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Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China, 3Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
Background: Intracerebral hemorrhage (ICH) is a severe stroke subtype with high

morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are

available for use in clinical practice. We aimed to explore the roles of RNAs in ICH

pathogenesis and identify potential diagnostic biomarkers.

Methods: We collected 233 individual blood samples from two independent

cohorts, including 64 patients with ICH, 59 patients with ischemic stroke (IS), 60

patients with hypertension (HTN) and 50 healthy controls (CTRL) for RNA

sequencing. Differentially expressed genes (DEGs) analysis, gene set

enrichment analysis (GSEA), and weighted correlation network analysis

(WGCNA) were performed to identify ICH-specific modules. The immune cell

composition was evaluated with ImmuneCellAI. Multiple machine learning

algorithms to select potential biomarkers for ICH diagnosis, and further

validated by quantitative real-time polymerase chain reaction (RT−PCR).

Receiver operating characteristic (ROC) curve analysis and decision curve

analysis (DCA) were performed to evaluate the diagnostic value of the

signature for ICH. Finally, we generated M1 and M2 macrophages to

investigate the expression of candidate genes.

Results: In both cohorts, 519 mRNAs and 131 lncRNAs were consistently

significantly differentially expressed between ICH patients and HTN controls.

Gene function analysis suggested that immune system processes may be

involved in ICH pathology. ImmuneCellAI analysis revealed that the

abundances of 11 immune cell types were altered after ICH in both cohorts.

WGCNA and GSEA identified 18 immune-related DEGs. Multiple algorithms

identified an RNA panel (CKAP4, BCL6, TLR8) with high diagnostic value for

discriminating ICH patients from HTN controls, CTRLs and IS patients (AUCs:

0.93, 0.95 and 0.82; sensitivities: 81.3%, 84.4% and 75%; specificities: 100%, 96%

and 79.7%, respectively). Additionally, CKAP4 and TLR8 mRNA and protein levels

decreased in RAW264.7 M1 macrophages and increased in RAW264.7 M2
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1421942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1421942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1421942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1421942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1421942/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1421942&domain=pdf&date_stamp=2024-08-30
mailto:jiayun@fmmu.edu.cn
mailto:autofan100@aliyun.com
mailto:iamwolf-snzq@163.com
https://doi.org/10.3389/fimmu.2024.1421942
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1421942
https://www.frontiersin.org/journals/immunology


Bai et al. 10.3389/fimmu.2024.1421942

Frontiers in Immunology
macrophages, while BCL6 expression increased in M1 macrophages but not in

M2 macrophages, which may provide potential therapeutic targets for ICH.

Conclusions: This study demonstrated that the expression levels of lncRNAs and

mRNAs are associated with ICH, and an RNA panel (CKAP4, BCL6, TLR8) was

developed as a potential diagnostic tool for distinguishing ICH from IS and

controls, which could provide useful insight into ICH diagnosis and pathogenesis.
KEYWORDS

intracerebral hemorrhage, RNA sequencing, immune cells, biomarkers,
machine learning
Introduction

Stroke remains the second leading cause of death worldwide

and has been regarded as a global health burden at both the

individual and societal levels (1). The estimated number of

incident strokes was 13.7 million in 2016, approximately 87% of

which were ischemic stroke (IS) (2). In the same year, IS and

intracerebral hemorrhage (ICH) accounted for 2.7 million and 2.8

million deaths, respectively (3). ICH accounts for approximately

23.8% of strokes in China, with a mortality rate of 67.9%, which is

higher than that of IS (4). Hypertension (HTN) is the most

common risk factor for stroke (5, 6), accounting for

approximately 65% of all ICHs (7, 8). Although effective HTN

management has reduced the incidence of ICH in some high-

income countries, the incidence and prevalence of ICH have

increased in China (5), and HTN remains the greatest risk factor

for ICH. Currently, the diagnosis of stroke depends on

neuroimaging techniques, and clinicians often face diagnostic

challenges in distinguishing between ICH and acute IS because

clinical findings can be vague and neuroimaging (especially

magnetic resonance imaging) is difficult. Early identification of

patients with acute IS is essential because reperfusion therapy can

be administered soon after stroke onset, which is very important for

achieving recovery and a good prognosis in IS patients (9). In recent

years, the detection of biomarkers has become important for

assisting in the early diagnosis of stroke. However, none of these

methods has proven to be completely reliable or has become a

clinical standard. The currently used stroke biomarkers are limited

by insufficient specificity, difficulties related to detection and

acquisition, a detection time beyond the thrombolysis window,

and establishment on the basis of a small sample size (10, 11). Thus,

identifying potential diagnostic biomarkers and understanding the

pathophysiological mechanisms underlying the development of

ICH are essential.

Blood samples are easily accessible and acceptable for patients,

which makes them attractive for biomarker discovery and

validation (12). Emerging evidence has revealed that peripheral
02
blood cells play vital roles in the neurological injury caused by ICH

and that global messenger RNA (mRNA) and noncoding RNA

(ncRNA) expression profiles are altered rapidly in the blood after

ICH (13–15). ncRNAs are involved in various biological processes

associated with stroke (16, 17) and are potential biomarkers and

therapeutic tools. ncRNAs include long noncoding RNAs

(lncRNAs), circular RNAs (circRNAs) and microRNAs

(miRNAs), which are involved in the regulation of transcription

and translation (18). Our previous studies focused on identifying

circRNAs as potential biomarkers for ICH diagnosis (19, 20). In this

study, we aimed to investigate the expression profiles of lncRNAs

and mRNAs by using RNA sequencing data from two independent

cohorts and investigated the potential functions of the identified

RNAs via gene ontology (GO) and pathway analyses. We aimed to

explore RNA expression profiles and functions to identify specific

mRNAs and lncRNAs as potential biomarkers for the diagnosis of

ICH, which might provide useful insight into the pathogenesis of

ICH and a more effective diagnostic tool.
Materials and methods

Study subjects

The participants enrolled in this study were described in our

previous study (19, 20). The study protocol was reviewed and

approved by the Human Ethics Committee, Fuwai Hospital

(Approval No. 2016-732), and the study was conducted in

accordance with the principles of Good Clinical Practice and the

Declaration of Helsinki. Written informed consent was obtained

from all study participants or their legal proxies.

In brief, a total of 273 individuals, including individuals with ICH

(n=84), IS (n = 59), or HTN (n= 60) and age-matched healthy controls

(CTRLs, n=70), were recruited from three individual cohorts between

2014 and 2024. In the first cohort, 160 individuals (44 ICH patients, 43

IS patients, 42 HTN controls and 31 CTRLs) from Cangzhou Central

Hospital who were enrolled between 2014 and 2017 composed the
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discovery phase. In the second cohort, 20 consecutive ICH patients

from Hebei Baoding Hospital, another 18 HTN controls and 16 IS

patients from the General Hospital of Ningxia Medical University, and

19 CTRLs from Tsinghua University Hospital were enrolled between

2017 and 2019. Additionally, 20 ICH patients and 20 CTRLs from

Xijing Hospital were enrolled as an independent validation cohort

between 2023 and 2024. ICH and IS were diagnosed by professional

neurologists on the basis of medical history and exams and confirmed

by computed tomography (CT) or magnetic resonance imaging (MRI)

(21). HTN controls with simple HTN but without a history of previous

stroke or cardiovascular events were selected as the HTN control

group, and the CTRLs group was matched for age, sex, and vascular

risk factors, including diabetes mellitus, hyperlipidemia, and smoking

and drinking status. Information on demographic and clinical

characteristics was obtained through face−to-face surveys and by

checking hospital records or medical examination records (Tables 1,

2). The exclusion criteria included autoimmune diseases, cardiac

disease, liver diseases, renal diseases, cancer, and a history of

previous stroke or IS with hemorrhagic transformation.
RNA sequencing and data analysis

Blood samples from patients with spontaneous ICH within 48

hours of admission or acute IS patients were collected for transcriptome
Frontiers in Immunology 03
analysis. RNA isolation and sequencing were performed as previously

described (19, 20). Library construction and sequencing were performed

by Annoroad Gene Technology (Beijing, China) via Illumina’s

NEBNext Ultra Directional RNA Library Prep Kit (NEB, Ipswich,

USA). Clustering of the index-coded samples was performed on a

cBot 2 cluster generation system via the TruSeq PE Cluster Kit v4-cBot-

HS (Illumina, CA, USA) according to the manufacturer’s instructions.

