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Alzheimer’s disease (Alzheimer’s disease, AD) is a progressive neurological

disorder characterized by memory loss and cognitive impairment. It is

characterized by the formation of tau protein neurofibrillary tangles and b-
amyloid plaques. Recent studies have found that mitochondria in neuronal

cells of AD patients exhibit various dysfunctions, including reduced numbers,

ultrastructural changes, reduced enzyme activity, and abnormal kinetics. These

abnormal mitochondria not only lead to the loss of normal neuronal cell

function, but are also a major driver of AD progression. In this review, we will

focus on the advances of mitochondria and their multi-omics in AD research,

with particular emphasis on how mitochondrial dysfunction in AD drives disease

progression. At the same time, we will focus on summarizing how mitochondrial

genomics technologies have revealed specific details of these dysfunctions and

how therapeutic strategies targeting mitochondria may provide new directions

for future AD treatments. By delving into the key mechanisms of mitochondria in

AD related to energy metabolism, altered kinetics, regulation of cell death, and

dysregulation of calcium-ion homeostasis, and how mitochondrial multi-omics

technologies can be utilized to provide us with a better understanding of these

processes. In the future, mitochondria-centered therapeutic strategies will be a

key idea in the treatment of AD.
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1 Introduction

AD is currently the most common form of dementia, and

according to incomplete statistics, AD accounts for approximately

80% of dementia cases worldwide. As one of the most common

neurodegenerative disorders in the world, AD is characterized by

amyloid b (amyloid b, Ab) plaques and neurofibrillary tangles of

hyperphosphorylated tau protein, which are often accompanied by

region-specific cerebral atrophy and a significant decrease in glucose

metabolic utilization (1). Patients with AD exhibit typical clinical

attention deficit disorder with extensive cognitive deficits, which

severely affects their normal life (2). In recent years, an increasing

number of elderly patients with AD have imposed a significant health

and economic burden on people worldwide. Although many effective

treatments exist for AD, they are limited to symptomatic relief and do

not stop the progression of the disease or cure it (3). The etiology of AD

is complex and involves the interplay of genetics, molecular biology, the

environment, and other factors. The global prevalence of AD is rising,

and the number of patients is expected to increase dramatically by

2050, with the number of people needing to care for them increasing

accordingly (4). The incidence of AD is increasing globally. Therefore,

accelerating the investigation of the pathogenesis of AD and searching

for effective therapeutic targets to improve the clinical symptoms of

patients are the key concerns of all future scientists (5).

Mitochondria, as the central part of energy metabolism in cells,

play an important role in the normal physiological processes of all types

of cells. In neuronal cells, mitochondria provide energy to cells through

oxidative phosphorylation to maintain normal neuronal function.

Once mitochondrial dysfunction occurs, the normal development

and function of neurons will be abnormal, and various degenerative

diseases will occur (6). The link between mitochondrial dysfunction

and the development of AD, which is characterized by memory loss

and cognitive dysfunction, amyloid-b plaque formation and abnormal

phosphorylation of tau proteins, has attracted the attention of more

and more researchers. Recent research evidence suggests that

mitochondrial dysfunction not only drives the onset of AD, but also

promotes its further progression (7). With the in-depth study of

mitochondria and its multi-omics, including mitochondrial

genomics, proteomics, metabolomics, epigenomics, etc., new ideas

and perspectives have been provided to study the specific

mechanism of mitochondrial role in AD (8). These high-throughput

sequencing technologies enable researchers to fully understand the

internal structure and heterogeneity of the mitochondria, while in-

depth studies of mitochondrial DNA mutation mechanisms,

mitochondrial gene and protein expression changes, and energy

metabolic pathways can help us better elucidate the specific

mechanisms of mitochondrial role in AD (9). In addition, the

progress of mitochondrial multi-omics research will also improve the

key targets for the treatment of AD in the near future, and promote the

discovery and development of mitochondria-targeted drugs.

In this review, we focus on summarizing the specific roles of

mitochondrial dysfunction in AD and how the use of mitochondrial

multi-omics technology can reveal the mechanisms of these

mitochondrial dysfunctions, and finally provide key targets and

ideas for the treatment of AD. We aim to summarize a
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comprehensive perspective from molecular mechanisms to drug

discovery centered on mitochondria in AD. In the future,

mitochondrial multi-omics technology will reveal to a great extent

how mitochondrial dysfunction drives the onset and progression of

AD, and how mitochondria as a target can be targeted to treat AD

and improve the quality of patients’ survival.
2 Mitochondrial dysfunction drives the
onset of AD

2.1 Imbalance of mitochondrial dynamics
in Alzheimer’s disease

Mitochondrial dynamics imbalance mainly refers to the dynamic

imbalance between mitochondrial fission and fusion, which can

directly lead to severe abnormalities in mitochondrial number and

function, and directly induce the onset and progression of AD

(10, 11). This dynamic imbalance is characterized by an increase in

mitochondrial fission and a decrease in fusion, leading to

mitochondrial fragmentation, which in turn causes an imbalance in

mitochondrial energy production and oxidative phosphorylation.

