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Natural Killer (NK) cells play a crucial role as effector cells within the tumor

immune microenvironment, capable of identifying and eliminating tumor cells

through the expression of diverse activating and inhibitory receptors that

recognize tumor-related ligands. Therefore, harnessing NK cells for

therapeutic purposes represents a significant adjunct to T cell-based tumor

immunotherapy strategies. Presently, NK cell-based tumor immunotherapy

strategies encompass various approaches, including adoptive NK cell therapy,

cytokine therapy, antibody-based NK cell therapy (enhancing ADCCmediated by

NK cells, NK cell engagers, immune checkpoint blockade therapy) and the

utilization of nanoparticles and small molecules to modulate NK cell anti-

tumor functionality. This article presents a comprehensive overview of the

latest advances in NK cell-based anti-tumor immunotherapy, with the aim of

offering insights and methodologies for the clinical treatment of cancer patients.
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Abbreviations: ADCC, antibody-dependent cell-mediated cytotoxicity; CAR, chimeric antigen receptor; ICB,

immune checkpoint blockade; MHC, major histocompatibility complex; NKCEs, NK cell engagers; IFN-g,

interferon g; TNF-b, tumor necrosis factor b; GM-CSF, granulocyte-macrophage colony-stimulating factor;

AR, activated receptors; IR, inhibitory receptors; NCR, natural cytotoxic receptor; SLAMF, signaling

lymphocyte-activation molecule family; aKIR, activated killer cell immunoglobulin-like receptor; NKR-P1,

NK cell receptor protein 1; NKG2D, NK cell group 2D receptor; DNAM1, DNAX accessory molecule 1; iKIR,

Inhibitory killer cell immunoglobulin-like receptor; PD-1, programmed cell death receptor 1; LIR-1,

leukocyte immunoglobulin-like receptor 1; TIGIT, T cell immunoreceptor with Ig and ITIM domains;

TIM-3, T-cell immunoglobulin and mucin domain 3; LAG3, lymphocyte activation gene 3; HER2, human

epidermal growth factor receptor-2; iPSCs, induced pluripotent stem cells; CRS, cytokine release syndrome;

GVHD, graft versus host disease; ICANS, immune effector cell-associated neurotoxicity syndrome; Tregs,

regulatory Tcells; CIK, cytokine induced killer.
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1 Introduction

The occurrence of tumors results from abnormal cell

proliferation induced by imbalanced homeostasis of cells in the

body under the influence of genetic and environmental factors (1).

Tumor cells can inhibit the anti-tumor immune response of

immune cells in the tumor microenvironment through immune

escape mechanisms, thereby promoting the occurrence and

development of tumors (2). Tumor immunotherapy involves

modifying the inhibitory tumor microenvironment, restoring

immune system activity, and ultimately clearing tumor cells.

Immunotherapy, as an emerging cancer treatment strategy, has

rapidly developed in recent years . Current ly , tumor

immunotherapy based on T cells is widely used, including

chimeric antigen receptor (CAR) T cell therapy and immune

checkpoint blockade (ICB) therapy, among others. Although

significant success has been achieved, there are also some

limitations and drawbacks. For instance, it is limited by the

expression of major histocompatibility complex (MHC)

molecules, infusing a large number of CAR-T cells may induce

cytokine storms or produce non-target effects due to their

persistence, causing damage to other cells (3, 4). Therefore, there

is an urgent need to develop more effective and less toxic

treatment methods.

Recent studies have shown that NK cells play a crucial role in

controlling the occurrence and development of tumors (5, 6). NK

cells are cytotoxic lymphocytes in the natural immune system that

exert a direct killing effect. Their anti-tumor effects do not require

antigen sensitization (7, 8) and do not rely on MHC-I molecules.

Compared with CD8+ T cells, their recognition mechanism is more

flexible, and they have the ability to quickly kill tumor cells. They

are currently the most promising tumor-killing cells besides T cells.

This non-specific recognition mechanism and efficient anti-tumor

activity may supplement the shortcomings of anti-tumor T

cell therapy.

Based on this, NK cells have become an important research object

in tumor therapy. Immunotherapy strategies that enhance the anti-

tumor response of NK cells have rapidly developed, including

adoptive NK cell therapy, cytokine therapy, antibody-based NK cell

therapy (enhancing antibody-dependent cellular cytotoxicity

(ADCC) mediated by NK cells, NK cell engagers, ICB therapy),

and the use of nanoparticles and small molecules to regulate the anti-

tumor function of NK cells. These methods are expected to open up

new immunotherapy pathways and bring better therapeutic effects to

cancer patients. In this review, we provide an overview of the latest

advances in tumor immunotherapy strategies based on NK cells.
2 Biological characteristics of NK cells

NK cells originate from bone marrow hematopoietic stem cells

and belong to the innate lymphocyte group. They rank as the third

largest lymphocyte group after B cells and T cells, accounting for

approximately 5% to 15% of the total number of peripheral blood

lymphocytes (9–13). They play a vital role in resisting tumor
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formation and combating pathogenic microbial infections in

innate immunity. However, for NK cells to fully exert their

optimal cytotoxicity and immune regulatory effects, they need to

undergo a series of cell signaling molecules and transcription factors

to transition from an immature state to a mature state.

Human NK cells can be categorized into two subgroups with

distinct functions and phenotypes, CD56bright and CD56dim, based

on differences in surface molecule CD56 expression abundance (11,

14). The CD56 bright subgroup is immature and primarily exists in

lymphoid tissue, which can secrete interferon g (IFN-g), tumor

necrosis factor a (TNF-a), granulocyte-macrophage colony-

stimulating factor (GM-CSF) and other cytokines and

chemokines. It has important immunomodulatory function, can

promote tumor cell apoptosis and inhibit its proliferation, but its

cytotoxicity is weak (15, 16). The CD 56 dim subgroup is a mature

cytotoxic population, accounting for the majority of circulating NK

cells and mainly exists in blood. It can express granzymes and

perforin to directly kill tumor cells. And it can also express CD16

receptors to bind to tumor cells and mediate ADCC to exert anti-

tumor effects (Figure 1) (6, 17–22).

NK cells recognize normal and abnormal tissue cells by

expressing regulatory receptors related to killing function,

selectively targeting tumor cells while sparing normal cells in the

body. Their killing effect depends on the coordination and balance

of multiple receptors on their membrane surface, mainly divided

into activated receptors (AR) and inhibitory receptors (IR). AR

includes the natural cytotoxic receptor (NCR) family, signaling

lymphocyte-activation molecule family (SLAMF) receptor,

activated killer cell immunoglobulin-like receptor (aKIR), NK cell

receptor protein 1 (NKR-P1), and NK cell group 2D receptor

(NKG2D), NKG2C, NKG2E, CD16, DNAX accessory molecule 1

(DNAM1), etc. IR includes inhibitory KIR (iKIR), CD94/NKG2A,

programmed cell death receptor 1 (PD-1), and leukocyte

immunoglobulin-like receptor 1 (LIR-1), T cell immunoreceptor

with Ig and ITIM domains (TIGIT), T-cell immunoglobulin and

mucin domain 3 (TIM-3), lymphocyte activation gene 3 (LAG3),

etc. (Figure 2) (23–31). The recognition and functional regulation of

NK cells require the detection of ligands on the surface of target cells

through inhibitory receptors, as well as the activation of NK cells

through activating receptors. The dynamic balance between

activated receptors and inhibitory receptors is crucial for ensuring

the regulation of NK cell effector function. When the activated

receptor dominates over the inhibitory receptor, NK cells exert

strong killing effects on tumor cells; otherwise, the killing effect of

NK cells is inhibited, allowing tumor cells to evade destruction.
3 Crosstalk between NK cells and
other immune cells in the
tumor microenvironment