After cluster generation, the libraries were sequenced on an Illumina

HiSeq 2500 platform for 150 bp paired-end reads. All reads were

mapped to the human genome hg19 via the STAR2.4.1d aligner. The

DESeq2 (22) and edgeR (23) packages were used to normalize the

FPKM values and identify significant differentially expressed RNAs.

Significantly differentially expressed genes (DEGs) between the two

groups were identified as those with a |fold change| ≥ 2 and an adjusted

p value (FDR) < 0.05. P values were corrected for multiple testing with

the Benjamini–Hochberg method. Hierarchical clustering was

performed, and heatmaps were generated on the basis of the

normalized values of all DEGs using the R package. Venn diagrams

and volcano plots were generated to visualize the consistently significant

DEGs between the two cohorts. The RNA-seq data have been deposited

into the Genome Sequence Archive in the National Genomics Data

Center, China National Center for Bioinformation/Beijing Institute of

Genomics, Chinese Academy of Sciences under accession number

HRA001807, and they are publicly accessible at https://ngdc.cncb.ac.

cn/gsa-human (19).
TABLE 1 Demographics and characteristics of the discovery cohorts.

CTRL
(n=31)

HTN
(n = 42)

ICH
(n = 44)

IS
(n = 43)

P-value

Age, y 58.9 ± 5.3 57.5 ± 6.2 55.9 ± 7.2 57.4 ± 5.5 0.264

Men, % 17 (54.8) 18 (42.8) 24 (54.5) 21 (48.8) 0.719

BMI, kg/m2 24.8 ± 2.9 24.5 ± 3.6 26.1 ± 6.6 27.6 ± 6.9 0.068

SBP, mmHg 125.7 ± 10.1 138.3 ± 12.7 137.4 ± 17.6 138.6 ± 13.6 0.995

DBP, mmHg 79.2 ± 4.3 91.7 ± 19.1 87.9 ± 10.7 91.8 ± 16.6 0.624

HDL-C, mmol/L 1.4 ± 0.3 1.4 ± 0.3 1.1 ± 0.3 1.1 ± 0.2 0.955

LDL-C, mmol/L 2.9 ± 0.7 2.9 ± 0.7 2.4 ± 0.8 2.3 ± 0.8 0.997

TC, mmol/L 5.5 ± 1.0 5.6 ± 1.0 4.5 ± 1.0 4.5 ± 1.0 0.934

TG, mmol/L 1.4 ± 0.8 1.7 ± 1.0 1.5 ± 0.9 1.6 ± 0.6 0.269

Glucose, mmol/L 6.0 ± 1.8 6.0 ± 1.8 6.3 ± 1.6 5.9 ± 1.3 0.317

Smoking, % 0.963

Never 19 (61.3) 25 (59.5) 28 (63.7) 26 (60.5)

Former 4 (12.9) 5 (11.9) 5 (13.6) 8 (18.6)

Current 8 (25.8) 12 (28.6) 11 (22.7) 9 (20.9)

Drinking, % 0.517

Nondrinker 20 (64.5) 26 (61.9) 28 (63.6) 27 (62.8)

Drinker 11 (35.5) 16 (38.1) 16 (36.4) 16 (37.2)
Data is expressed as mean ± standard deviation or n (%). BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TC, Total cholesterol; TG, Triacylglycerol; HDL-C,
High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; GLU, Glucose; ICH, Intracerebral hemorrhage; IS, ischemic stroke; HTN, hypertension; CTRL, healthy control.
Statistical comparisons for percentages were performed using chi-square test. Comparisons between means or medians were performed using a One-way ANOVA.
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DEG functional enrichment

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were performed to annotate

the potential functions of the DEGs. A false discovery rate (FDR) <

0.05 was set as the cutoff for significantly enriched GO terms and

KEGG pathways. Furthermore, gene set enrichment analysis

(GSEA) was used to analyze the common DEGs in the two

cohorts via the clusterProfiler R package, as previously described

(24). The gene sets were analyzed on the basis of the KEGG and

Reactome pathways. Enriched gene sets were assigned on the basis

of a nominal p value<0.05 and a FDR <0.25.
Construction of the lncRNA−mRNA
coexpression network

To explore the correlation of differentially expressed lncRNAs and

differentially expressed mRNAs, we constructed a lncRNA−mRNA

coexpression network via Pearson correlation coefficient analysis.

Coexpressed lncRNA−mRNA pairs were defined as those

with a rho value > 0.85 and a p value <0.05. A correlation

network was constructed via the OmicStudio tools at https://www.

omicstudio.cn/tool.
Frontiers in Immunology 04
Weighted gene correlation
network analysis

A co−expression network was constructed with the WGCNA

package to identify the correlations among genes and identify highly

correlated gene modules and potential biomarkers. The ICH, IS, HTN

and CTRL group data were analyzed via the R package WGCNA (25).

Pearson’s correlation analysis was performed to identify coexpressed

genes, and an adjacency matrix was constructed on the basis of soft-

thresholding (b = 9). Then, we created a topological overlap matrix

(TOM) to visualize the connections among genes. Modules were

identified via hierarchical clustering via the TOM and the dynamic

tree cut algorithm. A gene significance > 0.2 and amodule membership

> 0.6 were calculated for individual modules to determine the most

important genes. R > 0.5 and P < 0.05 were considered to indicate that a

module was s ign ificant and should be se lec ted for

additional processing.
Evaluation of immune cell composition
via ImmuneCellAI

We evaluated the immune cell composition of the two

comparison groups in the two cohorts via the ImmuneCellAI
TABLE 2 Demographics and characteristics of the validation cohorts.

