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Dynamics of peripheral blood
inflammatory index predict
tumor pathological response
and survival among patients
with locally advanced non-small
cell lung cancer who
underwent neoadjuvant
immunochemotherapy: a multi-
cohort retrospective study
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Background: Static tumor features before initiating anti-tumor treatment were

insufficient to distinguish responding from non-responding tumors under the

selective pressure of immuno-therapy. Herein we investigated the longitudinal

dynamics of peripheral blood inflammatory indexes (dPBI) and its value in

predicting major pathological response (MPR) in non-small cell lung

cancer (NSCLC).

Methods: A total of 147 patients with NSCLC who underwent neoadjuvant

immunochemotherapy were retrospectively reviewed as training cohort, and

26 NSCLC patients from a phase II trial were included as validation cohort.

Peripheral blood inflammatory indexes were collected at baseline and as

posttreatment status; their dynamics were calculated as their posttreatment

values minus their baseline level. Least absolute shrinkage and selection operator

algorithm was utilized to screen out predictors for MPR, and a MPR score was

integrated. We constructed a model incorporating this MPR score and clinical

predictors for predicting MPR and evaluated its predictive capacity via the area
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under the curve (AUC) of the receiver operating characteristic and calibration

curves. Furthermore, we sought to interpret this MPR score in the context of

micro-RNA transcriptomic analysis in plasma exosomes for 12 paired samples

(baseline and posttreatment) obtained from the training cohort.

Results: Longitudinal dynamics of monocyte–lymphocyte ratio, platelet-to-

lymphocyte ratio, platelet-to-albumin ratio, and prognostic nutritional index

were screened out as significant indicators for MPR and a MPR score was

integrated, which was further identified as an independent predictor of MPR.

Then, we constructed a predictive model incorporating MPR score, histology,

and differentiated degree, which discriminated MPR and non-MPR patients well

in both the training and validation cohorts with an AUC value of 0.803 and 0.817,

respectively. Furthermore, micro-RNA transcriptomic analysis revealed the

association between our MPR score and immune regulation pathways. A

significantly better event-free survival was seen in subpopulations with a high

MPR score.

Conclusion: Our findings suggested that dPBI reflected responses to

neoadjuvant immuno-chemotherapy for NSCLC. The MPR score, a non-

invasive biomarker integrating their dynamics, captured the miRNA

transcriptomic pattern in the tumor microenvironment and distinguished MPR

from non-MPR for neoadjuvant immunochemotherapy, which could support the

clinical decisions on the utilization of immune checkpoint inhibitor-based

treatments in NSCLC patients.
KEYWORDS

non-small cell lung cancer, neoadjuvant immunotherapy, tumor biomarkers,
longitudinal dynamics, transcriptomic analysis
1 Introduction

Immune checkpoint inhibitors (ICIs) targeting the interaction

of programmed cell death protein-1 (PD-1) with its ligand PD-L1 as

a single agent or plus other anti-tumor therapies have dramatically

revolutionized the management of non-small cell lung cancer

(NSCLC) and significantly improved patients’ clinical outcomes

(1). Therefore, ICIs are moving forward to the neoadjuvant setting

(2–4) and have been approved by the US Food and Drug

Administration as a neoadjuvant treatment for patients with

locally advanced NSCLC (5). While nearly half of NSCLC

patients failed to respond to ICI-based neoadjuvant therapy, a

proportion of them even undergo hyper-progress. Moreover,

immune-related toxicity might hinder subsequent surgery and be

even fatal (6). Hence, precise and reliable approaches to predict

therapeutic efficacy and identify ideal responders to ICI-based

neoadjuvant treatment are of great importance.

Current predominantly utilized biomarkers in clinic and trials

design are PD-L1 expression and tumor mutation burden (TMB),

although considerable efforts have been made to develop them as

companion biomarkers. Most NSCLC patients with high PD-L1
02
expression and TMB show no long-term benefits from ICIs, while

some patients with low PD-L1 and TMB tumors are responders (7,

8). Both PD-L1 and TMB heavily depend on tissues and are subject

to technical challenges and clinical specimens. Dynamic reflection

of responses to neoadjuvant immunochemotherapy is difficult to be

reflected. In addition, accurate estimates of PD-L1 and TMB might

be impacted by tumor heterogeneity and purity, making them

insufficient to accurately predict outcomes to ICIs (9, 10). Latest

research demonstrated that genetic phenotype rather than mutation

status was crucial for responders’ selection (11). Other potential

predictors, such as tumor-infiltrating lymphocytes, microbiome,

multi-omics, and so on (12), are limited by high cost, time-

consuming for operation, and required tissue specimens. Thus,

exploiting economic and reliable biomarkers to identify NSCLC

patients responding to neoadjuvant immunochemotherapy is

urgently required and meaningful.

