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Background: Targeted therapy for Sjögren’s syndrome (SS) has become an

important focus for clinicians. Multi-omics-wide Mendelian randomization

(MR) analyses have provided new ideas for identifying potential drug targets.

Methods: We conducted summary-data-based Mendelian randomization (SMR)

analysis to evaluate therapeutic targets associated with SS by integrating DNA

methylation, gene expression and protein quantitative trait loci (mQTL, eQTL,

and pQTL, respectively). Genetic associations with SS were derived from the

FinnGen study (discovery) and the GWAS catalog (replication). Colocalization

analyses were employed to determine whether two potentially relevant

phenotypes share the same genetic factors in a given region. Moreover, to

delve deeper into potential regulation among DNAmethylation, gene expression,

and protein abundance, we conducted MR analysis to explore the causal

relationship between candidate gene methylation and expression, as well as

between gene expression and protein abundance. Drug prediction and

molecular docking were further employed to validate the pharmacological

activity of the candidate drug targets.

Results: Upon integrating the multi-omics data, we identified three genes

associated with SS risk: TNFAIP3, BTN3A1, and PLAU. The methylation of

cg22068371 in BTN3A1 was positively associated with protein levels, consistent

with the negative effect of cg22068371methylation on the risk of SS. Additionally,

positive correlations were observed between the gene methylation of PLAU

(cg04939496) and expression, as well as between expression and protein levels.

This consistency elucidates the promotional effects of PLAU on SS risk at the DNA

methylation, gene expression, and protein levels. At the protein level, genetically

predicted TNFAIP3 (OR 2.47, 95% CI 1.56–3.92) was positively associated with SS

risk, while BTN3A1 (OR 2.96E-03, 95% CI 2.63E-04–3.33E-02) was negatively
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associated with SS risk. Molecular docking showed stable binding for candidate

drugs and target proteins.

Conclusion:Our study reveals promising therapeutic targets for the treatment of

SS, providing valuable insights into targeted therapy for SS. However, further

validation through future experiments is warranted.
KEYWORDS

Sjögren’s syndrome, Mendelian randomization, drug target, methylation, gene
expression, protein, proteomics, genetics
1 Introduction

Sjögren’s syndrome (SS) is a refractory autoimmune disease

pathologically characterized by progressive destruction of exocrine

glands, involving several systemic organs such as the oral cavity,

eyes, kidneys, liver, lungs, joints, and nerves (1). SS is associated

with a significantly higher incidence of non-Hodgkin’s lymphoma

compared to other autoimmune disease, making it one of the

diseases closely associated with malignancy (2, 3). The efficacy of

drugs such as lubricants, glucocorticoids, and immunosuppressants,

which are commonly used in the clinical treatment of SS, is not

always effective and there is a certain degree of adverse reactions,

such as local allergies, gastrointestinal damage, and skin lesions (4).

Therefore, exploring drug targets for the treatment of SS is of far-

reaching clinical significance and can provide theoretical support

for the development of new drugs for the treatment of SS.

Finding drug targets through genetic means can not only greatly

improve the efficiency of drug development but also save a lot of

human and material resources (5, 6). In addition, proteins, as key

regulators of molecular pathways, have widely emerged as a major

source of drug targets (7, 8). It has been demonstrated that disease-

related protein drug targets supported by genetic associations have a

higher likelihood of gaining market approval (5). Therefore,

constructing drug targets based on genetic information is a more

effective approach to developing drugs.

Mendelian randomization (MR) analyses, which utilize genetic

variation as an instrumental variable to enhance inferences about

causal relationships between exposures and outcomes, have been

widely employed in drug target development and drug repurposing.

In contrast to observational studies, MR circumvents the influence of
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environmental and self-adoption factors because genetic variants are

randomly allocated at the time of conception. With advancements in

high-throughput genomic and proteomic technologies in plasma and

cerebrospinal fluid, MR-based strategies have facilitated the

identification of potential therapeutic targets for numerous diseases

such as inflammatory bowel disease, multiple sclerosis, and colorectal

cancer (9–11). In this study, we systematically identified molecular

signatures of genes associated with SS risk by integrating DNA

methylation, gene expression, and protein abundance data,

providing comprehensive directions for future research and

potential therapeutic targets.
2 Materials and methods

2.1 Data sources for DNA methylation,
gene expression and protein quantitative
trait loci

The schematic illustration of the identification of drug targets

for SS and the study design is illustrated in Figures 1 and 2.