CTRL
(n = 19)

HTN
(n=18)

ICH
(n = 20)

IS
(n = 16)

P-value

Age, y 57.2 ± 7.0 56.2 ± 7.2 56.7 ± 7.1 57.2 ± 7.7 0.952

Men, % 10 (52.6) 11 (60) 10 (50) 8 (50) 0.998

BMI, kg/m2 24.9 ± 2.4 24.9 ± 2.4 25.8 ± 6.8 25.0 ± 2.6 0.970

SBP, mmHg 120.3 ± 9.7 133.1 ± 18.9 171.2 ± 25.7 150.6 ± 19.4 0.999

DBP, mmHg 77.6 ± 9.1 91.7 ± 12.4 103.7 ± 13.3 89.3 ± 13.9 0.927

HDL-C, mmol/L 1.3 ± 0.3 1.2 ± 0.3 0.9 ± 0.5 1.0 ± 0.3 0.089

LDL-C, mmol/L 2.9 ± 0.9 2.9 ± 0.94 2.8 ± 0.8 2.7 ± 0.9 0.940

TC, mmol/L 4.5 ± 1.0 4.8 ± 2.0 4.3 ± 0.9 4.9 ± 1.3 0.269

TG, mmol/L 1.2 ± 0.5 1.9 ± 0.8 1.4 ± 0.6 2.3 ± 1.5 0.058

Glucose, mmol/L 5.3 ± 0.6 5.2 ± 0.5 5.5 ± 1.7 6.0 ± 1.1 0.109

Smoking, % 0.288

Never 13 (68.4) 12 (66.7) 14 (70) 11 (68.7)

Former 3 (15.8) 2 (11.1) 2 (10) 2 (12.5)

Current 3 (15.8) 4 (22.2) 4 (20) 3 (18.8)

Drinking, % 0.090

Nondrinker 11 (57.9) 12 (66.7) 12 (60) 10 (62.5)

Drinker 8 (42.1) 6 (33.3) 8 (40) 6 (37.5)
Data is expressed as mean ± standard deviation or n (%). BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TC, Total cholesterol; TG, Triacylglycerol; HDL-C,
High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; GLU, Glucose; ICH, Intracerebral hemorrhage; IS, ischemic stroke; HTN, hypertension; CTRL, healthy control.
Statistical comparisons for percentages were performed using chi-square test. Comparisons between means or medians were performed using a One-way ANOVA.
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website (https://guolab.wchscu.cn/ImmuCellAI/), as previously

described (26). The abundances of 24 immune cell types and 18

T-cell subtypes were calculated, and the abundance of immune cells

in each sample was determined for further comparison. P<0.05 was

considered to indicate statistical significance.
Identification of candidate immune-related
biomarkers with multiple machine
learning algorithms

To identify immune-related biomarkers for ICH, we used least

absolute shrinkage and selection operator (LASSO), support vector

machine recursive feature elimination (SVM-RFE) algorithms,

XGBoost-RET and Boruta algorithms to rank the importance of

features according to RNA expression levels in all samples. The

intersection of the candidate biomarkers was used to further assess

their diagnostic value in discriminating ICH patients from patients

in other groups according to the expression levels of RNAs via eight

machine learning classification algorithms, namely, support vector

machine (SVM), K-nearest neighbor (KNN), logistic regression

(LR), random forest (RF), Gaussian naive Bayes (GNB),

AdaBoost, light gradient boosting machine (LGBM) and eXtreme

gradient boosting (XGB). The area under the curve (AUC),

sensitivity, specificity, accuracy, positive predictive value (PPV),

and negative predictive value (NPV) were computed. The programs

used to run the algorithms and the specific protocols or tools used to

assess diagnostic value on the Beckman Coulter DxAI platform

(https://www.xsmartanalysis.com/beckman/login/).
Validation via real-time polymerase
chain reaction

Candidate biomarkers (CKAP4, BCL6 and TLR8) were selected

for validation via quantitative real-time polymerase chain reaction

(RT−PCR). Total RNA from peripheral blood white blood cells was

isolated via TRIzol reagent (Invitrogen). cDNA synthesis was

completed via the use of 1 µg of total RNA and a Transcriptor

First Stand cDNA Synthesis Kit (Takara, Dalian, China). RT−PCR

was performed via SYBR Master Mix (Yeasen, Shanghai, China)

according to the manufacturer’s instructions. The RNA primers

were designed via the NCBI Primer-BLAST website. The primers

used in this study are listed in Supplementary Table 9. The target

gene mRNA levels were quantified via normalization to those of the

standard housekeeping gene gapdh, which served as an

internal control.
Cell culture

RAW264.7 cells were obtained from the Cell Resource Center,

Peking Union Medical College (which is part of the National

Science and Technology Infrastructure, the National Biomedical

Cell-Line Resource, NSTI-BMCR; http://cellresource.cn). The cells

were cultured in DMEM supplemented with 10% fetal bovine
Frontiers in Immunology 05
serum, 100 U/mL penicillin, and 100 mg/mL streptomycin in a

5% CO2 incubator at 37°C. Cells obtained from passages three to six

were used in the study. For macrophage polarization,

lipopolysaccharide (LPS, 100 ng/ml; Sigma−Aldrich; St. Louis,

MO) and interferon-g (IFN-g, 20 ng/ml; PeproTech; Rocky Hill,

NJ) were added to the culture mixture for 24 h to induce M1

polarization, and interleukin-4 (IL-4, 20 ng/ml; PeproTech; Rocky

Hill, NJ) was added to the culture mixture for 24 h to induce

M2 polarization.
Western blot analysis

Cellular protein was extracted via RIPA lysis buffer containing a

protease inhibitor cocktail (Roche). After homogenization on ice

and centrifugation, total protein was mixed with loading buffer and

separated on 4–12% NuPAGE Bis−Tris gels (Invitrogen) before

being transferred to a nitrocellulose membrane. After being blocked

with 5% nonfat milk containing Tris-buffered saline, the

membranes were blotted with primary antibodies overnight at 4°

C. The primary antibodies used were as follows: a monoclonal

antibody against BCL6 (1:500, ab241549; Abcam, Cambridge, MA,

USA), a polyclonal antibody against TLR8 (1:1000, ab8245; Abcam,

Cambridge, MA, USA), a polyclonal antibody against CKAP4

(1:2000, 16686-1-AP; Proteintech, Wuhan, China), and a

monoclonal antibody against GAPDH (1:10000, ab8245; Abcam,

Cambridge, MA, USA). The membranes were subsequently washed

four times for 5 min each with TBST buffer and incubated with a

horseradish peroxide-conjugated secondary antibody (1:5000,

SA00001-1, SA00001-2, Proteintech, Wuhan, China) at room

temperature for 2 h. After washing, the membrane was developed

with enhanced chemiluminescence reagent (Invitrogen, USA), and

a ChemiDoc MP Imaging System (Bio-Rad, USA) was used for

signal detection. Protein expression was quantified and normalized

to that of GAPDH, which was used as an internal control. The

signal density was quantified via ImageJ software (version 1.52a,

NIH, USA).
Histology and immunofluorescence

Spontaneous ICH mouse models were induced and assessed via

MRI as described previously (27, 28). Animal experiments were

approved by the Committee on the Ethics of Animal Experiments at

Fuwai Hospital (approval No.: 0085-M-200-HX) and complied with

the National Institutes of Health (NIH)’s Guide for the Care and

Use of Laboratory Animals. The manuscript adheres to Animal

Research: Reporting of In Vivo Experiments (ARRIVE) guidelines

for reporting animal experiments. The brains were harvested and

fixed in 4% paraformaldehyde for 6 h and then cryoprotected in

20% sucrose overnight at 4°C. Frozen coronal sections were cut at a

thickness of 20 mm. Hematoxylin−eosin (HE) staining was applied

to observe hemorrhages. For immunofluorescence staining, frozen

brain sections were incubated in goat serum (ZSGB-BIO, Beijing,

China) with 0.3% Triton X-100 for blocking. For BCL6, after above

incubation, sections were blocked with Mouse on Mouse (MOM)
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Blocking Reagent (Vector Laboratories, MKB-2213-1, Burlingame,