The Mitochondrial dynamics imbalance ultimately leads to severe

neuronal damage, which in turn triggers attention deficit disorder

(12). Mitochondrial fission is mainly regulated by dynamic-related

protein 1 (dynamic-related protein 1, Drp1), which is recruited to the

outer mitochondrial membrane by resident proteins such as

mitochondrial fission 1 protein (fission 1 protein, Fis1) and

mitochondrial fission factor (mitochondrial fission factor, Mff) to

play a normal role in regulating mitochondrial fission. In AD-related

studies, abnormal mitochondrial fission is usually positively

correlated with elevated levels of Ab and phospho-tau (phospho-

tau, pTau) (13, 14). In AD, proteins such as Ab and Tau further

exacerbate the mitochondrial fission process by interacting with

mitochondrial fission regulators, especially DRP1 and

mitochondrial FIS1 (15, 16). Further studies revealed that Ab
induces increased S-nitrosylation of DRP1 and promotes the

activity of mitochondrial fission-related enzymes, leading to

increased fragmentation of the mitochondrial inner membrane and

severe abnormal mitochondrial function (17, 18). Similarly, a study

found that phosphorylation of the Ser616 site on Drp1 promotes the

transport of Drp1 to the mitochondrial membrane and increases its

aggregation at the membrane, thereby promoting mitochondrial

fission. In addition, in AD, Ab aggregation can lead to elevated

levels of intracellular calcium ions and reactive oxygen species

(reactive oxygen species, ROS), etc. Rising calcium ions and

ROS induce the expression of kinases such as GSK-3 and

ERK, which in turn promotes the process of phosphorylation of

Drp1, and ultimately promotes mitochondrial fission. Mitochondrial

fusion is mainly regulated by the fusion proteins Mfn1 and Mfn2

located in the outer mitochondrial membrane and by the

fusion protein Opa1 located in the inner membrane (19, 20). In

mice with Tau-ablated AD, a decrease in ROS, a decrease in fission,

an increase in fusion, an inhibition of mitochondrial permeability

transition pore (mitochondrial permeability transition pore, mPTP)
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and cyploheximide D, which promotes the normal functioning of

mitochondria, and an enhancement of ATP production are observed.

In AD, these fusions are regulated by the fusion of ROS, fission, and

fusion. In AD, the expression and function of these fusion-regulated

proteins are severely impaired, resulting in reduced mitochondrial

fusion (21). The imbalance between mitochondrial fission and fusion

affects not only the number and morphology of mitochondria, but

also the integrity of mitochondrial DNA and mitochondrial function.

One of the biggest effects is mainly the disruption of ATP production

and regulation of intracellular calcium ions (22). In AD, another

consequence of imbalanced mitochondrial dynamics is abnormal

cellular mitosis (23). Mitosis is an important process for removing

damaged mitochondria and is essential for maintaining the number

and function of mitochondria in the cell. Fragmentation caused by

imbalanced mitochondrial dynamics leads to further abnormalities

associated with the process of cellular phagocytosis, the inability of

harmful substances to be expelled from the cell, and massive neuronal

death (24, 25). These changes in mitochondrial dynamics have been

extensively studied in a variety of AD mouse models, the most
Frontiers in Immunology 03
important of which are increased expression of proteins such as

DRP1 and FIS1, and a significant decrease in the expression of

proteins such as Mfn1, Mfn2, Opa1, and the mitochondrial

transporter protein TOM40 (26, 27). Dynamic changes in these

proteins are observed in the early, middle and late stages of AD,

highlighting the continuing role of mitochondrial dynamics

imbalance throughout the development of AD.

Imbalance in mitochondrial dynamics not only affects

mitochondrial number, structure and function (Figure 1), but is

also closely associated with disturbed neuronal energy metabolism

and cell death. Therefore, the development of therapeutic strategies

targeting mitochondrial dynamics may provide new ideas for the

treatment of AD.
2.2 Imbalance of mitophagy in AD

Mitophagy mammals remove abnormal mitochondria a highly

conserved cellular process. It functions through two main pathways:
FIGURE 1

An imbalance in Figure 1 mitochondrial dynamics drives AD onset, in which key proteins are aberrant, leading to increased fission and
decreased fusion.
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the ubiquitin-dependent pathway and the non-ubiquitin-dependent

pathway. In the ubiquitin-dependent pathway: PTEN induced

putative kinase 1(PTEN induced putative kinase 1, PINK1) and

Parkin proteins have very important biological functions. When

mitochondria are abnormal, PINK1 will be stalled on the outer

mitochondrial membrane. At this time, PINK1 activates Parkin by

phosphorylation, which in turn catalyzes the ubiquitination of

mitochondrial outer membrane proteins, and the ubiquitin chain is

in turn phosphorylated by PINK1. Extensively phosphorylated

proteins continuously emit “eat me”, promoting mitochondrial

autophagy. The non-ubiquitin-dependent pathway is dominated by

specific mitophagyreceptors, such as NIX and BNIP3, which directly

bind to autophagy-associated proteins through their LC3 interacting

regions to initiate autophagy. Together, these two pathways ensure

efficient clearance of damaged mitochondria. In AD, dysregulation of

mitophagy involves a variety of specific signaling pathways and affects

the expression of a wide range of genes and proteins. Accumulation

of Ab proteins and phosphorylated tau (phosphorylated tau, p-tau) in
AD leads to severe abnormalities in mitochondrial autophagy,

which, in turn, leads to neuronal damage. Mitophagy imbalance is

a very complex process that involves not only an imbalance in

mitochondrial dynamics, but also leads to calcium disruption and

disruption of normal metabolic pathways (28). The high expression

of Ab and tau inhibited the targeting of PINK1 and PARK2 to the

mitochondria, and reduced the aggregation of PINK1 and PARK2 to

the mitochondria, which led to the inhibition of mitophagy

and severe neuronal damage. inhibition and severe neuronal

damage (29, 30). The accumulation of Ab interferes with this

process and hinders the clearance of damaged mitochondria.