Methylated quantitative trait loci (mQTL) data were obtained

from SNP-CpG associations in the blood of individuals of

European ancestry from 1980 by McRae et al. (12). The blood

expression quantitative trait loci (eQTL) dataset was extracted from

the eQTLGen consortium (https://eqtlgen.org/), comprising 31,684

individuals, 16,987 genes, and 31,684 cis eQTLs derived from blood

samples, primarily from healthy European individuals (13). The

protein quantitative trait loci (pQTL) dataset was derived from a

large-scale pQTL study of 35,559 Icelanders, with summary

statistics extracted for genetic associations at the level of 4907

circulating proteins (14).
2.2 SS data sources

Genome-wide association studies (GWAS) data for the SS

discovery cohort were obtained from FinnGen Release 10 (https://

www.finngen.fi/en). The study was conducted on individuals of
frontiersin.org
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European ancestry and comprised a total of 2,735 SS cases and

399,355 control cases. SS patients were identified based on ICD-10

code M35.0, ICD-9 code 7102, or ICD-8 code 73490 (primarily

relying on ICD-10 codes). The validation cohort was sourced from

the GWAS Catalog GCST90018920 and included 1,599 SS cases and

658,316 control cases (https://www.ebi.ac.uk/gwas/).
2.3 Summary-data-based MR analysis

Summary-data-based Mendelian Randomization (SMR)

analysis is a statistical method based on the principles of

Mendelian randomization that uses genetic variation (single

nucleotide polymorphisms, SNP) as an instrumental variable to

assess the causal relationship between an exposure and an outcome,

and is mainly applied for causal inference between genes and

complex diseases or traits, especially when direct randomized

controlled trials are not feasible. Compared to MR analysis, SMR

analysis relies on pooled results from genome-wide association

studies (GWAS) rather than individual-level data, an approach

that is more favorable in terms of privacy protection and data

sharing. SMR analysis can be combined at the multi-omics level to

help researchers explore potential causal relationships between

specific drug targets and diseases. In this study, we used SNPs as

instrumental variables, mQTL, eQTL, pQTL as exposures, and SS as

outcomes. The SMR analysis was conducted using SMR 1.3.1

software (https://yanglab.westlake.edu.cn/software/smr/) (15).

We screened for the top associated cis-QTL by defining a

chromosome window centered around the target gene (± 1000

kb) and passing a P-value threshold of 5.0 × 10−8. The

Heterogeneity in Dependent Instrument (HEIDI) test was

primarily employed to assess whether a gene SNP-mediated

phenotype resulted from a linkage disequilibrium reaction, with
Frontiers in Immunology 03
the criterion of P-HEIDI > 0.01. If the P-value of the HEIDI test was

less than 0.01, it indicated a heterogeneous association, suggesting

possible pleiotropy. A false discovery rate (FDR) of a = 0.05, based

on the Benjamini-Hochberg method, was applied for multiple

testing. Associations with FDR-corrected P-values < 0.05 and P-

HEIDI > 0.01 were analyzed for colocalization.
2.4 Colocalization analysis

Colocalization analysis can be utilized to genetically co-localize

two potentially related phenotypes, determining whether they share

common genetic causal variants within a given region. We

conducted colocalization analyses to assess whether SS and the

identified mQTLs, eQTLs, or pQTLs are influenced by linkage

disequilibrium. Five exclusivity hypotheses were examined in the

colocalization analyses: 1) No association with any of the traits

(H0); 2) Association with trait 1 only (H1); 3) Association with trait

2 only (H2); 4) Causal variants for the two traits are different (H3);

5) Causal variants for the two traits (H4) are the same. For pQTL-

GWAS colocalization, eQTL-GWAS, and mQTL-GWAS, the

colocalization region windows were set at ±1000 kb, ± 1000 kb,

and ±500 kb, respectively. A posterior probability of H4 (PPH4)

greater than 0.70 was considered strong evidence for colocalization.
2.5 Integrating results at the multi-omics
level of evidence

To achieve a comprehensive understanding of the association of

gene-related regulation with SS across different levels, we integrated

results from three distinct gene regulatory layers. Considering that

proteins represent the final expression products of genes and are
FIGURE 1

Schematic illustration of the identification of drug targets for Sjögren’s syndrome through multi-omics Mendelian randomization study.
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prime targets for drug therapy, genes associated with SS at the

protein level were prioritized as high-quality candidates. Based on

this principle, the final candidate genes were categorized into two

tiers: 1) Tier 1 genes: These genes were defined as having

associations with SS at protein abundance level (FDR-corrected

P-value < 0.05), PPH4 of colocalization > 0.7, and associations with

SS at gene methylation or expression level (original P-value < 0.05);

2) Tier 2 genes: These genes were defined as having associations

with SS at protein abundance level (FDR-corrected P-value < 0.05),

and associations with SS at both gene methylation and expression

levels (FDR-corrected P-value < 0.05), PPH4 of colocalization > 0.7.