CA, USA) for one hour at room temperature to reduce non-specific

binding, followed by incubation with primary antibodies overnight

at 4°C. The primary antibodies used were as follows: mouse anti-

BCL6 (1:100, ab241549; Abcam, Cambridge, MA, USA), rabbit

anti-TLR8 (1:100, ab8245; Abcam, Cambridge, MA, USA), and

rabbit anti-CKAP4 (1:100, 16686-1-AP; Proteintech, Wuhan,

China). Rabbit or mouse isotype antibodies were used as negative

controls. After several washes, the sections were incubated with

secondary antibodies (Alexa Fluor 594-conjugated goat anti-mouse

IgG, Alexa Fluor 488-conjugated goat anti-rabbit IgG; 1:300, ZSGB-

BIO, Beijing, China) at room temperature for 30 min. Coverslips

were mounted with Vecta Shield medium containing DAPI to stain

the nuclei. All images were visualized via an FV3000 laser scanning

confocal microscope.
Statistical analysis

Statistical analysis was performed via SPSS 21.0 (IBM Corp.,

NY, USA). The sample distribution was determined via the

Kolmogorov–Smirnov normality test. For parametric data, two-

tailed unpaired Student’s t tests were used to evaluate differences

between two groups. One-way ANOVA and the Bonferroni post hoc

correction were performed when more than two groups were

evaluated. The data are presented as the means ± standard

deviations or medians (interquartile ranges). Statistical

comparisons of percentages were performed via chi-square tests.

For RNA sequencing analysis, DEGs were selected if significant

differences (fold change ≥ 2 and FDR < 0.05) between two groups

were observed via an unpaired Mann−Whitney test. Spearman’s

correlation analysis was performed to investigate the correlations

between ICH risk factors and candidate RNAs. Receiver operating

characteristic (ROC) curve analysis and decision curve analysis

(DCA) were used as accuracy indices for evaluating the diagnostic

performance of the selected RNA panel. P < 0.05 was considered to

indicate statistical significance.
Results

Characteristics and demographics of the
study population

To investigate the expression profiles of mRNAs and lncRNAs

associated with the occurrence and development of ICH, we

performed RNA sequencing (RNA-seq) of the discovery and

validation cohorts. The average age of the 233 subjects in this

study was 57.58 ± 6.99 years (± SD), and 119 subjects (51.07%) were

male. The demographics and characteristics of the ICH patients, IS

patients, HTN controls and CTRLs in the discovery (n = 160) and

validation (n = 73) cohorts are shown in Tables 1, 2. No significant

differences in sex, age or incidence rates of diabetes mellitus or

hyperlipidemia existed among the patients with ICH, IS, or HTN
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and the matched controls in either the discovery or validation

cohor t s . The workflow o f th i s s t udy i s shown in

Supplementary Figure 1.
LncRNA and mRNA expression profiles are
significantly altered in ICH patients in both
the discovery and validation cohorts

In total, 519 mRNAs and 131 lncRNAs (fold change > 2 and

FDR < 0.05) were consistently significantly differentially expressed

between ICH patients and HTN controls (Figures 1A-F;

Supplementary Tables 1, 2) in both cohorts according to the

DESeq2 and EdgeR results. Volcano plots were generated to

evaluate the variation and reproducibility of lncRNA and mRNA

expression in ICH patients and HTN controls in the discovery

(Figures 1A, B) and validation (Figures 1D, E) cohorts. The

expression patterns of mRNAs and lncRNAs in ICH patients and

HTN controls in the discovery (Figure 1G) and validation

(Figure 1H) cohorts were distinguished via hierarchical clustering

and heatmaps. Similarly, 751 mRNAs and 166 lncRNAs were

consistently significantly differentially expressed between ICH

pat ients and CTRLs (Supplementary Figures 2A, B;

Supplementary Tables 3, 4), and 207 mRNAs and 45 lncRNAs

were consistently significantly differentially expressed between ICH

patients and IS patients according to the same methods

(Supplementary Figures 2C, D; Supplementary Tables 5, 6).

Moreover, we identified 157 differentially expressed mRNAs and

41 differentially expressed lncRNAs that overlapped among the

three comparison groups (ICH vs. HTN, ICH vs. CTRL and ICH vs.

IS) and selected them for further analysis (Figures 1I, J).
Construction of the lncRNA−mRNA
coexpression network

Genes with the same expression pattern may function together.

To explore the relationships between the 157 differentially

expressed mRNAs and 41 differentially expressed lncRNAs in all

the samples, we constructed a lncRNA−mRNA coexpression

network via Pearson correlation coefficient analysis. We defined

lncRNA−mRNA pairs as coexpressed if the absolute value of rho

was >0.85 and the p value was < 0.05. The lncRNA−mRNA

coexpression network contained 49 nodes (36 mRNAs and 13

lncRNAs) and 52 connections. The top 5 nodes were RP11-

574K11.5, CTB-61M7.2, RP11-483F11.7, AC098823.3 and

LINC00671, with a degree >5 (Supplementary Figure 3). The top

10 lncRNA−mRNA coexpression pairs were RP11−574K11.5−

S100A12, RP11−574K11.5− GPR84, RP11−483F11.7− ENTPD7,

RP11−36B6.1− AP3B2, LINC00671− MMP9, RP11−574K11.5−

HP, RP11−483F11.7− UGCG, CTB−61M7.2− SLC2A3, RP11

−574K11.5− C19orf59, and RP11−574K11.5− SLC51A

(Supplementary Table 7), which may play vital roles in the

regulation of ICH pathogenesis.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1421942
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bai et al. 10.3389/fimmu.2024.1421942
FIGURE 1

Differentially expressed genes between intracerebral hemorrhage (ICH) patients and hypertension (HTN) controls in the discovery and validation
cohorts. Volcano plots of the mRNA (A, D) and lncRNA (B, E) expression profiles of ICH patients and HTN controls (fold change ≥2 and FDR < 0.05)
in the discovery (A, B) and validation (D, E) cohorts. The red dots represent upregulated genes, and the blue dots represent downregulated genes.
(C, F) Venn diagram showing the consistently altered mRNAs (C) and lncRNAs (F) in ICH patients compared with HTN controls in the discovery and
validation cohorts according to both the DESeq2 and edgeR methods. (G, H) Hierarchical clustering of genes that were consistently differentially
expressed between ICH patients and HTN controls in the discovery (G) and validation (H) cohorts. Blue represents downregulated genes, red
represents upregulated genes, and gray represents genes whose expression did not change. Each column represents a sample, and each row
represents a single gene. (I, J) Venn diagram showing the consistently differentially expressed mRNAs (I) and lncRNAs (J) between the comparison
groups (ICH vs. HTN, ICH vs. CTRL and ICH vs. IS) in both cohorts. (K) The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
associated with consistently differentially expressed mRNAs. Statistical significance levels were corrected for multiple testing using the Benjamini–
Hochberg procedure.
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Functional enrichment and pathway
analysis of DEGs

Functional enrichment analyses were performed to further

explore the functions of the DEGs between patients with ICH and

matched controls. We observed that the enriched GO terms for the

significant DEGs included immune response, immune system

process, regulation of biological response, and receptor binding

(Supplementary Figure 4), which are closely related to the

pathophysiology of ICH. KEGG pathway analysis of the DEGs

revealed that the cytokine−cytokine receptor interaction, MAPK

signaling pathway, PI3K–Akt signaling pathway, ECM–receptor

interaction, Notch signaling pathway, B-cell receptor signaling

pathway, Th1 and Th2 cell differentiation, TNF signaling pathway

and Th17 cell differentiation pathways were significantly enriched in

both cohorts (Figure 1K). Gene set enrichment analysis (GSEA) was

performed to identify the signaling pathways involved. Reactome

enrichment revealed that the top pathways were the immune system

(NES=1.89, P= 0.0034) (Figure 2A), metabolism of lipids, B-cell

receptor signaling pathways, HIF-1 signaling pathways, Fc gamma

R-mediated phagocytosis, osteoclast differentiation, and Th1 and Th2

cell differentiation (Figures 2B-D; Supplementary Figures 5A-D).