In recent years, increasing focus on peripheral blood

inflammation indexes, such as hemoglobin, lactate dehydrogenase,

neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio

(PLR), monocyte–lymphocyte ratio (MLR), and platelet-to-albumin

ratio (PAR), which represent systemic immune-inflammatory status
frontiersin.org
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and tumor burden, has been made to predict the therapeutic efficacy

of NSCLC patients. Their lower baseline level or post-treatment

reduction was widely considered to be associated with the higher

anti-tumor response rate and better long-term outcomes in patients

(6, 13–16). However, most prior studies were either based on

monotherapy or just paid attention to the pretreatment baseline

level without clear evidence of their dynamics during

immunotherapy. Importantly, specific inflammation alterations

could shape the tumor microenvironment (TME), and response to

anti-tumor immune is orchestrated by immune-related pathways.

The complex crosstalk between tumor and immune cells during ICI-

based treatment highlights the need to develop integrated models to

interpret immunotherapy responses and predict clinical outcomes,

while static single feature analyses are insufficient to capture the

dynamic nature and plasticity of the tumor–immune system interplay

during immune checkpoint blockade (14, 17). Hence, tracking the

longitudinal dynamics of peripheral blood inflammatory indexes

(dPBI) during anti-tumor immune treatment gradually increased

the attention and interest of researchers.

Herein we conducted an integrative analysis of dPBI during

neoadjuvant immuno-chemotherapy to predict the therapeutic

responses for NSCLC patients with the help of the incorporated

multi-retrospective cohorts. Ultimately, we modeled their dynamics

using a score and linked this score with therapeutic responses at the

cellular level (evaluated by major pathological response, MPR) and

the molecular level [assessed bymicro-RNA (miRNA) transcriptomic

analysis of plasma exosomes].
2 Materials and methods

2.1 Study design and patient population

This is a multi-cohort retrospective study. For the training cohort,

we retrospectively reviewed the medical records of 193 NSCLC patients

who underwent neoadjuvant ICI-containing regimens and had

completed resection between October 2019 and April 2023 at our

center. After rigorous screening, 147 patients were included in the

study (Figure 1). The key inclusion criteria were as follows: (1) above 18

years old, (2) pathologically confirmed as NSCLC, (3) clinically staged

IIA–IIIB (cT1–4N0–3) according to the eighth edition of the American

Joint Committee on Cancer stage system, (4) administration of at least

two cycles of neoadjuvant immunotherapy, (5) resection specimens

subjected to pathological assessment after neoadjuvant

immunochemotherapy, and (6) complete follow-up and

clinicopathological information. Patients meeting the following

exclusion criteria were ineligible: (1) receiving neoadjuvant

immunomonotherapy, (2) with epidermal growth factor receptor

(EGFR) gene mutation and anaplastic lymphoma kinase (ALK) gene

rearrangement, (3) lacking peripheral blood laboratory data within 1

week before neoadjuvant immunochemotherapy, (4) a history of

malignancies at other sites, and (5) suffering from active acute

infection or chronic infection or steroid treatments within 1 month

before the neoadjuvant immunochemotherapy. As for the validation

cohort, patients with NSCLC from our previously published

prospective, phase II study (NCT04304248) were analyzed (18).
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This study was performed following the recommendations of

the Declaration of Helsinki, and its protocol was reviewed and

approved by the ethics committee (no. B2022–445-01). The

requirement for written informed consent from patients was

waived owing to its retrospective nature.
2.2 Definition of peripheral blood
inflammatory indexes and data collection

Peripheral blood values were manually retrieved from the medical

records at baseline (within 1 week before the first neoadjuvant

treatment) and posttreatment (within 1 week before resection).

Specifically, we collected the counts of neutrophils (109/L, N),

monocytes (109/L, M), platelets (109/L, P), lymphocytes (109/L, L),

and serum albumin concentrations (105/L, A). The specific peripheral

blood inflammatory indexes were calculated as follows: NLR = N/L

(14), MLR = M/L (19), PLR = P/L (20), platelet–albumin ratio

(PAR) = P/A (21), prognostic nutritional index (PNI) = A+5*L (22),

systemic immune inflammation index (SII) = P*NLR (23),

systemic inflammation response index (SIRI) = N*MLR (24), and

PIV = N*M*P/L (13). Subsequently, the dynamic changes of these

peripheral blood inflammatory indexes, which were named as dNLR,

dMLR, dPLR, dPAR, dPNI, dSII, dSIRI, and dPIV, were defined as

peripheral blood inflammatory indexes at the posttreatment point

minus the corresponding value at baseline.