Natural killer (NK) cells play a crucial role in anti-tumor

immunity, but their proliferation, maturation, secretion of effector

molecules, and overall function are influenced by the tumor

microenvironment. The TME contains a diverse group of
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immune cells, including T cells, dendritic cells, neutrophils, and

macrophages, among others. The interaction between NK cells and

these immune cells significantly impacts the anti-tumor response.
3.1 Crosstalk between NK cells and T cells

Within the TME, the T cell population primarily consists of

CD8+ T cells and CD4+ T cells. Activated CD8+ T cells express

homing and chemokine receptors and kill tumor cells by producing

high levels of IFN-g and TNF-a (32). CD4+ T cells indirectly

promote anti-tumor responses by regulating the composition and

activity of infiltrating immune cells in the TME (33).
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In this complex immune microenvironment, NK cells and T

cells collaborate in regulating anti-tumor immunity and

complement each other in MHC-induced immune evasion.

Cancer cells can evade recognition by cytotoxic CD8+ T cells

through down-regulating MHC-I expression. This down-

regulation also triggers NK cells to initiate a “self-deletion”

mechanism to target cancer cells. Thus, NK cells and T cells work

together to prevent cancer cells from escaping immune

surveillance (34).

Research has demonstrated that NK cells can enhance or impair

T cell responses both directly and indirectly. NK cells can induce the

proliferation of autologous T cells (35), provide IFN-g for naïve T
cells, and induce the polarization of T helper cell type 1 (Th1) (36).
FIGURE 2

The receptors of NK cells.
FIGURE 1

The classification and function of NK cells.
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Activated NK cells can also mediate IFN-g secretion, stimulate

dendritic cells to produce IL-12, and subsequently initiate CD8+ T

cell anti-tumor responses (37, 38). However, cooperation between

DNAM-1 and NKG2D can negatively impact T cell responses (39).

There is bidirectional crosstalk between T cells and NK cells, and T

cells can also affect NK cells in turn. Cytokines released by T cells,

such as IL-2 and IL-15, have been shown to activate NK cell

cytotoxicity and enhance anti-tumor responses (40–42).
3.2 Crosstalk between NK cells and
regulatory T cells

It has been confirmed that regulatory T cells (Tregs) can inhibit

NK cell function and induce immune suppression within tumors

(43). In 2004, Trzonkowski et al. observed that human NK cell

activity was suppressed in the presence of Tregs (44). In 2005,

Ghiringhelli et al. first reported the mechanism of Treg-NK

interaction, noting that Tregs directly inhibited NK cell responses

through membrane-bound TGF-b. The deletion of Tregs restored

NK cells’ ability to mediate the lysis of human cancer cells (45).

Similarly, Liu et al. found that Tregs in patients with non-small cell

lung cancer effectively inhibited the anti-tumor ability of autologous

NK cells, and treatment with anti-TGF-b antibody restored the

damaged cytotoxic activity of NK cells in tumor tissue (46).

Tregs can interfere with NK cells through various mechanisms,

including the downregulation of NKG2D expression induced by

TGF-b (47), and by consuming large amounts of IL-2. Littwitz-

Salomon et al. found in a transgenic mouse model that the selective

removal of Tregs can improve the proliferation, maturation, and

effector cell differentiation of NK cells. The inhibition of NK cell

function depends on the consumption of IL-2 by Tregs, which can

be overcome by stimulating specific NK cells with an IL-2/anti-IL-2

mAb complex (48). Additionally, it has been found that the

stimulation of IL-12 and IL-18 can eliminate Treg inhibition and

enhance the cytotoxicity of NK cells (49). These findings may

provide a new therapeutic strategy for tumor immunotherapy.
3.3 Crosstalk between DCs and NK cells

Dendritic cells (DCs) are key players in the adaptive immune

response, including classical DCs (cDCs), plasmacytoid DCs

(pDCs), and monocyte-derived DCs (MoDCs). Among these,

cDCs are particularly associated with anti-tumor functions,

presenting tumor antigens by phagocytosing dead tumor cells or

fragments, thereby exerting an anti-tumor effect (50).

Recent studies have revealed bidirectional crosstalk between

DCs and NK cells. DCs can activate NK cells and enhance their

anti-tumor activity (51, 52), while NK cells can influence the

recruitment and maturation of DCs (53, 54). Cazzetta et al. found

that DCs can release cytokines and chemokines, such as IL-12, IL-

15, and IFN-g, to promote the activation of NK cells. In turn,

activated NK cells can promote the recruitment and maturation of

DCs by producing IFN-g and TNF-a (55). Similarly, Bottcher et al.

discovered that NK cells can facilitate the migration of cDC1 to
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tumors, inducing their accumulation in the TME to enhance tumor

immune control. Conversely, they also found that NK cell activity

can reduce the accumulation of cDCs by impairing their viability,

thereby leading to tumor immune escape (54). Additionally, studies

have shown that the up-regulation of CTLA-4 expression on NK

cells negatively regulates the maturation of DCs in human non-

small cell lung cancer (NSCLC) (56). Moreover, DCs may also

impair the function of NK cells (57). In summary, the crosstalk

between NK cells and DCs is crucial for regulating anti-tumor

immunity and could become a promising target for anti-tumor

therapy (58).
3.4 Crosstalk between neutrophils and
NK cells

Neutrophils play a key role in regulating both innate and

adaptive immunity (59). Traditionally, neutrophils have dual

functions in primary tumors, exhibiting both promotional and

inhibitory effects (60, 61). Li et al. found that in a breast cancer

(BC) mouse model, neutrophils showed an inhibitory effect on

tumor metastasis in the absence of NK cells, while they exhibited a

promotional effect on tumor metastasis in the presence of NK cells

(62). Similarly, Ogura et al. discovered that NK cells regulate the

tumor-promoting activities of neutrophils, with neutrophils

showing tumor-promoting effects when NK cells are absent (63).

The dual role of neutrophils may be related to their heterogeneity

and function in different environments.