These results demonstrated that the immune response may play

important roles in the pathogenesis of ICH.
Immune cell abundance is significantly
altered in ICH patients according to
immune cell infiltration analysis

To explore the immune cell composition after ICH, we used

ImmuneCellAI to estimate the abundances of 24 immune cell types
Frontiers in Immunology 08
in the two cohorts. The abundances of 24 immune cells in each

sample in the discovery and validation cohort are shown in

Figures 3A, B. Comparisons of the proportions of 24 immune cell

types between ICH patients and HTN controls in the discovery and

validation cohorts are shown in Figures 3C, D. Overall, 11 immune

cell types overlapped between the two cohorts, as shown in the

boxplot in Figure 3E. The results revealed that the numbers of CD4

T cells, CD8 T cells, type 1 regulatory T (Tr1) cells, induced

regulatory T (iTreg) cells, follicular T-helper (Tfh) cells, gamma-

delta T cells, Th17 cells, and other immune cells, including B cells,

monocytes, natural killer (NK) cells and neutrophils, significantly

differed between ICH patients and HTN controls (P<0.05).

Moreover, monocyte, neutrophil and Th17 cell numbers

increased, but the numbers of other cell types decreased

significantly after ICH. These results indicate that the proportion

and distribution of immune cells are altered in ICH patients and

may play crucial roles in the pathogenesis of ICH.
Identification of immune-related DEGs via
weighted gene coexpression network
analysis and GSEA

To identify the specific modules associated with ICH, we

performed WGCNA with the R package and performed network

and module detection. Then, gene cluster dendrograms were

constructed, and dynamic tree cutting was performed

(Figure 4A). Fourteen modules of coexpressed genes were

identified, and the correlations among different modules and

differential groups were assessed to determine the most significant

correlations. Notably, the dark gray (R = 0.52, P =8e-13) and black

(R = -0.56, P =4e-15) modules were significantly different between
FIGURE 2

Gene set enrichment analysis (GSEA) of representative pathways associated with genes significantly differentially expressed in ICH patients.
(A) Enrichment plot showing the immune system pathway with the highest enrichment score. (B-D) Ridge plot (B), network diagram (C) and UpSet
plot (D) showing the top 10 pathways in the annotated gene sets. Statistical significance levels were corrected for multiple testing using the
Benjamini–Hochberg procedure.
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the ICH group and the other groups on the basis of the criteria of

absolute correlation > 0.5 and p value < 0.05 (Figure 4B). A total of

2029 key module genes related to ICH were identified. According to

previous GSEA and immune cell infiltration analysis results, the

immune system plays a vital role in the pathogenesis of ICH;

subsequently, we identified 18 intersecting genes by overlapping

2029 key module genes related to ICH, 721 key genes related to the
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immune system and 367 DEGs (ICH vs. HTN and ICH vs. CTRL);

these genes were identified as immune-related DEGs in ICH

(Figure 4C). Furthermore, we analyzed the correlations between

the expression levels of eighteen immune-related DEGs and

immune cell infiltration in ICH patients via Spearman’s analysis.

The results revealed that the expression levels of most immune-

related DEGs were positively correlated with the abundance of Th17
FIGURE 3

Immune cell infiltration analysis of the intracerebral hemorrhage (ICH) and hypertension (HTN) control groups by ImmuneCellAI. (A, B) Stacked bar
plots showing the relative proportions of 24 immune cell subsets in the discovery (A) and validation (B) cohorts. (C, D) Violin diagrams showing the
differences between ICH patients and HTN controls for 24 infiltrating immune cell types in the discovery (C) and validation (D) cohorts. (E) Violin
diagrams showing 11 consistent differences in infiltrating immune cell types between ICH patients and HTN controls in both cohorts. The data were
assessed using the Benjamini−Hochberg (BH) method.
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cells, macrophages, monocytes and neutrophils and negatively

correlated with Tfh cells, iTreg cells, Tr1 cells, CD4-naive cells,

nTreg cells, CD8 T cells, MAIT cells, NK cells, CD4-T cells, and

exhausted and gamma delta T cells; however, QPCTL exhibited the

opposite pattern (P<0.05) (Figures 4D, E). Additionally, univariate

Cox regression was performed to evaluate these eighteen immune-
Frontiers in Immunology 10
related DEGs as predictors of ICH prognosis, and the results

revealed that the expression levels of IL18R1 (HR=2.82, 95% CI:

1.26–6.31, P=0.012), CKAP4 (HR=1.48, 95% CI: 1.07–2.05,

P=0.018), PYGL (HR=1.37, 95% CI: 1.04–1.81, P=0.024), and

CR1 (HR=0.55, 95% CI: 0.34–0.87, P=0.011) were significantly

associated with the prognosis of ICH patients (Figure 4F).
FIGURE 4

Differentially expressed immune-related genes were screened via weighted gene coexpression network analysis (WGCNA) and GSEA. (A) Cluster
dendrogram showing the gene modules among the four groups. Genes were divided into various modules by hierarchical clustering, and different
colors represent different modules. (B) Heatmap of module-trait relationships. The black and dark gray modules were significantly associated with
intracerebral hemorrhage (ICH) (R>0.5, p < 0.001). (C) Venn diagram showing eighteen differentially expressed immune-related genes (IRGs)
identified via WGCNA and immune system genes (GSEA). (D, E) Heatmap (D) and correlation network (E) showing the relationships between
eighteen IRGs and immune cell infiltration. (F) Univariate Cox regression analysis of eighteen IRGs for prognostic assessment. *p<0.05, **p<0.01.
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Identification of immune-related
diagnostic biomarkers for ICH with
multiple classification algorithms

To further evaluate the eighteen immune-related DEGs as

biomarkers for the diagnosis of ICH, we used the LASSO, SVM-RFE,

XGBoost-RET and Boruta algorithms to rank the importance of the

features according to their expression levels in all the samples. We

reduced the number of dimensions through LASSO regression and

selected 4 genes to construct a diagnostic model for ICH (Figures 5A, B).

Similarly, we identified 5 genes from SVM-RFE and 10 genes from

XGBoost-RET with the highest scores as optimal diagnostic tools for

ICH (Figures 5C, D). Furthermore, we carried out feature selection via

the Boruta algorithm and identified 11 genes as important, of which

TLR8, CKAP4 and BCL6 were consistent with the top discriminatory

biomarkers identified by the above three models (Figure 5E). Ultimately,

3 candidate genes (CKAP4, BCL6 and TLR8) were identified by

intersection, and their diagnostic value was further assessed (Figure 5F).
Validation of candidate biomarkers via
quantitative real-time polymerase
chain reaction

To explore the ability of the three candidate genes as potential

biomarkers to distinguish between ICH patients and other groups, we

detected the expression levels of CKAP4, BCL6 and TLR8 in ICH

patients, IS patients, HTN controls and CTRLs as FPKM values in

both cohorts. The results demonstrated that CKAP4, BCL6 and TLR8

levels were significantly upregulated in ICH patients compared with

those in IS patients, HTN controls and CTRLs but were not

significantly different between IS patients and HTN controls (or

CTRLs) in both the discovery (Figures 6A-C) and validation cohorts

(Figures 6D-F). These three candidate biomarker genes were

subsequently validated via RT−PCR in technical replicates of the

four groups, and the results were consistent with those obtained via

RNA sequencing (Figures 6G−I). These results indicate that CKAP4,

BCL6 and TLR8 are specifically upregulated in patients with ICH and

could be used as diagnostic biomarkers for ICH.
Diagnostic value of the three candidate
biomarkers for ICH patients

Given that the above three genes were significantly differentially

expressed according to both RNA sequencing and RT−PCR, we

determined their diagnostic value with eight machine learning

classification algorithms. The average performance values of the

three candidate biomarkers for ICH based on accuracy and the area

under the curve (AUC) in the training set, validation set and test set.