Moreover, to delve deeper into potential regulation among

methylation, expression, and protein abundance, we conducted

MR analysis and colocalization analysis to explore the causal
Frontiers in Immunology 04
relationship between related DNA methylation and expression, as

well as between gene expression and protein abundance.
2.6 Candidate drug prediction and
molecular docking

Predicting drug candidates through drug targets is a critical step

in drug discovery and development. We searched each of the key

genes in the DrugBank database to obtain information about the

drugs associated with these genes (https://go.drugbank.com/) (16).

DrugBank is a comprehensive drug database that contains

information about the pharmacological properties, targets, and

other information about drugs. DrugBank is often used in
FIGURE 2

Study design. QTL, quantitative trait loci; SS, Sjögren’s syndrome; SNP, single nucleotide polymorphisms; SMR, summary-based Mendelian
randomization; HEIDI, heterogeneity in the dependent instrument; PPH4, posterior probability of H4.
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conjunction with other databases and tools to explore multi-

targeted mechanisms of action of a drug and its potential

therapeutic effects.

To further understand the interaction between drug candidates

and targets, molecular docking technique was used in this study.

The drug structure data and target protein structure data were

obtained from the PubChem Compound Database (https://

pubchem.ncbi.nlm.nih.gov/), and the Protein Data Bank (http://

www.rcsb.org/), respectively (17). We employed semi-flexible

docking to form stable complexes. Protein pretreatment (removal

of water molecules and excess ligands, addition of hydrogen atoms)

was accomplished using PyMOL 2.4. AutoDock Tools 1.5.6

was used to generate PDBQT files for docking simulations.

Molecular docking analysis was performed using AutoDock Vina

1.2.2 (http://autodock.scripps.edu/) (18). Binding energies less

than -5 kcal/mol were defined to indicate effective ligand-receptor

binding, while binding energies less than -7 kcal/mol indicated

strong binding activity.
3 Results

3.1 DNA methylation and SS

A total of 4820 CpG sites were identified as associated with SS

risk (P < 0.05) (Supplementary Table S1). After correction for

multiple testing and colocalization analysis, we identified a total of

154 CpG sites associated with SS (P(FDR) < 0.05, PPH4 > 0.70)

(Table 1, Supplementary Table S1). For instance, cg18909389 (OR

0.35, 95% CI 0.31–0.41) and cg12257344 (OR 0.33, 95% CI 0.28–

0.38), located in CLIC1, as well as cg00355613 (OR 0.27, 95% CI

0.22–0.33), cg15745284 (OR 0.28, 95% CI 0.23–0.34), cg21289669

(OR 0.23, 95% CI 0.18–0.29), and cg07518714 (OR 0.27, 95% CI

0.22–0.34), located in TNXB, were negatively associated with SS

risk. Additionally, cg05571472 (OR 6.13, 95% CI 4.33–8.69), located

in C6orf48, was positively associated with SS risk. In the validation

cohort, many CpG sites such as C6orf25 (cg06132876), PLAU

(cg04939496), and TNXB (cg07237769) were replicated

(Supplementary Table S2).
3.2 Gene expression and SS

A total of 957 genes were identified as associated with SS risk

(P < 0.05) (Supplementary Table S3). After correcting for multiple

testing (P(FDR) < 0.05) and conducting colocalization analysis

(PPH4 > 0.7), genetically predicted CA8 (OR 0.58, 95% CI 0.43–

0.77), BACH2 (OR 0.51, 95% CI 0.36–0.72), RP4–555D20.2

(OR 0.59, 95% CI 0.44- 0.78), RP11–148O21.4 (OR 0.78, 95% CI

0.70–0.87), BLK (OR 0.73, 95% CI 0.64–0.84), KIAA1683 (OR 0.83,

95% CI 0.75–0.91), RP11–148O21.2 (OR 0.45, 95% CI 0.32–0.65),

TNXA (OR 0.32, 95% CI 0.27–0.38), VSIG10 (OR 0.75, 95% CI

0.65–0.86), and WSB2 (OR 0.72, 95% CI 0.62–0.84) were negatively

correlated with SS risk. Conversely, genetically predicted PLAU
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(OR 1.77, 95% CI 1.40–2.24), FAM167A (OR 1.20, 95% CI 1.11–