Characterizing the crosstalk between neutrophils and NK cells

is challenging. Increasing evidence suggests that soluble mediators,

intercellular interactions, and extracellular vesicles (EVs) facilitate

the crosstalk between neutrophils and NK cells (64). In a mouse

model of colorectal cancer, neutrophils have been shown to reduce

NK cell infiltration by down-regulating CCR1, while simultaneously

inhibiting the activity of NK cell activation receptors NKp46 and

NKG2D (65). In a mouse model injected with 4T1 breast cancer

cells, neutrophils inhibit NK cell activity, thereby weakening the NK

cell-mediated clearance of cancer cells (66). Additionally, it has

been reported that NK cells regulate neutrophil function through an

interferon-g mediated pathway. When NK cells are exhausted,

neutrophils produce high levels of VEGFA and adopt a tumor-

promoting phenotype (63). Neutrophils can also influence NK cells

by producing IL-12.
3.5 Crosstalk between macrophages and
NK cells

Macrophages exist at all stages of tumor development and play

an important role in tumor immunomodulation. Macrophages can

be divided into M1 and M2 types, with M1 macrophages being

associated with anti-tumor activity and M2 macrophages with

tumor-promoting activity (67). Macrophages and NK cells engage

in crosstalk through various mechanisms. In the TME,

macrophages promote the anti-tumor cytotoxicity of NK cells by

releasing activating cytokines (such as IL-12, IL-15, IL-18, and
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TNF-a) and inhibit the expression of NK cell activation receptors

while promoting the expression of inhibitory receptors by releasing

inhibitory cytokines (such as TGF-b) (68, 69).
Studies have shown that in the early stages of tumor

development, macrophages are predominantly M1-type, and NK

cells exhibit strong tumor-killing activity. M1-type macrophages

can activate NK cells by secreting soluble mediators and

establishing intercellular interactions, thereby enhancing the

cytotoxicity of NK cells against various target cells (70–72). As

the tumor progresses, M1-type macrophages in the TME are

stimulated by Th2-type cytokines to transform into M2-type

macrophages, resulting in a significant decrease in the M1-to-M2

ratio in advanced tumors. IL-10 and TGF-b secreted by M2

macrophages have dual functions: they promote tumor invasion,

angiogenesis, and metastasis while also inhibiting the proportion of

NK cells and T cells. Additionally, they suppress the effector

function of NK cells by inhibiting the secretion of effector

molecules such as IFN-g (72). Studies have found that IL-10 can

increase the secretion of IFN-g by NK cells and enhance their

cytotoxicity. IL-10 induces metabolic reprogramming by

upregulating glycolysis and oxidative phosphorylation (OXPHOS)

in NK cells, thereby enhancing their effector functions. In this

process, IL-10 stimulation triggers the activation of the Mammalian

Target of Rapamycin Complex 1 (MTORC1) signaling pathway,

which is crucial for IL-10-induced metabolic reprogramming and

the enhancement of NK cell effector functions (73). Additionally,

IL-10/Fc can promote the metabolic reprogramming of T cells,

dependent on pyruvate andMitochondrial Pyruvate Carrier (MPC),

and induce the reactivation of terminally exhausted T cells, thereby

enhancing anti-tumor immunity (74).

The crosstalk between macrophages and NK cells in the TME is

extremely complex. Studying this crosstalk network may provide

new insights for developing immunotherapy strategies.
4 Tumor immunotherapy based on
NK cells

4.1 Adoptive NK cell therapy

Adoptive NK cell therapy involves the infusion of autologous or

allogeneic NK cells that have been expanded or genetically modified

in vitro into tumor patients, with the aim of increasing the number

and anti-tumor activity of NK cells in the patient’s body. The

sources of NK cells utilized in this therapy are diverse, including

peripheral blood, umbilical cord blood, NK cells differentiated from

induced pluripotent stem cells (iPSCs), and NK cell lines cultured in

vitro (75, 76). NK cells derived from peripheral blood are readily

obtained from patients or donors and can be swiftly activated and

expanded in vitro through cytokine stimulation before being

administered to tumor patients, demonstrating potent anti-tumor

effects. Umbilical cord blood, rich in NK cells and containing a

proportion of NK cell precursors with the potential to differentiate

into mature NK cells, has emerged as an important NK cell source.

Nonetheless, it presents some drawbacks, such as delayed collection,
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heterogeneity of white blood cells in donor blood, and high costs.

NK cells differentiated from iPSCs serve as another vital source.

These NK cells, obtained as “ready-to-use” products for any patient,

are amenable to genetic manipulation. Additionally, NK cell lines

derived from in vitro culture, standardized and irradiated before

being injected into the patient’s body, exert anti-tumor effects.

4.1.1 NK cells
One method of adoptive NK cell therapy is NK cell infusion,

which includes autologous NK cell infusion and allogeneic NK cell

infusion. Autologous NK cell infusion uses the patient’s own blood as

the cell source, offering convenience and avoiding the risk of graft-

versus-host disease (GVHD), making it a promising anti-tumor

immunotherapy. However, it has been found that although the

infused cells can expand in vivo, they show a poor response to

blood cancers or solid tumors. This poor response may be partly due

to the inhibitory effect of interactions between autologous NK cells

and MHC I molecules (34). Additionally, extensive pretreatment

before cell collection and treatment may negatively impact the

expansion and function of NK cells (77). As a result, many

researchers have begun to explore new directions, shifting focus

from autologous NK cell infusion to allogeneic NK cell infusion.

Lin et al. (78) found that injecting pembrolizumab into patients with

advanced non-small cell lung cancer, together with allogeneic NK

cells, can effectively prolong the survival time of patients to 18.5

months. With the continuous improvement of NK cell purification

and amplification technologies, NK cell infusion is expected to

become an important component of adoptive immunotherapy.

4.1.2 Cytokine induced killer cells
Cytokine induced killer (CIK) cells are a group of

heterogeneous cells induced by various cytokines (such as IL-2

and IL-1) and anti-CD3 antibodies. These cells express both T cell

markers (CD3+) and NK cell surface markers (CD56+), possessing

the anti-tumor activity of T lymphocytes and the non-MHC-

restricted anti-tumor properties of NK cells. CIK cells can kill

tumor cells through multiple mechanisms, including the release

of perforin and granzyme to directly lyse tumor cells, direct

inhibition of tumor cells, or indirect regulation of immune

function by secreting cytokines such as IL-2, IL-6, IFN-g, and
GM-CSF. They can also promote tumor cell apoptosis by

activating or up-regulating the expression of tumor cell apoptosis

genes and death receptors.

Numerous clinical trials worldwide have confirmed that CIK

cells have significant therapeutic effects on lung cancer, ovarian

cancer, lymphoma, gastric cancer, melanoma, and other malignant

tumors (79, 80). CIK cells can be used for adoptive cell therapy in

both hematological and solid tumors, with good clinical responses.

However, a notable issue with CIK cell therapy is the lack of

specificity for tumor antigens.

In recent years, combination strategies involving CIK cells with

traditional chemotherapy, cytokines, dendritic cells (DC), immune

checkpoint inhibitors (ICI), and genetic engineering methods have

been extensively studied. These combination therapies have shown

better clinical responses compared to the use of CIK cells alone (81).
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Therefore, CIK cells combined with other therapies may represent a

promising approach for future tumor immunotherapy.

4.1.3 Chimeric antigen receptor modified
NK cells

Chimeric antigen receptor (CAR) is an artificial receptor

molecule engineered via genetic engineering technology, designed

to enhance the ability of immune cells to recognize antigens

specifically and augment their activation function (82). Currently,

CAR-T cell therapy has been widely used in cell immunotherapy for

various tumors, however, it presents certain challenges, such as

cytokine release syndrome (CRS), graft versus host disease

(GVHD), and immune effector cell-associated neurotoxicity

syndrome (ICANS) (83, 84). Consequently, attention has shifted

towards engineering modifications of NK cells.