In vitro application of Ab1-42 triggers mitophagy damage, as

evidenced by a decrease in the ratio of PINK1, Parkin, Bcl-1, and

LC3-II/I, as well as the accumulation of p62 (31, 32). In contrast,

prolonged application of Ab1-42 induces an increase in these

markers, suggesting that the later stages of the mitochondrial

autophagic process are blocked. In addition, lysosome-

autophagosome fusion is also blocked, suggesting that Ab1-42 leads

to a normal early initiation of mitochondrial autophagy, but the later

steps are hindered (33, 34). Second, p-tau affects mitochondrial

transport and distribution, reducing the normal distribution of

mitochondria in neurons and deteriorating energy metabolism and

cellular function. Studies have shown that the 20-22 kDa Tau

fragment (located between amino acids 26 and 230 of the longest

human Tau isoform) can stimulate mitochondrial degradation

through autophagy (35). When cellular stress causes damage to

mitochondria and their inner membrane potential is depolarized,

the mitochondrial potential (DYm) is lost, which leads to

stabilization of the PINK1 protein at the outer mitochondrial

membrane. At this site, PINK1 will phosphorylate the Mfn2

protein and activate the ubiquitin-proteasome system (ubiquitin-

proteasome system, UPS). Initiation of this system leads to the

recruitment of Parkin protein to the outer mitochondrial

membrane. With the arrival of Parkin, the damaged mitochondria

are further propelled to be surrounded by an encapsulated or

segregated membrane, resulting in the formation of mitochondrial

autophagosomes, which are ultimately sent to the lysosome for

degradation in APOE4 is associated with an early stage of
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mitochondrial autophagy, characterized by reduced cleavage of

PINK1 and increased levels of Parkin, but appears to be blocked at

a later stage, as indicated by increased levels of p62 and mitochondrial

markers as indicated by an increase in p62 and mitochondrial

markers (36). In addition, an imbalance in mitochondrial

dynamics, particularly increased mitochondrial fission and

decreased fusion, leads to mitochondrial fragmentation and

impaired function. This imbalance further affects the mitophagy

process, including the breakdown and recirculation of

mitochondrial components in the autophagosome (37). In addition,

effective removal of damaged mitochondria by autophagosomes

requires precise recognition by autophagosomes and fusion

with lysosomes for degradation and recycling (38). However, in

AD, the accumulation of Ab and p-tau interferes with this process

by altering mitochondrial dynamics, hindering the clearance of

damaged mitochondria.

The imbalance of mitophagy in AD is mainly associated with

the accumulation of Ab and p-tau and affects the mitochondrial

autophagic process by altering mitochondrial kinetics (Figure 2),

which leads to mitochondrial dysfunction and neuronal damage,

inducing the onset and progression of AD.
2.3 Dysregulation of mitochondrial calcium
homeostasis in AD

In recent years, in studies of AD, it has been found that

dysregulation of calcium ion homeostasis in mitochondria is

closely related to cellular energy metabolism and has a huge

impact on the normal function of neuronal cells. This mechanism

is not only inextricably linked to cell survival and death, but also

involves a series of complex biological processes (39). The level of

calcium ions in mitochondria plays a key role in maintaining the

homeostasis of cellular energy metabolism (40). In microglia,

calcium ions help to increase the production of NADH and ATP

in mitochondria by activating dehydrogenase enzymes in the

tricarboxylic acid cycle, thus emphasizing the importance of

controlling calcium ion levels for energy output in neuronal cells.

In addition, inorganic polyphosphates (polyphosphates, polyP)

have been shown to be key regulators of calcium ion homeostasis

in mitochondria by controlling ca ion levels inside and outside

mitochondria through control of the mPTP (41, 42). During the

progression of AD, the dysregulation of mitochondrial calcium

homeostasis is characterized by the mitochondria’s reduced

capacity to buffer increased cytosolic calcium concentrations (43).

This dysregulation leads to mitochondrial dysfunction, increased

production of ROS, mtDNA mutations, and ultimately cell

apoptosis, accelerating the pathological process of AD (44, 45).

Notably, the neurotoxicity of Ab in AD is closely associated with the

dysregulation of mitochondrial calcium. Mitochondria become

direct targets of Ab aggregation, with its toxicity potentially

mediated by disrupting calcium transfer from the endoplasmic

reticulum (endoplasmic reticulum, ER) to mitochondria (46). The

increased content of the mitochondrial calcium uniporter

(mitochondrial calcium uniporter, MCU) elevates calcium levels

within the mitochondria, revealing Ab’s adverse effects on
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mitochondrial function and suggesting that blocking MCU could

emerge as a potential therapeutic strategy for AD (47). The

interaction between mitochondria and ER is modulated through

the mitochondria-associated ER membranes (mitochondria-

associated ER membranes, MAMs), which are crucial for calcium

homeostasis, lipid synthesis, and mitochondrial dynamics, among

other biological processes (48). In AD, enhanced MAM activity

intensifies the interaction between mitochondria and ER, adversely

affecting mitochondrial calcium homeostasis and further

elucidating MAM ’s role in the pathology of AD (49).