1.30), MIF4GD (OR 1.41, 95% CI 1.18–1.69), and SYNGR1 (OR

1.21, 95% CI 1.10–1.33) were positively associated with SS risk

(Figure 3). The associations of FAM167A, BLK, RP11–148O21.2,

RP11–148O21.4, RP11–148O21.6, SYNGR1, MIF4GD, and CA8

were replicated in the validation cohort (Supplementary Table S4).
TABLE 1 Associations of DNA methylation with Sjögren’s syndrome (SS).

Gene Probe ID OR
(95% CI)

P value PPH4

CLIC1 cg18909389 0.35
(0.31–0.41)

7.75E-46 0.98

TRIM31 cg11100081 0.59
(0.55–0.64)

6.48E-45 <0.01

CLIC1 cg12257344 0.33
(0.28–0.38)

1.67E-44 0.98

TNXB cg00355613 0.27
(0.22–0.33)

3.72E-36 0.98

HLA-DMB cg13524037 2.47
(2.14–2.86)

1.69E-34 <0.01

HLA-DPB1 cg14373797 0.8
(0.77–0.83)

2.22E-34 <0.01

C6orf27 cg05239811 0.25
(0.2–0.31)

8.98E-34 0.06

TNXB cg15745284 0.28
(0.23–0.34)

3.94E-33 0.93

TNXB cg21289669 0.23
(0.18–0.29)

4.47E-32 0.97

TNXB cg07518714 0.27
(0.22–0.34)

8.58E-32 0.97

HLA-DPA1 cg05751055 0.51
(0.45–0.57)

1.25E-29 <0.01

TNXB cg21642103 0.19
(0.14–0.26)

3.37E-28 0.98

TNXB cg15014577 0.18
(0.14–0.25)

2.29E-27 0.97

COL11A2 cg22122760 0.43
(0.37–0.51)

1.16E-26 <0.01

HLA-DRA cg08882389 0.18
(0.13–0.25)

1.30E-26 0.12

TNXB cg11493661 0.17
(0.12–0.24)

1.61E-25 0.98

C6orf48 cg05571472 6.13
(4.33–8.69)

2.08E-24 0.96

CLIC1 cg18402034 0.14
(0.09–0.2)

3.65E-24 0.92

XXbac-
BPG308K3.6

cg06608359
0.56
(0.5–0.63)

4.55E-23 1.00

GPSM3 cg21386484 0.31
(0.24–0.39)

8.05E-23 0.78
OR, odds ratio; CI, confidence interval; PPH4, posterior probability of H4.
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3.3 Protein and SS

A total of 108 proteins were associated with SS risk at the

P < 0.05 level (Supplementary Table S5). After adjusting for

multiple tests, 8 proteins were associated with the risk of Sjögren

at the P(FDR) < 0.05 level. HSPA1B (OR 2.41E-03, 95% CI 3.42E-04–

1.70E-02), LY6G6D (OR 2.88E-03, 95% CI 2.73E-04–3.03E-02),

BTN3A1 (OR 2.96E-03, 95% CI 2.63E-04 -3.33E-02), SFTA2 (OR

0.08, 95% CI 0.02–0.26), HSPA1L (OR 0.31, 95% CI 0.17–0.56), and

VARS1 (OR 0.27, 95% CI 0.14–0.53) were observed to be negatively

correlated with SS risk. Conversely, PLAU (OR 1.61, 95% CI 1.32–

1.95) and TNFAIP3 (OR 2.47, 95% CI 1.56–3.92) were positively
Frontiers in Immunology 06
associated with SS risk (Figure 4). The results of the colocalization

analysis found high supportive colocalization evidence for BTN3A1

(PPH4 = 0.86) and TNFAIP3 (PPH4 = 0.90). BTN3A1 (OR 0.01,

95% CI 6.31E-04–0.09, P(FDR) = 0.036) was replicated in the

validation cohort (Supplementary Table S6).
3.4 Integrating evidence from multi-
omics levels