Among these classifiers, the performance of GNB was superior to

that of the other seven algorithms; the AUC for the model was 0.93

in the training set, 0.91 in the validation set, and 0.97 in the test set

(Table 3). These results indicate that these three candidate

biomarkers have great clinical value in the diagnosis of ICH.
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Receiver operating characteristic (ROC) curve analysis was

subsequently performed to explore the potential diagnostic value of

the three candidate biomarkers for ICH. The AUCs of the CKAP4,

BCL6 and TLR8 signatures for differentiating patients with ICH from

HTN controls were 0.90, 0.82, and 0.92, respectively (Figure 7A). The

AUC values of the CKAP4, BCL6 and TLR8 signatures for

differentiating patients with ICH and CTRLs were 0.89, 0.84 and

0.95, respectively (Figure 7B); the AUC values of the CKAP4, BCL6

and TLR8 signatures for differentiating patients with ICH and IS

patients were 0.80, 0.74 and 0.78, respectively (Figure 7C). The

combination of CKAP4, BCL6 and TLR8 for differentiating

patients with ICH from HTN controls, CTRLs and IS patients had

AUC values of 0.93 (95% CI: 0.89–0.98), 0.95 (95%CI: 0.92–0.99) and

0.82 (95% CI: 0.74–0.89), respectively, with sensitivities of 81.3%,

84.4% and 75%, respectively, and specificities of 100%, 96% and

79.7%, respectively (Figures 7A−C). We used DCA to evaluate the

clinical utility of the three candidates by qualifying the net benefit at a

distinct threshold. The curve shows that the number of positive cases

predicted by the model was close to the actual number of positive

cases. As the risk threshold increased, the number of cases predicted

by the model approached the actual number of cases. As expected, the

DCA results revealed that CKAP4, BCL6 and TLR8 had similar

clinical values in the diagnosis of ICH when these patients were

differentiated from CTRLs and IS patients. Compared with CKAP4

and BCL6, TLR8 had greater clinical value (Figures 7D-F). On the

basis of the DCA results, we further plotted clinical impact curves to

evaluate the clinical utility of the diagnostic model. The clinical

impact curves of the combination of the three biomarkers showed

that the predicted probability coincided well with the actual

probability of differentiating patients with ICH from HTN controls,

CTRLs and IS patients (Figures 7G-I), suggesting that the diagnostic

model had excellent predictive value. These results indicate that

CKAP4, BCL6 and TLR8 are diagnostic biomarkers for ICH either

individually or in combination.
Correlation analysis of three candidate
biomarkers and clinical characteristics

To further assess the associations of the three candidate genes with

the clinical characteristics of ICH patients, we performed Spearman’s

correlation analysis to evaluate the correlations between the expression

levels of CKAP4, BCL6 and TLR8 and the clinical characteristics of

ICH patients. CKAP4, BCL6 and TLR8 expression levels were

positively correlated with white blood cell counts and glucose levels

and negatively correlated with low-density lipoprotein cholesterol

(LDL-C), triacylglycerol (TG), total cholesterol (TC), uric acid (UA)

and apolipoprotein A (ApoA) levels in ICH patients (P < 0.05). TLR8

and CKAP4 were positively correlated with direct bilirubin (DBIL)

levels and negatively correlated with sex and HDL-C and

apolipoprotein B (ApoB) levels (P < 0.05). BCL6 expression levels

were positively correlated with SBP and DBP and negatively correlated

with red blood cell (RBC) counts and hemoglobin (Hb) levels (P <

0.05) (Supplementary Figure 6; Table 4). These results indicate that

CKAP4, BCL6 and TLR8 may be involved in the pathogenesis of ICH.
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FIGURE 5

Detection of immune-related diagnostic markers via four classification algorithms. (A) LASSO regression algorithm for screening diagnostic markers.
The relationship between the binomial deviation and log(l) was determined via 10-fold cross-validation (CV). (B) The coefficients of 18 feature genes
are shown as log(l). Different colors represent different genes. (C) SVM-RFE was used to screen biomarkers. (D) The XGBoost-RET algorithm was
used to screen biomarkers. (E) The Boruta algorithm was used to screen biomarkers. (F) Venn diagram showing the intersection of the diagnostic
markers obtained with the four algorithms. SVM-RFE: support vector machine recursive feature elimination, LASSO: least absolute shrinkage and
selection operator, XGBoost: extreme gradient boosting.
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External and experimental validation of the
expression levels of three candidate
immune-related biomarkers of ICH

To further verify the clinical utility of these three candidate

biomarkers for the diagnosis of patients with ICH, we recruited 20
Frontiers in Immunology 13
patients with ICH and 20 CTRLs as another independent cohort for

validation. CKAP4, BCL6 and TLR8 mRNA (Figures 8A-C) and

protein (Figures 8D, E) levels were significantly higher in patients

with ICH than in those with CTRLs (Supplementary Table 8). We

subsequently detected the expression levels of CKAP4, BCL6 and

TLR8 in ICH model mice and found that CKAP4, BCL6 and TLR8
FIGURE 6

Validation of candidate gene expression levels via quantitative real-time polymerase chain reaction (RT−PCR). (A-F) The expression levels of three
candidate genes in the discovery (A-C) and validation (D-F) cohorts among the four groups according to FPKM values. CKAP4 (A, D), BCL6 (B, E) and
TLR8 (C, F). (G-I) RT−PCR results validated the expression levels of CKAP4 (G), BCL6 (H) and TLR8 (I) among 64 intracerebral hemorrhage (ICH)
patients, 59 ischemic stroke (IS) patients, 60 hypertension (HTN) controls and 50 healthy controls (CTRLs). The data are presented as the median
(interquartile range). *p<0.05, ***p<0.001, **p<0.01, ****p<0.0001. ns, no significance. Statistical significance was assessed using one-way ANOVA.
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were elevated in brain tissues after hemorrhage (Figures 8F-H), which

was consistent with the RNA sequencing and RT−PCR results.