Furthermore, the accumulation of calcium in mitochondria

triggers the opening of the mPTP, a process closely linked to cell

apoptosis. In AD, the abnormal opening of mPTP further impairs

mitochondrial function, promoting cell death and exacerbating the

pathological changes of AD (50).

The dysregulation of mitochondrial calcium homeostasis in AD

reveals a complex mechanism network involving energy

metabolism, Ab toxicity, and the interaction between

mitochondria and ER. These findings not only deepen our

understanding of AD pathology but also provide a theoretical

basis for developing new therapeutic strategies targeting

mitochondrial calcium homeostasis dysregulation (Table 1).

3 Mitochondria-related omics reveal
the application of mitochondrial
dysfunction in AD

3.1 Bulk-RNA-seq

Bulk-RNA-seq studies have revealed the crucial role of

mitochondria and their associated pathways in the progression of

Alzheimer’s Disease (AD). Transcriptomic analyses of brain cells
Frontiers in Immunology 05
from AD patients and age-matched control groups have shown a

close association between AD pathology and mitochondrial

function (53). Notably, a meta-analysis has identified seven genes

that are consistently differentially expressed across all regions of the

AD brain, including the early response gene ZFP36L1, RERE,

PURA, OGT, SPCS1, SOD1, and NDUFS5 (54). The expression

patterns of these genes in AD suggest the importance of

mitochondrial function in the disease, with three of these genes

(NDUFS5, SOD1, and OGT) being directly involved in

mitochondrial functions (55). The NDUFS5 gene, as part of

mitochondrial complex I, might impact ATP production due to

its decreased expression in AD, affecting cellular energy supply. The

SOD1 gene, involved in the antioxidative mechanism, helps

detoxify ROS, crucial in the ETC (electron transport chain)

process. In AD, downregulation of SOD1 leads to the inability of

neuronal cells to effectively inhibit lipid peroxidation caused by

excessive mitochondrial ROS levels, which further exacerbates

neuronal cell injury and ultimately promotes the onset and

progression of AD (55). OGT, a key regulatory gene encoding

glycosyltransferase, plays a critical role in the mechanism of AD

genesis by participating in the post-translational modification of

neuronal tau and amyloid precursor protein. AD genesis

mechanism. In AD, OGT is responsible for the addition of O-

GlcNAc, and O-GlcNAc glycosylation promotes the expression of

phosphorylated tau proteins, which in turn leads to the loss of

function of microtubule proteins in neuronal cells. Interestingly,

increased levels of OGT expression inhibit tau phosphorylation,

while genetic downregulation of OGT in turn increases tau

phosphorylation (56). Another study using RNA-seq found that

gender may affect the expression of AD-related genes.

Mitochondrial metabolism-related pathways are enriched in both

males and females, but specific pathways such as synaptic

transmission and neuronal projection are more enriched in
FIGURE 2

Abnormal mitophagy drives AD onset.
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females (57). Therefore, in the treatment of AD, great differences in

personalization need to be taken into account if by targeting

mitochondria-related genes and pathways. In addition, RNA-seq

data based on large samples have revealed that the expression of

genes such as BIN1, MAP3K3, VASP and TBC1D1 are closely

associated with specific pathological features of AD. BIN1 is known

to be important in maintaining normal mitochondrial function and

its potential to be an effective target for AD therapy by regulating

tau protein clearance and modulating neuronal activity (58, 59).

The above RNA-seq studies revealed that mitochondria have

multiple roles in AD, including energy metabolism, anti-oxidative

stress, and regulation of the dynamic balance of Ca2+ (60).

Bulk-RNA-seq technology has revealed the key role of

mitochondria and their related genes in AD, providing important

ideas for further research on the specific mechanisms of AD and the

development of targeted therapeutic strategies. By integrating data

from large-scale studies and cohort studies of different ADs, we
Frontiers in Immunology 06
were able to re-conceptualize the mechanisms behind

mitochondria-driven AD, pointing the way to the development of

new therapeutic approaches.
3.2 scRNA-seq

Single-cell RNA sequencing (Single-cell RNA sequencing,

scRNA-seq) technology has greatly contributed to our

comprehensive understanding of neuronal cell heterogeneity and

mitochondrial function in AD. Meanwhile, scRNA-seq technology

reveals different subtypes of cell type-specific transcriptional

features and changes in mitochondria-related pathways during

AD progression, from which we are able to identify many key

signaling molecules (61). By analyzing various types of cells in the

brains of AD patients, researchers have identified significant

transcriptome-specific expression differences as well as different
TABLE 1 The role of mitochondria in AD.