After integrating evidence at the multi-omics level, we identified 2

tier 1 genes, TNFAIP3 and BTN3A1, and the tier 2 gene PLAU
FIGURE 3

Forest plot of associations between gene expression with SS. OR, odds ratio; CI, confidence interval; PPH4, posterior probability of H4.
FIGURE 4

Forest plot of associations between protein with SS. OR, odds ratio; CI, confidence interval; PPH4, posterior probability of H4.
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(Table 2, Figure 5). In the validation cohort, BTN3A1 was replicated

at the level of circulating proteins (P(FDR) = 0.036) (Supplementary

Table S6). In exploring the association between gene methylation,

expression, and protein abundance, we found that the methylation of

cg22068371 in BTN3A1 was positively associated with protein levels,

which is consistent with the negative effect of cg22068371

methylation on the risk of SS (Supplementary Table S7). Positive

correlations were also observed between the gene methylation of

PLAU (cg04939496) and gene expression, as well as between gene

expression and protein levels, which were corroborated with the

positive effect on SS risk. Strong colocalization supportive evidence

was observed between the methylation of BTN3A1 (cg22068371) and

protein abundance, and between the gene methylation of PLAU

(cg04939496) and expression.
3.5 Molecular docking

We identified drug candidates related to the target proteins

through DrugBank, and the corresponding IDs of drug and protein

structure data can be viewed in Table 3. The molecular docking of

these drugs and proteins encoded by these corresponding target genes

was performed using AutoDock Vina 1.2.2. The coordinate of the

docking box for protein BTN3A1 was x: y: z= 17.074: -36.189: -7.092.

The coordinate of the docking box for protein PLAU was x: y:

z= 17.074: -0.176: 18.957. The coordinate of the docking box for

protein TNFAIP3 was x: y: z= 20.145: 15.764: 21.938. The drug

candidates were attached to their protein targets through hydrogen

bonding and strong electrostatic interactions (Figure 6). PLAU-

Amiloride (-7.4 kcal/mol) and TNFAIP3-Sulfasalazine (-7.3 kcal/

mol) had the lowest binding energies and were considered to be the

most potential binding mode between ligand and protein.
4 Discussion

Genes are specific sequences on DNA molecules. They encode

proteins or RNAs that regulate gene expression, which can serve as

new targets for drug development, i.e., drugs can bind specifically to

these molecules, thereby modulating their function or expression.

To our knowledge, this study represents the first attempt to utilize
Frontiers in Immunology 07
MR to identify potential drug targets for SS. We integrated results

from multi-omics level evidence, reinforcing the causal relationship

between genes and SS risk. Additionally, we combined SMR and

colocalization analyses to pinpoint common drivers between

potential therapeutic targets and SS risk, while excluding potential

confounders. Our study pinpointed TNFAIP3, BTN3A1, and PLAU

as potential drug targets for SS. Notably, BTN3A1 was also found to

be associated with SS in the validation cohort using a similar

analytical approach, underscoring the reliability of the potential

drug targets identified in this study.

TNFAIP3 was identified as positively associated with SS risk

with high colocalization support. Tumor necrosis factor alpha-

induced protein 3 (TNFAIP3) is a crucial nuclear factor kB (NF-

kB) regulatory protein that modulates NF-kB expression and

apoptosis through multiple pathways (19). Associations between

TNFAIP3 and various autoimmune diseases, including SS,

rheumatoid arthritis, systemic lupus erythematosus (SLE), and

systemic sclerosis, have been documented (16–18). TNFAIP3 has

also been identified as one of the susceptibility loci for SS by GWAS

(20). Activation of the NF-kB pathway in activated B cells is a key

step in the pathogenesis of primary SS (21). The TNFAIP3 gene

encodes the A20 protein, essential for the development and

functional expression of dendritic cells, B and T cells, and

macrophages. The A20 protein serves as a critical negative

regulator of NF-kB, and reduced negative regulatory activity of

A20 may permit excessive immunoreactivity, leading to increased

auto-reactivity (22, 23). Notably, our study found that the top single

nucleotide polymorphism (SNP) associated with SS located in

TNFAIP3 was rs5029939, which is similar to previous findings

that this SNP has been associated with various autoimmune

diseases, including SLE, systemic sclerosis, and other autoimmune

disorders (24–26). Therefore, we hypothesize that rs5029939 may

also be a genetic risk factor for SS susceptibility, although further

experimental validation is warranted.

