS, Non-survivor.

SUPPLEMENTARY FIGURE 1

‘Immune competent’ (TNF+/IFNg+), ‘immunosuppressed’ (TNF-/IFNg-) and

‘mixed’ (TNF-/IFNg+, TNF+/IFNg-) endotypes, determined at timepoint 1 are

stratified by predictive, physiologic, and biomarker indices. Above (+) or
below (-) represent individual values obtained from the patients when

compared to the median values from the healthy subject. (A) Values
represent favorable vs. non-favorable discharge. A Fisher’s exact test to

differentiate discharge using the identified four endotypes was conducted
and demonstrated that the differential discharge rates across four is

statistically significant (p=0.0109). Patient values of (B) age (years), (C) SOFA
score on timepoint 1 following ICU admission, and (D) serum sPD-L1 on

timepoint 1 following ICU admission (reported as pg/mL). For (B-D), *P < 0.05,

**P < 0.01, as determined by Kruskal-Wallis ANOVA and post hoc analyses
using Dunn’s test. SOFA, sequential organ failure assessment.

SUPPLEMENTARY FIGURE 2

‘Immune competent’ (TNF+/IFNg+), ‘immunosuppressed’ (TNF-/IFNg-) and
‘mixed’ (TNF-/IFNg+, TNF+/IFNg-) endotypes, on day 4 following ICU

admission are stratified by predictive, physiologic, and biomarker indices.

Above (+) or below (-) represent individual values obtained from the patients
when compared to the median values from the healthy subject. (A) Values
represent in-hospital mortality. A Fisher’s exact test to differentiate discharge
using the identified four endotypes was conducted and demonstrated that

the differential discharge rates across four is statistically significant
(p=0.0120). (B) Timepoint 2 SOFA score, (C) Serum IFNg at timepoint 2

(reported as pg/mL), and (D) Serum TNFa on timepoint 2 following ICU

admission (reported as pg/mL). **P < 0.01 as determined by Kruskal-Wallis
ANOVA and post hoc analyses using Dunn’s test. SOFA, sequential organ

failure assessment.

SUPPLEMENTARY FIGURE 3

Median total TNF (A) and IFNg (B) levels within a healthy control population;

utilized in order to establish A) TNF+/- and B) IFNg+/- endotypes. Values

represent mean median (A) TNF SFU and B) IFNg SFU for health controls.
Healthy cohort n=45. SFU, spot-forming units.
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