Section Key Points Mechanisms/Effects References

Mitochondrial Dysfunction
Drives the Onset of AD

Imbalance between mitochondrial fission and
fusion
-Leads to mitochondrial fragmentation
and dysfunction

Fission regulated by Drp1, Fis1, Mff
Ab and pTau increase fission by interacting with Drp1 and Fis1

(10–14)

Mitochondrial Dysfunction
Drives the Onset of AD

Mitochondrial fragmentation and dysfunction
due to increased fission and decreased fusion

Ab induces S-nitrosylation of Drp1, promoting mitochondrial
fission
-Elevated calcium ions and ROS induce kinases like GSK-3 and
ERK to phosphorylate Drp1

(15–18)

Mitochondrial Dysfunction
Drives the Onset of AD

Impaired mitochondrial fusion due to
dysfunction of fusion proteins

Fusion regulated by Mfn1, Mfn2, Opa1
In AD, fusion protein function impaired, reducing fusion

(19–22)

Mitochondrial Dysfunction
Drives the Onset of AD

Disruption of ATP production and
calcium regulation

Affects mitochondrial DNA integrity, ATP production,
calcium regulation

(23–25)

Imbalance of Mitophagy
in AD

Dysregulation of mitophagy pathways Mitophagy: removal of abnormal mitochondria via ubiquitin-
dependent and non-ubiquitin-dependent pathways

(28–30)

Imbalance of Mitophagy
in AD

Impaired mitophagy due to Ab and
pTau accumulation

Ubiquitin-dependent: PINK1 and Parkin roles
Non-ubiquitin-dependent: NIX, BNIP3 initiate autophagy

(31–34)

Imbalance of Mitophagy
in AD

Hindered clearance of damaged mitochondria Effective removal requires autophagosome recognition and
lysosome fusion
Ab, pTau hinder clearance process

(35, 51, 52)

Imbalance of Mitophagy
in AD

Further impairment of mitochondrial function
and neuronal damage

Mitochondrial dynamics imbalance affects mitophagy
Increased fission, decreased fusion impair mitophagy

(36–38)

Dysregulation of
mitochondrial calcium
homeostasis in AD

Impact on cellular energy metabolism and
neuronal function

Dysregulation of mitochondrial calcium homeostasis impacts
cellular energy metabolism and neuronal function

(39–42)

Dysregulation of
mitochondrial calcium
homeostasis in AD

Calcium ions regulate energy metabolism
in mitochondria

Calcium ions in mitochondria maintain cellular energy
metabolism homeostasis
Inorganic polyphosphates regulate calcium ion levels via mPTP

(43–45)

Dysregulation of
mitochondrial calcium
homeostasis in AD

Dysregulation leads to mitochondrial
dysfunction, ROS production, mtDNA
mutations, apoptosis

In AD, reduced mitochondrial capacity to buffer cytosolic calcium
leads to dysfunction, ROS production, mtDNA
mutations, apoptosis

(46, 47)

Dysregulation of
mitochondrial calcium
homeostasis in AD

Ab disrupts calcium transfer from ER to
mitochondria
Enhanced MAM activity and mPTP opening
further impair mitochondrial function

Ab disrupts calcium transfer from ER to mitochondria, increases
MCU content, and affects mitochondrial function
Enhanced MAM activity affects calcium homeostasis and
mitochondrial dynamics
Accumulated calcium triggers mPTP opening, linked to apoptosis

(48–50)
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mitochondria-associated genes and signaling pathways at different

stages of AD pathogenesis (62). Mathys and colleagues et al.

analyzed 48 AD patients by integrating them using single-nucleus

RNA sequencing (snRNA-seq). Mathys and coworkers obtained

80,660 nuclei from the brain samples of 48 AD patients by using

single-nucleus RNA sequencing (single-nucleus RNA sequencing,

snRNA-seq). Colleagues, various cell types (e.g., excitatory neurons,

inhibitory neurons, astrocytes, and oligodendrocytes) and their

specific transcriptome expression profi les in AD were

meticulously distinguished (63). This study reveals the critical

role of mitochondria in different stages of AD, including

differences in mitochondrial gene expression, abnormal

expression of oxidative phosphorylation pathways, and

dysregulation of pathways such as mitochondrial transport. First,

differences in mitochondrial-related genes: the expression of the

NDUFA1 and NDUFA5 genes, which are subunits of NADH

dehydrogenase (part of mitochondrial complex I), as well as the

subunit COX6C, a subunit of cytochrome c oxidase complex IV,

were grossly aberrant, highlighting potential evidence of impaired

function of the electron transport chain (electron transport chain,

ETC) (64). In addition, the differential expression of SOD1 suggests

that there is a significant imbalance in the antioxidant defense

mechanism in AD. oXPHOS, as a core part of the ETC, any

alteration in its function will directly affect the energy production

of neuronal cells. scRNA-seq data directly suggest that the oXPHOS

process may be impaired in AD. Further analyses showed that

excitatory and inhibitory neurons are enriched for different

mitochondrial pathways in early and late pathological states of

AD, and that these pathways correspond to different pathological

features in disease progression (65). The scRNA-seq analysis of

astrocytes and oligodendrocytes showed that they play a role in AD

by relying on mitochondria-related pathways (e.g., ATP metabolic

pathway, detoxification response pathway, and mitophagy

pathway) in the late stages of AD. And the analysis of microglia

further revealed the role of mitochondrial dysfunction in AD (66).