Butyrophilin 3A1 (BTN3A1) is a type I transmembrane protein

belonging to the immunoglobulin (Ig) superfamily, with

immunomodulatory and antigen-presenting functions. It has been

implicated in autoimmune diseases, diabetes mellitus, multiple

sclerosis, and cancer (27). Several SNPs, including rs1796520,

rs3857550, rs3208733, rs6912853, and rs10456045, of BTN3A1 have

been associated with SLE patients (28, 29). Our MR analysis provides
TABLE 2 Tier of genetically predicted methylation, expression, and protein of candidate gene with SS.

Gene Tier mQTL eQTL pQTL

Probe
OR
(95%
CI)

P
value

P(FDR)

value

OR
(95%
CI)

P
value

P(FDR)

value

OR
(95%
CI)

P
value

P(FDR)

value

BTN3A1 Tier 1
Cg

22068371
0.47

(0.25–0.88)
0.018 0.570

1.12
(0.96–1.30)

0.163 0.840
2.96E-03
(2.63E04–

0.03)
2.40E-06 3.78E-04

TNFAIP3 Tier 1 –
4.35

(1.45–13)
0.009 0.439

2.47
(1.56–3.92)

1.21E-04 0.014

PLAU Tier 2
Cg

04939496
1.35

(1.18–1.54)
6.73E-06 9.11E-04

1.77
(1.4–2.24)

1.79E-06 4.11E-04
1.61

(1.32–1.95)
1.66E-06 3.19E-04
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evidence that the top SNP rs149123117, located in BTN3A1, is a

protective factor against SS, possibly linked to the up-regulation of

cg22068371 methylation leading to increased BTN3A1 protein levels.

Plasminogen activator urokinase (PLAU) is a protease involved

in fibrinolysis, ECM remodeling, and growth factor activation (30).

While most reports on PLAU have been associated with cancers

such as breast, colorectal, and esophageal cancers, there is limited

evidence of its association with SS. However, in our study, PLAU

was found to be associated with an increased risk of SS in terms of

gene expression and methylation level. Positive correlations were

observed between the gene methylation of PLAU (cg04939496) and

expression, as well as between expression and protein levels,

supporting the promotional effects of PLAU on SS risk across

different regulatory levels.
TABLE 3 Docking results of potential targets with drugs.

Target PDB ID Drug PubChem
ID

Binding
energy
(kcal/mol)

TNFAIP3 2VFJ Acetylcysteine 12035 -4.2

TNFAIP3 2VFJ Aminosalicylic
acid

4649 -5.0

TNFAIP3 2VFJ Mesalamine 4075 -5.0

TNFAIP3 2VFJ Sulfasalazine 5339 -7.3

BTN3A1 4F80 Valproic acid 3121 -1.7

PLAU 1C5W Amiloride 16231 -7.4
A

B

C

FIGURE 5

Visualization for associations between candidate causal genes and SS. (A) The SMR (a) and colocalization analysis (b) between TNFAIP3 protein and
SS GWAS. (B) The SMR (a) and colocalization analysis (b) between BTN3A1 protein and SS GWAS (all SMR FDR < 0.05; HEIDI test P > 0.01; PPH4 of
colocalization > 0.7, the r2 value indicates the linkage disequilibrium (LD) between the variants and the top SNPs.). (C) Associations between PLAU
methylation, expression and SS GWAS.
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Our study has some limitations: Firstly, it focused on the

relationship between cis-mQTL, -eQTL, -pQTL, and SS, potentially

overlooking other regulatory and environmental factors contributing

to disease complexity. Although colocalization analysis was used to

mitigate bias from linkage disequilibrium, horizontal pleiotropy may

still persist. Additionally, the study predominantly involved

individuals of European origin, necessitating further research and

validation in individuals of other ethnicities for broader applicability.

Furthermore, the eQTL dataset derived from blood may not fully

capture tissue-specific regulatory mechanisms, warranting further

tissue-specific validation. Though molecular docking predicted the

interactions of potential drugs and targets, its feasibility may need to

be validated by additional in vitro and in vivo experiments.
5 Conclusions

In conclusion, our study identifies TNFAIP3, BTN3A1, and PLAU

as potential targets for SS by integrating the potential causal

relationship of DNA methylation, gene expression, and protein

abundance with SS. These findings provide important insights for

targeted therapy of SS, although further experimental validation

is required.
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