Similar to CAR-T cells, CAR-NK cells can recognize tumor

antigens through the single-chain fragment variable of the CAR

structure, enhancing the specificity of NK cells. Additionally, CAR-

NK cells have the inherent ability to recognize and target tumor

cells through activating receptors such as NKG2D, NKp46, and

DNAM-1, as well as the capability to kill cancer cells through

CD16-mediated ADCC. Therefore, CAR-NK cells can recognize

and kill tumor cells using both CAR-dependent and CAR-

independent mechanisms. They have the ability to efficiently

eradicate tumor cells even in cases of MHC-I downregulation,

loss, or mutation of tumor antigens. This dual mechanism helps

overcome the resistance to CAR-T cell therapy caused by antigen

loss and reduces the risk of recurrence due to the loss of specific

tumor antigens targeted by CARs. Compared to CAR-T cells, CAR-

NK cells offer more stable sources with fewer side effects (85–87).

CAR-NK cells have a lower risk of cytokine release syndrome

(CRS). Frey et al. suggested that this could be attributed to the

fact that activated NK cells do not release cytokine IL-6, thereby

circumventing CRS (88). Additionally, NK cells can target tumor

cells without antigen stimulation or human leukocyte antigen

(HLA) matching, thereby avoiding graft-versus-host disease

(GVHD) reactions (89).

Current research primarily focuses on improving the activity,

targeting, and persistence of NK cells. CAR-NK cells have emerged

as the most promising candidate for immunotherapy,

reinvigorating adoptive NK cell therapy. Presently, CAR-NK cells

have demonstrated promising efficacy in preclinical studies for

hematological and solid tumors. Boissel et al. (90) injected CD19/

CD20-CAR-NK cells into a chronic lymphocytic leukemia model in

immunodeficient mice, observing effective clearance of tumor cells.

Romanski et al. (91)constructed NK-92-scFv (CD19)-CD3 z cells

for B-cell malignant tumors, enhancing tumor cell killing. Similarly,

Han et al. (92) applied CAR-NK92 cells to glioma treatment,

achieving robust killing effects. Furthermore, ErBb2-CAR

modified NK92 cells exhibited strong killing effects on HER2-

positive breast cancer and ovarian cancer cell lines, along with

tumor growth inhibition in vivo (93). Numerous similar research

findings, such as those by Liu et al. (94), applying CAR-NK-92 cells

to small cell lung cancer (SCLC) overexpressing delta-like ligand 3

(DLL3), have demonstrated good anti-tumor activity. In other

studies, CAR-NK cells from allogeneic sources targeting prostate
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stem cell antigen (PSCA) were employed in human metastatic

pancreatic cancer models, showing significant tumor inhibitory

effects (95). These results underscore the promising prospects of

CAR-NK cells in the treatment of hematological and solid tumors.

Given the safety and effectiveness of CAR-NK cell therapy,

numerous clinical trials are currently being conducted for

hematological cancers and solid tumors. Table 1 presents recent

5-year clinical trials in tumor immunotherapy based on CAR-

NK cells.

Although CAR-NK cell therapy has powerful therapeutic

advantages, there are also several challenges and obstacles. One of

the biggest obstacles to clinical application is the difficulty in

obtaining a large number of high-purity NK cells, as the number

of NK cells from a single donor is insufficient for treatment, and it

takes time to culture NK cells (96). Another obstacle is the

transduction of CAR into NK cells (34). The transfection

efficiency of lentiviral vectors to peripheral blood NK cells is very

low; while retroviral vectors have high transfection efficiency, they

may cause insertional mutations and carcinogenesis. Additionally,

the anti-tumor effect of CAR-NK cells transfected with mRNA

through electroporation is transient (34), necessitating the search

for a more suitable method to transduce CAR into NK cells.

Furthermore, CAR-NK therapy also faces challenges related to

the influence of the tumor microenvironment (TME). If these

issues can be resolved, CAR-NK therapy will reach a new level

of efficacy.
4.2 Cytokine therapy

Cytokine therapy entails the use of cytokines to promote the

mobilization of endogenous NK cells and subsequently regulate the

anti-tumor immune response. It has been observed that cytokines

such as IL-2, IL-12, IL-15, IL-18, and TGF-b can modulate the anti-

tumor immune response mediated by NK cells (97–103), offering

new strategies and choices for immunotherapy by regulating the

function and activity of NK cells.

IL-2 serves to activate NK cell cytotoxicity and is currently

widely employed as a cytokine in clinical cancer treatment. In

multiple myeloma, IL-2 has the potential to dissolve tumor cells and

enhance the killing activity of CD16+ NK cells by promoting the

perforin effect mechanism of activating NK cells through the

NKG2D pathway (104). Furthermore, in vitro or in vivo studies

have demonstrated that injection of high-dose IL-2 can stimulate

the production of lymphokine-activated killer (LAK) cells,

primarily composed of NK cells (105). These cells exhibit potent

anti-tumor activity and have been utilized in the treatment of

various malignant diseases, including metastatic kidney cancer

and metastatic melanoma (106, 107). Nonetheless, its application

is limited due to serious side effects. Multiple strategies have been

devised to enhance the efficacy of IL-2 treatment and reduce

toxicity. One such strategy involves the use of “super IL-2,”

screened through molecular modification, which significantly

enhances binding affinity with IL-2Rb, exhibits robust activity in

stimulating CD8+ T cells and NK cells, and reduces Treg cell

accumulation and toxicity. Additionally, fusing IL-2 or its mutants
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TABLE 1 The clinical trials of CAR-NK cells.

ClinicalTrials.gov
ID

Cancer type Treatment
Start
date

Phase Status

NCT06358430 Colorectal Cancer With Minimal Residual Disease TROP2-CAR-NK 2024-10 I
Not
yet

recruiting

NCT06464965 Advanced Gastric Cancer and Advanced Pancreatic Cancer CB CAR-NK182 2024-06 I
Not
yet

recruiting

NCT06464861 Relapsed/Refractory B Cell Lymphoma CD19-CAR-NK/T 2024-06 I
Not
yet

recruiting

NCT05110742 Relapse/Refractory Hematological Malignances CAR.5/IL15-transduced CB-NK cells 2024-04 I/II Recruiting

NCT06201247
Refractory or Relapsed CD123-positive Acute

Myeloid Leukemia
JD123 2023-12 I Recruiting

NCT06066424 Advanced Solid Tumors TROP2-CAR-NK 2023-10 I Recruiting

NCT05922930
Platinum Resistant Ovarian Cancer, Mesonephric-like

Adenocarcinoma, and Pancreatic Cancer
TROP2-CAR-NK 2023-10 I/II Recruiting

NCT06027853 Relapsed/Refractory Acute Myeloid Leukemia CLL1 CAR-NK cell 2023-09 I Recruiting

NCT06006403
Acute Myeloid Leukemia or Blastic Plasmacytoid Dendritic

Cell Neoplasm
CD123 targeted CAR-NK cells 2023-08 I/II Recruiting

NCT05987696 Acute Myeloid Leukemia CD33/CLL1 dual CAR-NK cell 2023-08 I
Not
yet

recruiting

NCT06045091
Relapsed/Refractory Multiple Myeloma or Plasma

Cell Leukemia
Human BCMA targeted CAR-

NK cells
2023-07 I Recruiting

NCT05856643 Ovarian epithelial carcinoma SZ011 CAR-NK 2023-06 I
Not
yet

recruiting

NCT05845502 Advanced Hepatocellular Carcinoma SZ003 CAR-NK 2023-05 I
Not
yet

recruiting

NCT05703854
Advanced Renal Cell Carcinoma, Mesothelioma

and Osteosarcoma
CAR.70/IL15-transduced CB-derived

NK cells
2023-03 I/II Recruiting

NCT05673447 Relapsed/Refractory Diffuse Large B-Cell Lymphoma anti-CD19 CAR NK cells 2023-03 I Recruiting