In early AD, microglia showed high expression of interferon

regulatory genes, whereas in late AD, microglia showed high

expression of MHC and S100 family genes. The identification of

microglia subpopulations associated with amyloid-b and tau

pathology suggests that these cells exhibit unique phenotypic and

metabolic characteristics, highlighting the complexity of microglia

and their impact on AD disease progression.

scRNA-seq technology has been able to greatly elucidate the

mechanism of interaction between mitochondrial dysfunction and

AD occurrence and progression. These findings not only deepen

our understanding of the complex pathology of AD, but also

provide potential new targets for the development of therapeutic

strategies for specific cell types and disease stages.
3.3 Epigenomics and multi-omics

Epigenetics plays a crucial role in unraveling the mechanisms

behind mitochondrial dysfunction and disease progression in AD.
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Recent multi-omics studies integrating epigenomics, transcriptomics

and proteomics have provided new insights into the molecular

pathways of AD (67). These studies found that the expression of

genes associated with mitochondrial respiration and oxidative

phosphorylation was highly down-regulated, whereas genes

associated with AD transcription and chromatin accessibility were

significantly up-regulated, suggesting that mitochondrial function in

AD may be subject to complex epigenetic regulation. Epigenetic

Markers and AD: Proteomic analysis has particularly highlighted an

overall increase in the levels of histone acetylation (such as H3K27ac

and H3K9ac) in AD, directly related to active transcription (68).

Chromatin immunoprecipitation sequencing (Chromatin

immunoprecipitation sequencing, ChIP-seq) analysis confirmed

that in the genomes of AD patients, there are more peaks

associated with H3K27ac and H3K9ac, with a significant increase

in acetylation, suggesting significant changes in chromatin state in

AD, which could lead to alterations in gene expression patterns (69).

Functional Pathways and AD: Functional pathways associated with

disease-specific gains of H3K27ac and H3K9ac include Gene

Ontology (GO) terms related to transcription and nucleic acid

metabolism, implying that these epigenetic modifications play

crucial roles in regulating the expression of AD-related genes. DNA

motif enrichment analysis further shows that transcription factors

NRF1 and CTCF are enriched at sites with disease-specific gains of

H3K27ac or H3K9ac, highlighting their potential role in the

regulation of mitochondrial gene expression in AD (70). The

Connection between GWAS and the Epigenome: Variants

associated with AD identified by Genome-Wide Association

Studies (GWAS) are predominantly located in non-coding regions,

expected to influence disease progression through changes in

transcription factor binding and regulatory element function. These

changes have a high degree of cell-type specificity, especially with AD

SNP enrichment significantly increased in microglia but not in

neuronal subtypes, further confirming the unique role of microglia

in AD pathology (71). Single-Cell Chromatin Accessibility Analysis:

The research by Corces et al. using single-cell chromatin accessibility

assays revealed brain regional and cell-type-specific epigenomic

heterogeneity in AD. This detailed analysis provided a

comprehensive map of epigenetic changes in AD, pointing to

disease-related alterations in specific cell types and brain regions (72).

Multi-omics research has revealed the complex relationship

between mitochondrial dysfunction and disease progression in AD,

emphasizing the key role of epigenetics in regulating the expression

of mitochondrial-related genes (Table 2). By meticulously analyzing

epigenetic information, functional signaling pathways, GWAS-

identified genetic variants, and chromatin accessibility data in

AD, we were able to probe the mystery behind the pathological

features of AD in terms of epigenetic regulation, providing new

targets and ideas for future targeted therapeutic strategies. These

groundbreaking findings not only deepen our understanding of the

specific mechanisms behind mitochondrial dysfunction in AD, but

also emphasize the importance of cell-specific epigenetic changes in

disease onset and progression, and provide an important theoretical

basis for further exploration of the complex pathology of AD.
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4 From a pharmacological
perspective: targeting mitochondria
for AD treatment

Taking mitophagy are the key target, pharmacological methods

are used to improve or restore mitochondrial function, thus

delaying or reversing the pathological process of AD. Here are

several main pharmacological directions that act on mitophagy

through distinct mechanisms, showing potential in the treatment of

AD: Increasing Intracellular NAD+ Levels: Elevating intracellular

NAD+ can enhance the activity of SIRT1 and SIRT3, two Sirtuin

proteins, thus improving the bioenergetics of neuronal

mitochondria (73). For instance, supplementation with

nicotinamide, a precursor of NAD, has been shown in the

3xTgAD mouse model to enhance SIRT3 activity, ameliorate Ab
and Tau pathology, and improve learning and memory deficits.

This mechanism involves enhancing mitochondrial resistance to

oxidative stress, upregulating autophagy, and activating the PI3K-

Akt, MAPK/ERK1/2 signaling pathways (74).Enhancing

Mitochondrial Autophagy: Mitochondrial autophagy, or

mitophagy, is crucial for maintaining mitochondrial health by

removing damaged mitochondria to prevent AD-related

mitochondrial function decline (75). Drugs that induce mild

bioenergetic stress or inhibit the mTOR pathway, such as the

mitochondrial uncoupler DNP and the mTOR inhibitor

rapamycin, have been shown to activate autophagy and preserve

neuronal function in AD-related animal models (76).

Pharmacological Interventions: Specific compounds like

nicotinamide riboside, Urolithin A (Urolithin A, UA), Actinonin

(Actinonin, AC), and NAD+ enhancers (nicotinamide riboside,

nicotinamide mononucleotide) promote mitophagy and improve

AD pathology through different mechanisms. These compounds
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activate the PINK1/Parkin-dependent mitophagy pathway,

reducing Ab burden, improving memory deficits, restoring

mitochondrial morphology and function, and increasing synapse

numbers (77). Nicotinamide and Nicotinamide Riboside: These

compounds, by boosting intracellular NAD+ levels, directly

influence the activity of Sirtuin proteins, particularly SIRT1 and

SIRT3 (78). SIRT1 and SIRT3, key regulators of mitochondrial

health, improve mitochondrial bioenergetics and enhance

resistance to oxidative stress through deacetylation of critical

mitochondrial proteins. In AD models, these compounds activate

SIRT1 and SIRT3, reducing the aggregation of Ab and Tau proteins,
improving neuron survival and function (79). They also promote

the autophagy process, helping to remove damaged mitochondria

and protein aggregates, thereby mitigating AD neuropathology.