Additionally, we further investigated the functional roles of these

three genes in macrophages. RAW264.7 cells were polarized to the

M1 or M2macrophage phenotype via treatment with LPS plus IFN-g
or IL-4, respectively. M1 macrophages expressed the M1 markers

TNFa, iNOS and CXCL10 (Figure 8I); in contrast, M2 macrophages

expressed the M2 markers arginase 1 (Arg1) and CD206 (Figure 8J),

suggesting that RAW264.7 cells were successfully polarized to M1

and M2 macrophages. We found that CKAP4 and TLR8 levels were

decreased in M1 macrophages and increased in M2 macrophages,

whereas BCL6 expression was increased in M1 macrophages but not

in M2 macrophages at both the mRNA (Figures 8K−M) and protein

levels (Figures 8N−Q). These results indicate that BCL6may promote

M1macrophage polarization to activate neuroinflammation, whereas

CKAP4 and TLR8 may promote M2 macrophage polarization to

alleviate neuroinflammation after ICH, which may provide potential

therapeutic targets for ICH.
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Discussion

Given the high morbidity and mortality of stroke, no

biomarkers for stroke are available for use in clinical practice, and

the identification of potential biomarkers for discriminating

between ICH and IS is essential. In this study, we investigated

lncRNA and mRNA expression profiles in peripheral blood from

ICH patients, IS patients, HTN controls and CTRLs via RNA

sequencing. Functional analysis revealed that the most

significantly enriched pathway of DEGs after ICH was involved in

the immune system response. We further explored the immune cell

composition and found that the abundances of 11 types of immune

cells, including T-cell subtypes (Th1, Tfh, Th17, Tr1, iTreg, CD4+ T,

CD8+ T and gamma delta T cells), B cells, neutrophils, monocytes

and NK cells, were significantly altered after ICH, suggesting that

the inflammatory response was involved in neuronal injury after

ICH. In addition, by using multiple machine learning algorithms,

we established an immune-related biomarker panel (CKAP4, BCL6,
TABLE 3 Classification performance for the three-candidate RNA signatures in ICH patients.

Classifier Set AUC Accuracy Sensitivity Specificity PPV NPV

LR

Training set 0.94 0.88 0.83 0.95 0.94 0.84

Validation set 0.92 0.84 0.84 0.96 0.90 0.81

Test set 0.86 0.79 0.85 0.83 0.91 0.63

XGB

Training set 1.00 0.98 0.99 1.00 1.00 0.97

Validation set 0.91 0.85 0.84 0.95 0.87 0.87

Test set 0.86 0.84 0.92 0.83 0.86 0.80

LGBM

Training set 0.98 0.95 0.96 0.96 0.96 0.94

Validation set 0.91 0.84 0.86 0.91 0.87 0.83

Test set 0.90 0.74 0.69 1.00 0.83 0.57

RF

Training set 1.00 0.98 1.00 1.00 1.00 0.96

Validation set 0.93 0.87 0.84 0.93 0.92 0.84

Test set 0.89 0.74 1.00 0.67 0.90 0.56

AdaBoost

Training set 1.00 0.99 1.00 1.00 1.00 0.97

Validation set 0.94 0.85 0.94 0.89 0.91 0.82

Test set 0.76 0.68 0.69 1.00 0.82 0.50

GNB

Training set 0.93 0.87 0.85 0.91 0.90 0.85

Validation set 0.91 0.83 0.90 0.91 0.83 0.84

Test set 0.97 0.90 0.85 1.00 0.92 0.83

SVM

Training set 0.93 0.85 0.86 0.87 0.87 0.85

Validation set 0.94 0.82 0.94 0.89 0.82 0.85

Test set 0.96 0.84 0.85 1.00 0.81 1.00

KNN

Training set 0.96 0.86 0.86 0.91 0.96 0.80

Validation set 0.90 0.79 0.84 0.89 0.87 0.76

Test set 0.92 0.63 0.62 1.00 1.00 0.00
LR, logistic regression; XGB, eXtreme Gradient Boosting; LGBM, Light Gradient Boosting machine; GNB, Gaussian naive Bayes; RF, Random Forest; SVM, support vector machines; KNN, k-
Nearest Neighbor; PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve.
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and TLR8) whose components are upregulated after ICH. This

panel had AUC values of 0.93, 0.95 and 0.82, with sensitivities of

81.3%, 84.4% and 75%, respectively, and specificities of 100%, 96%

and 79.7%, respectively, for discriminating ICH patients from HTN

controls, CTRLs and IS patients; thus, this panel has potential

diagnostic value for ICH.

Functional enrichment revealed that the immune system was

the most significantly affected pathway in ICH patients, indicating

that the immune system could be a potential therapeutic target

related to the pathological effects of ICH. Neutrophils are the first

leukocyte population to migrate into the brain after ICH, and their

effects appear to be mainly deleterious in the context of brain injury

(29). Evidence indicates that anti-polymorphonuclear neutrophil

therapy administered via intravenous injection can reduce blood–

brain barrier disruption and prevent neurological injury (30, 31).

Monocytes also invade within 12 h after ICH, which indicates that
Frontiers in Immunology 15
they may be involved in secondary injury (29, 32). In our study,

neutrophil and monocyte abundances increased during ICH, which

is consistent with the findings of previous studies. Suppressed

neu t roph i l and monocy t e r e sponse s may a l l e v i a t e

neuroinflammation and brain injury, which could be therapeutic

targets for ICH.

We also explored the composition of immune cells after ICH

and reported that the proportions of T-cell subtypes among blood

cells decreased after ICH. Previous studies using ImmuneCellAI

analysis also suggested that CD4+ T-cell numbers are significantly

decreased in ICH patients (33). T-cell subtypes with decreased

abundance might be recruited to the brain and involved in

inflammatory and anti-inflammatory responses. Reports have

suggested that CD4+ T-cell numbers increase within 24 h after

ICH and that CD8+ T-cell numbers increase approximately 3 to 4

days after ICH (34, 35); another study revealed that CD4+ T-cell
FIGURE 7

Diagnostic value of the candidate genes in intracerebral hemorrhage (ICH) patients. (A) Receiver operating characteristic (ROC) curves were
generated using the expression levels of CKAP4, BCL6 and TLR8 individually or in combination to differentiate patients with ICH from hypertension
controls (n = 64 vs. 60). (B) ROC curves were generated using the expression levels of CKAP4, BCL6 and TLR8 to differentiate patients with ICH
from healthy controls in all samples (n = 64 vs. 50). (C) ROC curves of CKAP4, BCL6 and TLR8 were generated to differentiate ICH patients from IS
patients in all samples (n = 64 vs. 59). (D-F) DCA curves of CKAP4, BCL6 and TLR8 were generated to differentiate ICH patients from HTN controls
(D), CTRLs (E) and IS patients (F) in all samples. (G-I) Clinical impact curves of the combination of CKAP4, BCL6 and TLR8 for discriminating ICH
patients from HTN controls (G), CTRLs (H) and IS patients (I).
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numbers significantly decreased in ICH patients compared with

controls, but there was no significant difference in CD8+ T-cell

numbers between ICH patients and controls (33). There are two

subtypes of CD4+ T cells, designated Th1 and Th2 cells, on the basis

of cytokine secretion patterns (36). Th1 cell differentiation is

induced by interleukin-2 and interferon-g in response to

proinflammatory signals (37, 38). Th2 cell differentiation is

initiated by IL-4, IL-5 and IL-13, which stimulate B cells to

produce abundant antibodies, which are involved in anti-

inflammatory functions (39). Studies have demonstrated that

Treg cells are beneficial after ICH and IS. Treg cell deficiency

increases brain damage and neurological deterioration, and

therapeutically increasing Treg cell numbers ameliorates ICH-

induced inflammatory injury (40, 41). Transplanting neural stem

cells reportedly increases Treg cell numbers and decreases gamma

delta T-cell numbers to protect against brain injury in an ICH rat

model (42).
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Emerging evidence has revealed that machine learning

algorithms have been developed to construct diagnostic models,

which have become increasingly promising tools for analyzing large

amounts of data, such as transcriptome sequences (43, 44).