In addition, we collected data on clinicopathological factors of

all patients included, including gender, age, body mass index (BMI)

(obtained within 1 week before the first neoadjuvant treatment),

smoking history, histological type, differentiation degree, cT stage,

cN stage, and pathological response from the medical records.
2.3 Neoadjuvant therapy and
pathological assessment

Neoadjuvant immunochemotherapy is administered every 3

weeks, and the ICI agent included PD-1 and PD-L1 inhibitors.

Surgery is performed 4 to 6 weeks after the end of the last cycle of

neoadjuvant immunochemotherapy.

Based on the multidisciplinary recommendations from the

International Association for Lung Cancer Research (25) and

published studies, MPR is defined as the presence of no more

than 10% residual cancer cells within the primary tumor bed, which

is the same as the Checkmate 159 and NADIM study (2, 26).
2.4 Follow-up of patients and
study endpoints

We regularly monitored the patients’ medical conditions every 3

months through a telephone follow-up or by outpatient electronic

records, including physical examinations, hematological and

laboratory examinations, and chest and abdominal computed

tomography (CT). Positron emission tomography CT, brain

magnetic resonance imaging (MRI), and tracheoscopy were
frontiersin.org
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performed if necessary. In cases where the patients had passed away,

the cause and date of death were also recorded during the follow-

up process.

The main endpoint of this study is MPR. The secondary study

endpoint is event-free survival (EFS), defined as the time interval

from the date of initiation of neoadjuvant immunotherapy to the

date of death or tumor recurrence.
2.5 Identifying a MPR signature based
on dPBI

In the training cohort, we utilized the “glmnet” R package to

perform least absolute shrinkage and selection operator (LASSO)

algorithm to select the dPBI for predicting MPR and calculating

their corresponding coefficients. On the basis of the results of the

above-mentioned LASSO algorithm, a MPR signature was

constructed, and its predictive score (MPR score) was summed

up using the dynamic change of specific peripheral blood indexes

and their corresponding regression coefficients. The specific

formula was as follows: MPR score = sum (selected dPBI ×

corresponding coefficients).
2.6 Purification and identification of
plasma exosome and exosomal
miRNA sequencing

For miRNA sequencing, we collected plasma (within 1 week

before the first neoadjuvant treatment) and posttreatment (within 1

week before resection) from 12 patients with NSCLC in the training

cohort. Total exosome was extracted from 200 mL of plasma via the
Frontiers in Immunology 04
GS Reagent DF Kit (GENESEED, Guangzhou) following the

manufacturer’s instructions. Then, we utilized the transmission

electron microscope (HT-7700, Hitachi) to identify the purified

exosomes, which were subsequently suspended in 100 mL of

phosphate-buffered saline (PBS) and dropped on copper-coated

grids. Before photographing by electron microscopy, the copper-

coated grids were dried at room temperature after staining with 2%

uranyl acetate. Approximately 100 ng of total RNA was used to

prepare a small RNA library according to the protocol of TruSeq

Small RNA Sample Prep Kits (Illumina, San Diego, CA, USA).

Finally, we performed single-end sequencing (1 × 50 bp) on an

Illumina Hiseq2500 at the LC-BIO (Hangzhou, China) following

the vendor’s recommended protocol.
2.7 Processing of sequencing data and
gene set enrichment analysis

Processing of raw data and miRNA mapping were achieved

using the ACGT101-miR (LC Sciences, Houston, TX, USA) and

miRBase 22.0 (http://www.mirbase.org/), and miRNA expression

data were normalized for transcripts per kilobase of exon model per

million mapped reads (TPM). The details of the above-mentioned

procedure are provided in the Supplementary Methods.