NCT05734898 Relapsed/Refractory Acute Myeloid Leukemia NKG2D CAR-NK 2023-03 N/A Recruiting

NCT05776355 Ovarian Cancer NKG2D CAR-NK 2023-03 N/A Recruiting

NCT05686720 Advanced Triple Negative Breast Cancer SZ011 CAR-NK 2023-02 I
Not
yet

recruiting

NCT05336409 Relapsed/Refractory CD19-positive B-Cell Malignancies CNTY-101 2023-01 I Recruiting

NCT05842707 Refractory/Relapsed B-cell Non-Hodgkin Lymphoma dualCAR-NK19/70 cell 2023-01 I/II Recruiting

NCT05654038 B-Cell Lymphoblastic Leukemia/Lymphoma anti-CD19 UCAR-NK cells 2022-12 I/II Recruiting

NCT05645601
Adult Relapsed/Refractory B-cell

Hematologic Malignancies
CD19-CAR-NK 2022-12 I Recruiting

NCT05667155 B-cell Non-Hodgkin Lymphoma CB dualCAR-NK19/70 2022-12 I Recruiting

NCT05652530 Relapsed/Refractory Multiple Myeloma BCMA CAR-NK 2022-11 I Recruiting

NCT05092451 Relapse/Refractory Hematological Malignances CAR.70/IL15-transduced CB-NK cells 2022-11 I/II Recruiting

NCT05574608 Refractory/Relapsed Acute Myeloid Leukemia CD123-CAR-NK cells 2022-10 I Recruiting

NCT05487651 Relapsed or Refractory B-Cell Malignancies KUR-502 2022-10 I Recruiting

(Continued)
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with the Fc region of albumin or antibodies can markedly prolong

their half-life in vivo. Fusion with antibodies targeting fibroblast

activation protein (FAP) and carcinoembryonic antigen (CEA) can

enhance their tumor-targeting capabilities and mitigate cytotoxicity

caused by IL-2 retention in peripheral blood (108, 109).

IL-15 can activate and amplify NK cells and CD8+ T cells. In

vitro studies have demonstrated that IL-15 can restore depleted NK
Frontiers in Immunology 08
cell mitochondria integrity in the tumor microenvironment,

enhance cytotoxicity, and promote IFN-g generation. Studies also

suggest that IL-15 upregulates the expression of the activating

receptor NKG2D on NK cell surfaces. Following tumor exposure,

overnight IL-15 treatment leads to increased expression of NKG2D

and IFN-g, partially restoring production (110). In addition,

recombinant IL-15 (rIL-15) has been found to promote regression
TABLE 1 Continued

ClinicalTrials.gov
ID

Cancer type Treatment
Start
date

Phase Status

NCT05472558 B-cell Non-Hodgkin Lymphoma anti-CD19 CAR-NK 2022-09 I Recruiting

NCT05563545 Acute Lymphoblastic Leukemia CAR-NK-CD19 Cells 2022-07 I Completed

NCT05410717
CLDN6/GPC3/Mesothelin/AXL-positive Advanced

Solid Tumors
Claudin6, GPC3, Mesothelin, or AXL

targeting CAR-NK cells
2022-06 I Recruiting

NCT05410041
Acute Lymphocytic Leukemia, Chronic Lymphocytic

Leukemia, Non-Hodgkin Lymphoma
CAR-NK-CD19 Cells 2022-05 I Unknown

NCT05194709 Advanced Solid Tumors anti-CAR-NK Cells 2021-12 I Unknown

NCT05213195 Refractory Metastatic Colorectal Cancer NKG2D CAR-NK 2021-12 I Recruiting

NCT04847466 Recurrent/Metastatic Gastric or Head and Neck Cancer Irradiated PD-L1 CAR-NK Cells 2021-12 II Recruiting

NCT05008575 Relapsed/Refractory Acute Myeloid Leukemia anti-CD33 CAR NK cells 2021-12 I Unknown

NCT05379647 B-cell Lymphoma, B-cell Acute Lymphoblastic Leukemia QN-019a 2021-11 I Recruiting

NCT05182073 Relapsed/Refractory Multiple Myeloma
Allogenic CAR NK cells with

BCMA expression
2021-11 I Recruiting

NCT05008536 Relapse/Refractory Multiple Myeloma anti-BCMA CAR-NK Cells 2021-10 I Unknown

NCT05247957 Relapsed/Refractory Acute Myeloid Leukemia CAR-NK cells 2021-10 N/A Terminated

NCT05020678 B-cell Malignancies NKX019 2021-08 I Recruiting

NCT04887012 Refractory/Relapsed B-cell Non-Hodgkin Lymphoma anti-CD19 CAR-NK 2021-05 I Unknown

NCT04796675 Relapsed/Refractory B Lymphoid Malignancies CAR-NK-CD19 Cells 2021-04 I Unknown

NCT04796688 Relapsed/Refractory Hematological Malignancies CAR-NK-CD19 Cells 2021-03 I Unknown

NCT04747093 Refractory B Cell Malignancies CAR-ITNK cells 2021-01 I/II Unknown

NCT04639739 Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma anti-CD19 CAR NK 2020-12 I Unknown

NCT05215015 Acute Myeloid Leukemia anti-CD33/CLL1 CAR-NK Cells 2020-11 I Unknown

NCT04614636 Acute myeloid leukemia and multiple myeloma FT538 2020-10 I Terminated

NCT04623944
Relapsed/Refractory AML, MDS, Refractory

Myelodysplastic Syndromes
NKX101 - CAR NK cell 2020-09 I

Active,
not

recruiting

NCT04245722
Relapsed/Refractory B-cell Lymphoma and Chronic

Lymphocytic Leukemia
FT596 2020-03 I Terminated

NCT03940833 Relapse/Refractory Multiple Myeloma BCMA CAR-NK 92 cells 2019-05 I/II Unknown

NCT03941457 Pancreatic Cancer BiCAR-NK cells 2019-05 I/II Unknown

NCT03940820 Solid Tumors ROBO1 CAR-NK cells 2019-05 I/II Unknown

NCT03931720 Malignant Tumor BiCAR-NK/T cells 2019-05 I/II Unknown

NCT03692767 Refractory B-cell lymphoma anti-CD22 CAR-NK cells 2019-03 I Unknown

NCT03692637 Epithelial Ovarian Cancer anti-mesothelin CAR-NK cells 2019-03 I Unknown

NCT03690310 Refractory B-cell lymphoma
anti-CD19

CAR-NK cells
2019-03 I Unknown
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TABLE 2 The clinical trials of immune checkpoint inhibitors.