Moreover, specific variation in expression profiles was analyzed

by combining GSEA and WGCNA (45) (46). In this study, we

identified 18 potential immune-related biomarkers of ICH via

GSEA and WGCNA of four groups. After four algorithms were

used to select features, 3 overlapping candidate genes (CKAP4,

BCL6 and TLR8) were subsequently validated via RT−PCR, and

eight machine learning classification algorithms were used to

determine their diagnostic value. The AUCs of this panel were

0.93, 0.95 and 0.82 for discriminating ICH patients from HTN

controls, CTRLs and IS patients, respectively. CKAP4 is secreted

into the serum by tumors and is expected to be a novel serological

marker for the diagnosis of various cancers (47). The activation of

PI3K–AKT signaling downstream of CKAP4 contributes to
TABLE 4 Correlation between three RNA levels and baseline characteristic in ICH patients.

Parameters
TLR8 CKAP4 BCL6

Coefficient P-value Coefficient P-value Coefficient P-value

Age, y -0.08 0.344 -0.02 0.762 0.04 0.634

Sex (men) -0.19* 0.015 -0.20* 0.013 -0.08 0.290

BMI, kg/m2 0.02 0.848 -0.11 0.152 0.03 0.679

SBP, mmHg 0.12 0.129 0.12 0.123 0.19* 0.016

DBP, mmHg 0.15 0.060 0.13 0.112 0.17* 0.033

WBC, 109/L 0.44*** <0.001 0.34*** <0.001 0.48*** <0.001

RBC, 1012/L -0.14 0.089 -0.15 0.059 -0.21** 0.008

Hb, g/L -0.13 0.116 -0.13 0.100 -0.24** 0.003

PLT, 109/L -0.10 0.208 -0.16* 0.045 -0.06 0.447

HDL-C, mmol/L -0.25** 0.001 -0.19* 0.015 -0.13 0.094

LDL-C, mmol/L -0.30*** <0.001 -0.31*** <0.001 -0.17* 0.035

TC, mmol/L -0.40*** <0.001 -0.37*** <0.001 -0.24*** <0.001

TG, mmol/L -0.19* 0.016 -0.23** 0.004 -0.18* 0.024

Glucose, mmol/L 0.19* 0.018 0.17* 0.035 0.25** 0.001

UA, mmol/L -0.18* 0.023 -0.20* 0.012 -0.31*** <0.001

TBIL, mmol/L 0.09 0.244 0.07 0.378 -0.04 0.664

DBIL, mmol/L 0.31*** <0.001 0.26*** 0.001 0.12 0.131

BUN, mmol/L 0.08 0.296 0.04 0.660 0.06 0.492

ApoA, g/L -0.31*** <0.001 -0.24** 0.002 -0.20* 0.014

ApoB, g/L -0.25** 0.002 -0.25** 0.002 -0.06 0.464

Smoking 0.01 0.938 0.06 0.470 0.00 0.980

Drinking 0.13 0.102 0.09 0.242 0.03 0.707
ICH, Intracerebral hemorrhage; BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TC, Total cholesterol; TG, Triacylglycerol; HDL-C, High-density lipoprotein
cholesterol; LDL-C, Low-density lipoprotein cholesterol; GLU, Glucose; UA, Uric acid; TBIL, Total bilirubin; BUN, Blood urea nitrogen; WBC, White blood cell; RBC, Red blood cell; Hb,
hemoglobin; DBIL, direct bilirubin; ApoA, apolipoprotein A; ApoB, apolipoprotein B; PLT, platelet. *P < 0.05; **P<0.01; ***P<0.001.
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FIGURE 8

External and experimental validation. Comparison of CKAP4 (A), BCL6 (B) and TLR8 (C) expression between ICH patients and CTRLs in an
independent cohort (n=20 per group). (D, E) Western blot analysis of the expression levels of CKAP4, BCL6 and TLR8 in ICH patients and CTRLs in
peripheral blood mononuclear cells (n=5 per group). (F) Representative images of HE staining in the ICH mice brain tissue and control groups. Scale
bars, 100 µm. (G, H) Representative images of brain sections showing CKAP4, BCL6 and TLR8 staining in ICH mice and the control group; DAPI is
shown in blue; BCL6 is shown in red; CKAP4 and TLR8 are shown in green. Scale bars, 100 µm. (I, J) The expression levels of M1 (TNF-a, iNOS, and
CXCL10) and M2 (Arginase 1 and CD206) marker genes in RAW264.7 cells after stimulation with LPS (100 ng/ml), INF-g (20 ng/ml) or IL4 (20 ng/ml)
for 24 hours (n=3 per group). (K−M) The relative mRNA expression levels of CKAP4 (K), BCL6 (L) and TLR8 (M) in M1 and M2 macrophages (n=3-6
per group). (N-O) Western blot analysis of the expression levels of CKAP4, BCL6 and TLR8 in M1 and M2 macrophages. (P, Q) Relative CKAP4, BCL6
and TLR8 protein expression levels in M1 and M2 macrophages (n=3 per group). The data are presented as the means ± SDs. *p<0.05; **p<0.01,
***p<0.001. ns, no significance. Statistical significance was assessed using 2-tailed Student’s t test (A−E, H-J, P−Q) or one-way ANOVA (K−M).
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immune suppression in macrophages (48). BCL6 modulates the

immune response and inflammation by regulating macrophage

polarization and plays a critical role in autoimmune

encephalomyelitis (49). Toll-like receptor 8 (TLR8) is expressed

in different immune cell subtypes and can recognize single-stranded

RNA and initiate early inflammatory responses (50). However, the

roles of these three genes in ICH patients have not been reported.

Our study is the first to show that CKAP4, BCL6 and TLR8 are

immune-related biomarkers that differ between ICH patients and IS

patients or controls and have promising diagnostic value in patients

with ICH. We further found that CKAP4 and TLR8 were

downregulated in M1 macrophages and upregulated in M2

macrophages, whereas BCL6 expression was upregulated in M1

macrophages but not in M2 macrophages, indicating that BCL6

may promote M1 macrophage polarization to aggravate

neuroinflammation, whereas CKAP4 and TLR8 may promote M2

macrophage polarization to alleviate neuroinflammation after ICH,

which may be potential therapeutic targets for ICH.

There are some limitations of our study. First, we focused on one

timepoint after ICH, and multiple time points for multilayer distribution

analysis should be used to control for confounding factors. A larger

multicenter study with more individuals should be conducted for

external validation. Second, to ensure the accuracy of the identified

RNA panel in guiding clinical treatment, single cells need to be isolated

and analyzed via single-cell RNA sequencing, and the functions and

mechanism of the anti-inflammatory effects of CKAP4 and TLR8, as well

as the proinflammatory effects of BCL6 in ICH patients, need to be

further explored in future studies. Third, the eight machine learning

classifiers were applied to small training datasets because of the limited

sample size; however, the best performing classifier was comprehensively

validated and then confirmed with a series of indices. Therefore, the

selected features are considered significant.
Conclusion

Our study comprehensively compares the transcriptome

profiles of ICH patients, IS patients, HTN controls and CTRLs to

aid in the early differentiation of patients with ICH from those with

IS. Eleven immune cell types with significantly altered abundance

after ICH were identified; these findings might provide useful

insight into the pathogenesis and therapeutic approaches for

patients with ICH. Furthermore, an RNA panel (CKAP4, BCL6,

and TLR8) was developed as a potential biomarker for ICH

detection. This study provides a new perspective on the

pathogenesis of ICH and a more effective diagnostic tool.
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