We carried out the differential expression (DE) analysis via

“limma” R package (27) to identify the DE miRNAs at baseline

and after neoadjuvant immunochemotherapy. A miRNA with log2 |

fold change | > 1 and P-value <0.05 were defined as DE miRNA,

whose dynamic change was calculated as TPM at posttreatment –

TPM at baseline. Then, Pearson correlation analysis was performed

to recognize the correlation between the dynamic change of DE

miRNA and MPR signature. Correlation coefficient (R2) > 0.5 and P-
FIGURE 1

Study enrollment, source and distribution of cases, and identification of predictive indexes for major pathological response.
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value < 0.05 were considered as significantly correlated. We used two

computational target prediction algorithms (TargetScan 5.0 and

miRanda 3.3a) (28, 29) to predict genes targeted by miRNAs

correlated with MPR signature. Gene with miranda Energy <-10 in

miRanda algorithm and context score percentile >50 were identified

as targeted genes of miRNAs. Subsequently, we executed the Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of

targeted genes through the “clusterProfiler” R package (30), in which

the pathway with P-value <0.05 was seen as apparent enrichment.
2.8 Statistical analysis

Continuous variables were shown as median values with

interquartile ranges; for continuous variables with normal

distribution, we used Student’s t-test to compare, and as for those

not conforming to normal distribution, Mann–Whitney U-test was

used to compare. Categorical variables were listed as count

(percentage) and compared via the chi-squared test or Fisher’s

exact test. The survival curves for EFS were estimated using the

Kaplan–Meier method and compared through the log-rank test.

The univariate and multivariate logistic regression model was

performed to identify the predictive value of MPR score and other

independent predictors of MPR, based on which a predictive model

for MPR was established and graphically presented as a nomogram

through the “rms” R package. We further internally evaluated the

predictive performance of this nomogram by calculating the area

under the curve (AUC) of the receiver operating characteristic

(ROC) and calibration curves. We performed 1,000 times bootstrap

resampling to validate its predictive capability. Furthermore, we

also externally evaluated the predictive performance of this

nomogram via the AUC of ROC and calibration curves in the

validation cohort. Ultimately, the clinical value of our nomogram

was assessed by decision curve analysis (DCA), which could assess

the net benefit of patients from this nomogram. The maximally

selected log-rank test was used via the “maxstat” R package to

determine the cutoff value of MPR score for converting the MPR

score into a binary categorical variable.
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Statistical analyses in this study were performed using R software

(version 4.2.1, Vanderbilt University, Nashville, TN, USA) and SPSS

software (version 22.0, SPSS Inc., Chicago, IL, USA). A two-tailed P-

value <0.05 was considered statistically significant.
3 Results

3.1 Workflow of this study

Herein a total of 147 patients were eligible for the training

cohort. As for the validation cohort, 26 patients without EGFR

mutation and ALK rearrangement from our previously published

prospective, phase II study (NCT04304248) were enrolled (18). All

patients enrolled here underwent ICIs plus chemotherapy as

inductive treatment and then received surgery. Details of their

neoadjuvant regimens are listed in Supplementary Table S1. The

flow diagram of this work is shown in Figure 2.
3.2 Characteristics of the patients

The median age of the training cohort was 61 years old, while it

was 59 years old in the validation cohort. Lung squamous carcinoma

(LUSC) was the major histological type, accounting for 66.0% of the

training cohort and 73.1% of the validation cohort. Male patients were

significantly more than female patients in both the training cohort

(89.1% versus 10.9%) and the validation cohort (84.6% versus 15.6%).

Before neoadjuvant therapy, at least half of the patients were diagnosed

as cN2 stage in both the training cohort (50.3%) and the validation

cohort (50.0%). After neoadjuvant therapy, 101 (68.7%) and 20 (76.9%)

patients in the training and validation cohorts achieved MPR,

respectively. Moreover, 58 (39.5%) and 15 (57.7%) patients in the

training and validation cohorts achieved pCR, respectively. Except for

differentiation degree, the training cohort and the validation cohort

were matched well. Compared with the validation cohort, more

patients were moderately differentiated in the training cohort (35.4%

versus 11.5%, P = 0.010) (Table 1).
FIGURE 2

Flowchart for a comprehensive analysis of the dynamics of peripheral blood inflammatory index (dPBI) in patients with locally advanced non-small
cell lung cancer who underwent neoadjuvant immunochemotherapy.
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3.3 Identifying a MPR signature based
on dPBI

Using NSCLC patients in the training cohort, we investigated the

value of dPBI in predicting MPR for NSCLC patients receiving

neoadjuvant immunochemotherapy (Figure 1). We initially

performed the LASSO regression algorithm to integrate the

longitudinal dynamics of above eight peripheral blood inflammatory

indexes at the optimal value of -4.28 of log(e)l with minimal bias, four

dPBI without zero coefficients, i.e., dMLR, dPLR, dPAR, and dPNI,

were screened out as indicators associated with MPR to further

construct the MPR signature, which was named as the MPR score

(Supplementary Figures 1A, B). The specific formula of MPR score was

as follows: MPR score = dMLR * -3.70E-01 + dPLR * -8.81E-04 +

dPAR * -7.65E-02 + dPNI * -6.61E-03.
3.4 Predictive value of the MPR score
for MPR