Inhibitory
receptors

mAbs Cancer type
Start
date

phase Status
ClinicalTrials.gov

ID

NKG2A Monalizumab

MSI and/or dMMR
Metastatic Cancer

2023-12 II
Not

yet recruiting
NCT06152523

Small Cell Lung Cancer 2023-09 II Recruiting NCT05903092

Non-Small Cell
Lung Cancer

2022-02 III Recruiting NCT05221840

Metastatic HER2-pOSitive
breast Cancer

2021-03 II
Active,

not recruiting
NCT04307329

Advanced or
Metastatic Cancer

2020-04 II Completed NCT04333914

Non-Small Cell
Lung Cancer

2019-10 I Recruiting NCT03801902

Non-small Cell
Lung Cancer

2019-10 II
Active,

not recruiting
NCT03833440

Recurrent/Metastatic
Squamous Cell Carcinoma
of the Head and Neck

2017-11 II
Active,

not recruiting
NCT03088059

Head and Neck Neoplasms 2015-12 I/II Completed NCT02643550

Chronic
Lymphocytic Leukemia

2015-11 I/II Terminated NCT02557516

PD-1

Nivolumab

Endometrial Cancer 2023-10 II Recruiting NCT05795244

Solid Tumors 2022-11 I Recruiting NCT05266612

Hepatocellular Carcinoma 2022-05 II Recruiting NCT05257590

Metastatic Solid Tumors 2021-09 II Recruiting NCT04957615

Neuroendocrine Tumors
or Carcinomas

2020-06 II Recruiting NCT04525638

Pembrolizumab

Advanced Solid Tumors 2024-07 I/II Recruiting NCT06470763

Advanced Solid Tumor 2024-05 I/II Recruiting NCT06249048

Advanced Solid Tumors 2023-07 I Recruiting NCT05996445

Advanced Solid Tumors 2023-03 I Recruiting NCT05763004

High-Grade Cervical
Intraepithelial Neoplasia

2021-06 II Recruiting NCT04712851

Atezolizumab

Solid Tumors 2024-08 I
Not

yet recruiting
NCT06488716

Solid Tumors 2023-12 II Recruiting NCT06003621

High-Risk
Urothelial Carcinoma

2023-02 I/II Recruiting NCT05394337

Advanced Solid Tumors 2022-09 I/II Recruiting NCT05450562

Advanced Solid Tumors 2021-09 I/II Recruiting NCT04896697

Avelumab

Gestational
Trophoblastic Tumors

2024-04 N/A
Not

yet recruiting
NCT06242522

Urothelial Cancer 2022-12 II Recruiting NCT05600127

Breast Cancer 2021-06 II Recruiting NCT04841148

Triple Negative
Breast Cancer

2020-08 T Recruiting NCT04360941

2020-02 I/II Recruiting NCT04396223

(Continued)
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TABLE 2 Continued

Inhibitory
receptors

mAbs Cancer type
Start
date

phase Status
ClinicalTrials.gov

ID

Gestational
Trophoblastic Neoplasia

Hodgkin Lymphoma 2019-09 II
Active,

not recruiting
NCT03617666

Squamous Cell
Penile Carcinoma

2019-03 II Recruiting NCT03774901

Muscle Invasive
Bladder Cancer

2018-12 II Recruiting NCT03747419

TIGIT

Etigilimab Ovarian Cancer 2023-03 II Recruiting NCT05715216

Domvanalimab

Hepatobiliary Cancers 2023-06 II Recruiting NCT05724563

Lung Cancer 2023-03 II Recruiting NCT05633667

Pancreatic Cancer 2022-11 I/II Recruiting NCT05419479

Non-small Cell
Lung Cancer

2022-10 III Recruiting NCT05502237

Relapsed/
Refractory Melanoma

2022-03 II Recruiting NCT05130177

Non-Small Cell
Lung Cancer

2022-02 III Recruiting NCT05211895

Glioblastoma 2021-04 I Recruiting NCT04656535

TIM-3

Cobolimab

Advanced Cervical Cancer 2024-03 II Recruiting NCT06238635

Stage III or IV Melanoma 2020-06 II Recruiting NCT04139902

Hepatocellular Carcinoma 2019-12 II Recruiting NCT03680508

sabatolimab
Myelodysplastic Syndrome 2021-05 II Terminated NCT04812548

Advanced Malignancies 2015-11 I/II Terminated NCT02608268

Sym023

Recurrent Advanced
Selected Solid

Tumor Malignancies
2020-10 I Completed NCT04641871

Advanced Solid Tumor
Malignancies
or Lymphomas

2018-05 I Completed NCT03489343

Advanced Solid Tumor
Malignancies
or Lymphomas

2017-11 I Completed NCT03311412

KIRs

IPH4102

Advanced T-
cell Lymphoma

2019-05 II
Active,

not recruiting
NCT03902184

Relapsed/Refractory
Cutaneous T-

cell Lymphomas
2015-10 I Completed NCT02593045

Lirilumab

Bladder Cancer 2019-03 I Completed NCT03532451

Squamous Cell Carcinoma
of the Head and Neck

2018-03 II
Active,

not recruiting
NCT03341936

Advanced or
Metastatic Malignancies

2018-03 I/II Terminated NCT03347123

Advanced and/or Metastatic
Solid Tumors

2017-07 I Completed NCT03203876

Myelodysplastic Syndromes 2016-03 II Terminated NCT02599649

(Continued)
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of melanoma, colorectal cancer, and lymphoma tumors and reduce

metastasis in transplanted tumor mouse models. HetIL-15, a fusion

protein composed of IL-15 and IL-15Ra, has demonstrated efficacy

in preclinical studies, slowing tumor growth, increasing tumor

infiltration of NK cells and CD8+ T cells, and promoting IFN-g
production, cytotoxic particles, and anti-apoptosis protein B-cell

lymphoma-2(BCL-2) expression (111).

Pro-inflammatory cytokines IL-12 and IL-18 stimulate NK cell

activation and enhance their IFN-g production and cytotoxicity.

Researchers have fused IL-12 with tumor-targeted antibody

domains or delivered recombinant IL-12 through intratumoral

injection of DNA or RNA encoding IL-12. Alternative drug

delivery methods, such as nanoparticles and exosomes, have been

explored to localize cytokines at the injection site, significantly

reducing systemic toxicity (112). This approach increases tumor-

infiltrating NK cells and CD8+ T cells, enhancing anti-tumor

immune responses. IL-18 has also exhibited therapeutic effects in

tumor treatment. Researchers have screened and obtained mutant

decoy-resistant IL-18 (DR-18), which binds to IL-18Ra but not IL-

18 binding protein (IL-18BP). DR-18 treatment increases the

number of CD8+ T cells and NK cells, promotes IFN-g
production, enhances cytotoxic activity, and effectively inhibits

tumor growth (113).