UA: UA, a natural compound produced by gut microbial

metabolism of ellagic acids, promotes mitophagy by activating the

PINK1/Parkin pathway. UA can delay the progression of AD by

improving mitochondrial quality and facilitating the clearance of

damaged mitochondria (77). In a mouse model of AD, treatment

with UA Similar results were also observed, with reduced Ab
deposition and decreased Tau phosphorylation in mouse

neuronal cells, and significant improvement in memory deficits in

mice. Additionally, UA improves mitochondrial morphology,

increases synaptic density, reduces inflammation, and promotes

neuroprotection (80). AC: Similar to UA, AC restores

mitochondrial morphology and function by activating the

mitophagy pathway. AC can prevent memory deficits in AD

models and reduce Ab burden (81). AC treatment not only

improves mitochondrial morphology and function but also

increases the number of synapses, stimulates the clearance of Ab
plaques, and reduces neuroinflammation. It has been shown that

AC exerts neuroprotective effects by attenuating pathological

changes in AD while promoting mitophagy in microglia (82).
TABLE 2 Application of multi-omics techniques in AD.

Section Key Findings Implications Challenges Ref

Bulk-RNA-seq Revealed crucial role of mitochondria in
AD progression.

Points to mitochondrial dysfunction as a
key factor in AD.

Validation of identified genes in larger
cohorts needed.

(42)

Bulk-RNA-seq Meta-analysis identified genes with differential
expression in AD.

Suggests potential therapeutic targets
within mitochondrial pathways.

Translating gene expression changes to
functional outcomes.

(43)

Bulk-RNA-seq Highlighted the association between AD pathology
and mitochondrial function.

Underlines the importance of
mitochondrial health in AD prevention.

Dissecting cell type-specific
contributions to AD pathology.

(44)

scRNA-seq Revealed transcriptional characteristics of cell type-
specificity in AD.

Suggests mitochondrial dysfunction as a
target for cell-specific therapy.

Understanding stage-specific
mitochondrial dysfunction.

(50)

scRNA-seq Identified changes in mitochondrial-related pathways
during disease progression.

Indicates potential for stage-specific
therapeutic strategies.

Integrating epigenomic data with
functional outcomes.

(53)

scRNA-seq Differentiated cell types and expression traits
emphasizing mitochondrial function’s role.

Highlights the need for detailed
understanding of cell type contributions.

Identifying direct causal relationships
between epigenetic changes and AD.

(54)

Epigenomics
and multi-omics

Highlighted complex epigenetic regulation of
mitochondrial function.

Suggests epigenetic regulation as a
potential therapeutic target.

Epigenetic marker identification
and validation.

(58)

Epigenomics
and multi-omics

Showed significant changes in chromatin state
potentially leading to gene expression alterations.

Implies targeting epigenetic markers
could modulate disease progression.

Integrating multi-omics data for a
holistic disease understanding.

(60)

Epigenomics
and multi-omics

Linked disease-specific gains of H3K27ac and
H3K9ac to functional pathways in AD.

Points to the importance of cell-specific
epigenetic changes in AD.

Developing targeted therapies based on
epigenetic regulation.

(61)
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Natural compounds (e.g., melatonin, trehalose, resveratrol,

bexarotene, tetrahydroxy stilbene, b-asarone, etc.) are able to

greatly alleviate the progression of AD by stimulating

mitochondrial autophagy, clearing damaged mitochondria and

activating the PINK1/Parkin pathway, reducing oxidative stress

and mitigating mitochondrial damage.

The pharmacological strategies targeting mitophagy are aimed

at restoring or maintaining normal mitochondrial function and

reducing the occurrence of AD-related neurodegenerative diseases

through various mechanisms.
5 Immune cell crosstalk and
immunotherapy in AD

In AD, abnormalities in immune cell function also directly drive

the onset and progression of AD. First, Ab production and

deposition occurs in AD. Ab then accumulates in large numbers

in the brain and begins to drive microglial cells in the brain.

Microglia, as one of the most prominent immune cells in the

brain, inhibit the excessive accumulation of Ab by recognizing it

and removing these abnormal proteins. However, prolonged and

massive accumulation of Ab eventually leads to microglial over-

activation and the release of large amounts of inflammatory factors,

which further exacerbate neurological damage (83, 84).

Immunotherapy for AD: Currently, it can be mainly categorized

into two therapeutic strategies: active immunotherapy and passive

immunotherapy. Among them, active immunotherapy mainly

involves the study of immunization vaccines. AN1792: AN1792 is

a synthetic passive immunization vaccine based on full-length Ab
protein and using QS-21 as an adjuvant. It promotes an immune

response primarily by facilitating antigen presentation and

activating specific T and B cells to produce antibodies that

eliminate Ab (85). These antibodies recognize and bind to

aberrant Ab proteins, labeling them so as to enhance the ability

of microglial cells to remove Ab proteins by phagocytosis.AN1792,

the first clinically tested anti-Ab vaccine, has not been particularly

well-tested in clinical trials. A small number of patients develop T-

cell mediated meningitis and are found to have low antibody

concentrations and suboptimal therapeutic efficacy during long-

term follow-up (86). CAD106: CAD106 targets the N-terminal

fragment of the Ab protein (Ab1-6), primarily to avoid triggering

a T-cell-mediated immune response against Ab, and instead targets

only B-cell-mediated antibody production.CAD106 mediates a

long-term antibody response, aimed at sustained clearance of Ab
protein without activating harmful T cells (87).