Anti-inflammatory cytokine TGF-b inhibits the anti-tumor

immune effect mediated by NK cells through various

mechanisms. Inhibiting TGF-b can restore NK cell function and

inhibit tumor growth. Galunisertib, a small molecule inhibitor of

exogenous TGF-b Type I receptor, upregulates the expression of

activated receptors DNAM-1, NKp30, and NKG2D on the surface

of activated NK (aNK) cells in vitro, as well as the TNF-related

apoptosis-inducing ligand (TRAIL), enhancing cytotoxicity and

ADCC effects on neuroblastoma cells and improving therapeutic

outcomes for neuroblastoma (114). Moreover, galunisertib

treatment improves overall survival rates in patients with liver

cancer and pancreatic cancer.
4.3 Antibody-based NK cell therapy

4.3.1 Enhancing NK cell-mediated ADCC effect
In the tumor microenvironment, NK cells efficiently eliminate

tumors mainly through the mechanism of “missing self” (34, 115–

118). This mechanism recognizes tumor cells with downregulated

expression of MHC class I molecules and responds to cells with this

phenotype, ultimately leading to target cell lysis. However, the

“missing self” mechanism alone cannot achieve specific killing of

tumor cells (119). ADCC emerges as a pivotal mechanism by which
Frontiers in Immunology 11
NK cells specifically target and kill tumor cells. Leveraging ADCC

mediated by NK cells to specifically eliminate tumor cells represents

a significant strategy for NK cell-based tumor immunotherapy.

Currently, relevant clinical studies have demonstrated the

enhancement of NK cell-mediated ADCC effect in anti-tumor

treatment, proving its efficacy. Examples include the treatment of

follicular lymphoma with rituximab (120), human epidermal

growth factor receptor-2 (HER2) positive breast cancer with

trastuzumab (121), non-small cell lung cancer with cetuximab

and avelumab (122), and multiple myeloma cases with daratumab

and all-trans retinoic acid (123), among others. These monoclonal

antibodies augment the killing activity of NK cells against tumors by

enhancing the ADCC effect, resulting in favorable therapeutic

outcomes. These findings underscore the significant potential of

enhancing NK cell-mediated ADCC killing of tumor cells in

tumor immunotherapy.

4.3.2 NK cell engagers
The interaction between NK cells and tumor cells is constrained

by various immune escape mechanisms. To direct NK cells towards

tumor cells and activate NK cell receptors to elicit an anti-tumor

response, NK cell engagers (NKCEs) have been developed to

facilitate specific contact between tumor-infiltrating NK cells and

tumor cells. Initially, NKCEs were designed as bispecific killer

engagers (BiKEs), comprising a single-chain variable fragment

(scFv) of an anti-NK cell activating receptor antibody and

another scFv targeting a specific tumor antigen (124). Building

upon this concept, additional scFvs or cytokines have been

incorporated to create trispecific or tetraspecific killer cell

engagers (TriKEs and TetraKEs), further augmenting NK cell

proliferation and survival (125).

Numerous preclinical studies have utilized NK cell engagers for

the treatment of hematological and solid tumors, demonstrating

robust anti-tumor effects. For instance, the CD16 bispecific

antibody AFM13, targeting CD30, achieved an objective

remission rate of nearly 100% when combined with NK cells

derived from umbilical cord blood for the treatment of patients

with relapsed/refractory Hodgkin lymphoma (RR-HL) (126).

Another example is AFM24 (CD16A-NKCEs), a bispecific IgG1-

scFv fusion antibody targeting CD16A on innate immune NK cells

and epidermal growth factor receptor (EGFR) on tumor cells,

effectively targeting tumors expressing human epidermal growth

factor receptor at similar levels (127). Furthermore, NKG2D-

NKCEs, targeting HER2 on tumor cells and NKG2D on NK cells,

were found to induce cytotoxicity in vitro through unstimulated NK

cells (128). Presently, an increasing number of NKCEs are under

development, offering a promising strategy for tumor treatment.
TABLE 2 Continued

Inhibitory
receptors

mAbs Cancer type
Start
date

phase Status
ClinicalTrials.gov

ID

Chronic
Lymphocytic Leukemia

2015-06 II Completed NCT02481297

Refractory/Relapsed Acute
Myeloid Leukemia

2015-04 II Terminated NCT02399917
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4.3.3 Immune checkpoint blockade therapy
Immune checkpoints can hinder NK cell function by

recognizing specific ligands on tumor cells and engaging with

them, resulting in NK cell depletion and facilitating tumor

immune evasion (119, 129). Inhibiting immune checkpoints aids

in reinstating NK cell anti-tumor activity. The identified NK cell

immune checkpoints encompass NKG2A, PD-1, TIGIT, TIM-3,

KIRs, LIRs, CD96, cytotoxic T lymphocyte-associated antigen-4

(CTLA-4), B7-H3(CD276), LAG-3, Siglec-7/9, SIRPa, CD200R,
and CD47, among others. Based on this discovery, a variety of

monoclonal antibodies targeting various immune checkpoints have

been continuously developed for clinical tumor treatment. They

have proven to be safe and effective both in vitro and in vivo.

Currently, numerous clinical trials on immune checkpoint

inhibitors are underway, with some trials reporting exciting

results (Table 2).

4.3.3.1 NKG2A

NKG2A belongs to the inhibitory receptor family 2 in NK cells

(130) and recognizes the non-classical MHC-I molecule HLA-E as

its ligand. NKG2A is expressed in nearly 50% of NK cells in

peripheral blood, while HLA-E expression is low in normal tissue

cells but elevated in tumor-infiltrating NK cells, CD8+ T cells, and

tumor cells (131). André et al. (132) noted that blocking the

interaction between NKG2A on CD8+ T cells and NK cells and

HLA-E on cancer cells can stimulate anti-tumor immunity.

Currently, a humanized antibody, monalizumab, has been

developed for NKG2A (133). In vitro and in vivo research

findings demonstrate the safety and efficacy of humanized anti-

NKG2A antibody treatment for malignant hematological diseases

(134, 135). In vitro studies have shown that monalizumab can

ameliorate NK cell dysfunction in patients with chronic

lymphocytic leukemia (136). Monalizumab monotherapy is well

tolerated in the treatment of gynecological malignant tumors (137).

Additionally, monalizumab significantly enhances NK cytotoxicity

in head and neck squamous cell carcinoma (HNSCC) cell lines with

high expression of HLA-E (138).

4.3.3.2 PD-1

PD-1 is a crucial immunosuppressive molecule expressed in

CD4+, CD8+ T cells, NK cells, NKT cells, B cells, and other innate

lymphocytes (139–144). Upregulation of PD-1 expression has been

observed in peripheral blood and tumor-infiltrating NK cells of

various cancer patients (145), resulting in weakened NK cell

responses. Blocking the PD-1/PD-L1 interaction can alleviate NK

cell inhibition, thereby enhancing their anti-tumor immune

function (146). Targeted PD-1/PD-L1 inhibitors have been

increasingly utilized in the treatment of hematological and solid

tumors, demonstrating effectiveness (147, 148). Examples include

pembrolizumab, durvalumab, and Avelumab. Studies have shown

that pembrolizumab and durvalumab can inhibit PD-1/PD-L1 in

human non-small cell lung cancer, subsequently activating NK cells

and exerting effective anti-tumor immune responses (149, 150). In

another study, Avelumab facilitated the killing of breast cancer cells

by inducing cytokine production in NK cells (151).
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4.3.3.3 TIGIT

TIGIT is an immunoglobulin superfamily receptor expressed on

the surface of NK cells and T cells. It belongs to the

immunosuppressive receptor family and is highly expressed in

tumor-infiltrating NK cells (31), where it directly inhibits NK cell

function. Blocking TIGIT can reverse NK cell depletion and stimulate

anti-tumor immunity (31). Research has demonstrated that the

TIGIT inhibitor tiragolumab activates the anti-tumor activity of T

cells and NK cells by inhibiting the binding of TIGIT to poliovirus

receptors. Moreover, its objective response rate, when combined with

the PD-1 inhibitor atezolizumab for the treatment of recurrent or

metastatic non-small cell lung cancer, is significantly improved

compared to single therapy (152). In another study, Chauvin et al.

(153) pointed out that combining TIGIT inhibitors with IL-15

enhances NK cell cytotoxicity against melanoma and reduces

tumor metastasis in a mouse melanoma model.

4.3.3.4 TIM-3

TIM-3, a co-inhibitory receptor, recognizes galectin-9 as its

ligand. The combination of TIM-3 and its ligand induces immune

tolerance by depleting T cells and NK cells. TIM-3 is expressed in

the resting CD56bright NK cell population, and its upregulation is

observed in many cancers and chronic infections (154–160), leading

to NK cell depletion. As tumors progress, the level of TIM-3 in NK

cells increases, suggesting that TIM-3 expression may serve as a

prognostic biomarker [122-126] (161–163). Studies have shown

that TIM-3 blockade in vitro can reverse NK cell depletion in

patients with metastatic melanoma, promoting NK cell

proliferation, increasing IFN-g production, and enhancing

cytotoxicity (164). Additionally, TIM-3 blockade enhances the

functional capacity of peripheral NK cells in patients with bladder

cancer (163). Currently, TIM-3 inhibitors such as Cobolimab,

Sabatolimab, and Sym 023 are undergoing clinical studies to

assess their effects on various cancers (135).

4.3.3.5 KIRs

There are two types of KIRs: activating KIRs (aKIRs) and

inhibitory KIRs (iKIRs). Studies have revealed that aKIRs are

down-regulated in many tumors, while iKIRs are up-regulated,

including in breast cancer, lymphoma, and non-small cell lung

cancer (165–167). This places NK cells in a low-reactive state,

rendering them unable to effectively clear the tumor, thereby

allowing tumor cells to evade destruction. Currently, monoclonal

antibodies targeting KIRs, such as lirilumab, have been developed,

showing potential for anti-tumor therapy in preclinical studies.

However, satisfactory results have not been achieved in many

clinical trials as monotherapy (168–170). Increasingly, clinical

trials of combined blocking strategies are underway. An ongoing

phase I clinical study demonstrates that lirilumab enhances the cell-

killing effect mediated by elotuzumab (171).

4.3.3.6 Other immune checkpoints

In addition to the aforementioned immune checkpoints, more

immune checkpoints have been continuously discovered, including

LIRs, CD96, CTLA-4, B7-H3, LAG-3, Siglec-7/9, SIRPa, CD200R,
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and CD47, among others (167). These represent potential

immunotherapy targets, expanding the possibilities for NK

cell immunotherapy.
4.4 Nanoparticles and small molecules

Studies have demonstrated the significant potential of

nanoparticles in enhancing NK cell-mediated anti-tumor

immunity (172–175). Various nanoparticle strategies have been

devised to enhance the homing and infiltration capabilities of NK

cells. These include the utilization of liposomes loaded with TUSC2

or nano-composite microspheres coated with IFN-g, resulting in a

notable increase in NK cell infiltration (176–178). Additionally,

nano-carriers have been employed to silence NK cell inhibitory

signals, thereby activating NK cell activity, while multi-target nano-

connection platforms have been developed to promote NK cell

recruitment and activation (179, 180).Xu et al. (181)employed lipid

calcium phosphate nanoparticles and liposome protamine

hyaluronic acid nanoparticles to modulate TGF-b signal

transduction, resulting in a roughly 50% downregulation of TGF-

b in the tumor microenvironment (TME) and an increase in NK

cell infiltration in a melanoma model. Similarly, Liu et al. (182)

developed a nanoemulsion containing selenocysteine and TGF-b
antagonists, effectively inhibiting TGF-b/TGF-bRI/Smad2/3 signal

transduction and enhancing the upregulation of NKG2DL on

cancer cells. Au et al. (179)fabricated tri-specific NK cell engagers

based on PLGA nanoparticles, successfully combining NK cells with

tumor cells to activate NK cells against EGFR-positive colorectal

adenocarcinoma, triple-negative breast cancer, epidermoid cancer,

and melanoma, respectively. Another emerging strategy involves

the use of cationic nanoparticles to enhance NK cell activation.

Treatment of NK cells with polyethyleneimine-coated cationic iron

oxide nanoparticles demonstrated more than a twofold increase in

cytotoxicity against triple-negative breast cancer and improved

interaction with breast cancer cells (183).

Furthermore, studies have revealed that small molecules, due to

their ability to penetrate cell membranes and target intracellular

components, hold promise in overcoming the challenges posed by

the TME. Indeed, numerous small molecules have been identified to

regulate the anti-tumor function of NK cells by modulating the

balance of activation and inhibition signals or participating in the

expansion, activation, differentiation, and maturation of NK cells,

including Src/Bcr-Abl, GSK3, Smad3, Cbl-b, etc. (184). Thus, small

molecules represent a promising avenue in NK cell-mediated

tumor immunotherapy.
5 Conclusion

NK cells are an important part of innate immunity and play a key

role in anti-tumor responses. Immunotherapy based on NK cells,

along with T cell therapy, complements each other and has become a
Frontiers in Immunology 13
promising field of tumor immunotherapy, making significant

progress. By understanding the biological characteristics of NK cells

and regulating their functions and activities, various effective NK cell

immunotherapies have been developed. These include infusing

autologous or allogeneic NK cells expanded in vitro or genetically

engineered into tumor patients to increase the number and anti-

tumor activity of NK cells; using cytokines to promote the

mobilization of endogenous NK cells to regulate the anti-tumor

immune response; targeting NK cell inhibitory receptors with

antibodies to enhance NK cell response; employing ADCC-

mediated specific killing of tumor cells by NK cells; developing NK

cell engagers to direct NK cells to tumor cells and trigger their anti-

tumor immune response; and using nanoparticles and small

molecules to regulate the anti-tumor function of NK cells.

Although these therapies have achieved some success, several

challenges and dilemmas remain. These include obtaining a large

number of NK cells, expanding them to clinical scale in vitro, and

maintaining the survival and activity of infused NK cells in vivo. In

CAR-NK therapy, finding a suitable method to transduce CAR into

NK cells that is both efficient and safe is necessary. In ICB therapy, a

single checkpoint receptor blockade may not suffice to fully rescue

NK cells expressing multiple immune checkpoint ligands in the

TME. Additionally, challenges from the TME itself persist, and

there is a lack of clinically relevant animal models that can

encapsulate the complexity of interactions in the TME to evaluate

its impact. Currently, various immune combination therapies are

being tried. Combination therapy centered on NK cells should

provide the next wave of clinical progress by finding an appropriate

treatment balance, improving targeted activation, and effectively

overcoming inherent inhibitory mechanisms. Multiple immune

combination therapies based on NK cells represent a strategy to

further improve the anti-tumor effect and warrant further

exploration. Additionally, further studies on the anti-tumor

mechanisms of NK cells in basic research and clinical trials are

necessary to develop new immunotherapies, offering more and

better treatment strategies for tumor patients in the future.
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