Passive immunotherapy primarily utilizes monoclonal

antibodies. Aducanumab: Aducanumab is a monoclonal antibody

against Ab aggregates. It has a high affinity for binding to specific

epitopes of Ab aggregates and recognizes not only formed fibers but

also oligomers in the early stages of formation (88). Aducanumab

promotes Ab clearance and reduces its neurotoxicity by activating

phagocytosis by immune cells through the Fc region of the

antibody, particularly through interaction with the Fcg receptor

on the surface of microglial cells. Solanezumab: Solanezumab

reduces aggregation and promotes clearance of circulating
Frontiers in Immunology 09
monomers and small oligomers by targeting the middle portion

of the Ab protein (Ab13-28), which binds exclusively to them (89).

Solanezumab reduces Ab levels in the brain primarily by blocking

the aggregation and deposition of Ab and by transporting the

antibody-Ab complexes to the liver and clearing them.

Donanemab: Donanemab is a monoclonal antibody targeting N-

terminal pyroglutamate-modified Ab. Donanemab is able to

improve neurological function by binding to Ab in plaques and

subsequent antibody-mediated cellular phagocytosis, capable of

decreasing perineuronal Ab loading and ultimately directly

facilitating clearance of deposited Ab (90).

In AD immunotherapy, most of the strategies, both active and

passive immunotherapy, target Ab. from preventing Ab formation

and aggregation to directly removing formed Ab aggregates. In the

future, the development of immunotherapy will greatly facilitate the

treatment of AD, improving the quality of patient survival while

controlling the associated side effects as much as possible.
6 Conclusion

Currently, therapeutic research in AD still faces multiple

formidable challenges. The first is that the understanding of AD

pathogenesis is still incomplete, and there are still many

unfathomable processes of occurrence and development. The

second is the high failure rate of clinical trials, and the fact that

some previous studies have been fundamentally misdirected. Third

is the paucity of biomarkers to diagnose AD. Finally, there is a high

degree of heterogeneity in AD among patients; the pathogenesis of

AD is complex, involving amyloid plaques, Tau protein tangles,

neuroinflammation, and metabolic disorders, and a unified

pathologic model has yet to be developed. The high failure rate of

clinical trials is partly attributed to the difficulty in identifying

effective therapeutic targets due to these complex mechanisms,

while the heterogeneity of patients also makes it difficult to

standardize therapeutic regimens.

Future research directions need to be multifaceted. The first is to

continuously explore the pathogenesis of AD and establish a sound

mechanistic basis. The second is to develop multi-targeted drugs,

which should not only target traditional amyloid plaques and Tau

proteins, but also include mechanisms such as neuroinflammation,

oxidative stress and mitochondrial dysfunction. Thirdly, efforts also

need to be made to advance personalized therapeutic strategies, using

genomics, epigenomics, and proteomics data to develop precise

treatment regimens for individual patients. Finally, the

development of early diagnostic biomarker tools is also critical,

especially those that can detect disease before the onset of clinical

symptoms, such as early detection enabled by liquid biopsies and

high-resolution imaging. In addition, research into neuroprotective

and neuroregenerative approaches, including stem cell therapies and

gene therapies, which have the potential to make breakthroughs in

preventing or reversing neuronal damage, is an important future

direction. The combination of artificial intelligence and big data

technologies will play an important role in the understanding of

disease mechanisms, the discovery of new therapeutic targets, and the

optimization of clinical trial design and patient management.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1418939
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liao et al. 10.3389/fimmu.2024.1418939
Through these multifaceted efforts, the future holds the promise of

overcoming current limitations and developing more effective AD

treatments that will significantly improve patients’ quality of life

and prognosis.

In recent years, intensive research onmitochondria has highlighted

that mitochondrial dysfunction is a key centerpiece driving the

pathogenesis of various neurodegenerative diseases. This review

comprehensively explores the important role of mitochondrial

dysfunction in the onset and progression of AD. Processes such as

mitochondrial autophagy, disturbed mitochondrial dynamics, and

disruption of Ca2+ homeostasis, all of which have specific

mechanisms of action in AD onset and progression, are summarized

in focus. Advances in mitochondrial multi-omics research have greatly

improved our understanding of the complex pathomechanisms of AD,

especially in identifying additional key genetic targets, signaling

pathways and pharmacological interventions for treatment. By

studying the molecular mechanisms of mitochondrial dysfunction

and utilizing comprehensive multi-omics techniques, we have

discovered an increasing number of key mechanisms that regulate

the etiology and progression of AD. These findings not only reveal the

critical role of mitochondria in normal neurons and disease, but also

demonstrate that targeting mitochondria has significant potential in

AD therapy.With further research, we have every reason to believe that

by studying mitochondria and its multi-omics, we will be able to

further decipher the complex molecular and cellular maps of AD in the

future, which will facilitate the development of personalized and

effective therapies, improve the quality of patient’s survival, and

reduce the global economic and health burden.
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