Subsequently, we integrated the MPR score as well as clinical

characteristics into the univariate and multivariate logistics analysis to

further identify the predictive factors of MPR. As shown in Table 2, the

univariate logistic analysis demonstrated that gender (P = 0.028),

smoking history (P = 0.028), histology (LUSC versus LUAD, P =

0.001; LUSC versus others, P = 0.001), differentiation degree (P =

0.001), and the MPR score (P = 0.016) were statistically significant for

MPR. Before multivariate logistics analysis, we tested the

multicollinearity through variance inflation factor (VIF) and

tolerance of MPR score, gender, histological type, smoking history,

and differentiation degree. The VIF of score, gender, histological type,

smoking history, and differentiation degree is 1.044, 1.606, 1.254, 1.762,

and 1.050, respectively, which were less than 5. The tolerance of score,

gender, histological type, smoking history, and differentiation degree is

0.958, 0.623, 0.798, 0.567, and 0.952, respectively, which were larger

than 0.1.The multivariate logistics analysis further revealed that the
TABLE 1 Patients’ characteristics.

Characteristics Training
cohort
N = 147

Validation
cohort
N = 26

P-
value

Gender 0.509

Male 131 (89.1) 22 (84.6)

Female 16 (10.9) 4 (15.4)

Age (year),
median (IQR)

61.0 (56.0–66.0) 59.0 (55.8–66.3) 0.399

BMI 22.6 (20.5–25.2) 22.8 (21.4–25.0) 0.678

Smoking history 0.850

No 37 (25.2) 7 (26.9)

Yes or ever 110 (74.8) 43 (73.1)

cT stagea 0.156

T1 9 (6.1) 0 (0)

T2 59 (40.1) 13 (50.0)

T3 46 (31.3) 10 (38.5)

T4 33 (22.4) 3 (11.5)

cN stagea 0.563

N0 17 (11.6) 1 (3.8)

N1 30 (20.4) 7 (26.9)

N2 74 (50.3) 13 (50.0)

N3 26 (17.7) 5 (19.2)

Differentiation degree 0.010

Moderate 52 (35.4) 3 (11.5)

Poor 89 (60.5) 19 (73.1)

Undifferentiated 6 (4.1) 4 (15.4)

Histological type 0.565

LUSC 97 (66.0) 19 (73.1)

LUAD 28 (19.0) 5 (19.2)

Othersb 22 (15.0) 2 (7.7)

dNLR, median (IQR) -0.22 (-1.56–0.28) -0.54 (-1.69–0.12) 0.481

dMLR, median (IQR) 0.24 (-0.05–0.92) 0.12 (-0.08–0.76) 0.253

dPLR, median (IQR) -15.03
(-57.85–27.85)

-36.32 (-64.59–6.35) 0.088

dPAR, median (IQR) -1.35 (-2.96–0.27) -2.26 (-4.14–1.19) 0.123

dSII, median (IQR) -185.81
(-530.95–46.37)

-344.67
(-633.26–236.87)

0.196

dSIRI, median (IQR) -0.17 (-0.99–0.22) -0.47 (-1.04–0.03) 0.279

dPNI, median (IQR) -1.35 (-4.25–3.00) -0.62 (-2.44–3.51) 0.930

dPIV, median (IQR) -106.83
(-393.47–23.93)

-144.54
(-333.89–45.24)

0.221

MPR 0.491

(Continued)
TABLE 1 Continued

Characteristics Training
cohort
N = 147

Validation
cohort
N = 26

P-
value

Yes 101 (68.7) 20 (76.9)

No 46 (31.3) 6 (23.1)

pCR 0.09

Yes 58 (39.5) 15 (57.7)

No 89 (60.5) 11 (42.3)
fron
IQR, interquartile range; LUSC, lung squamous carcinoma; LUAD, lung adenocarcinoma;
LELC, lung lymphoepithelioma-like carcinoma; dNLR, dynamic change of neutrophil–
lymphocyte ratio; dMLR, dynamic change of monocyte–lymphocyte ratio; dPLR, dynamic
change of platelet–lymphocyte ratio; dPAR, dynamic change of platelet–albumin ratio; dSII,
dynamic change of systemic immune inflammation index; dSIRI, dynamic change of system
inflammation response index; dPNI, dynamic change of prognostic nutritional index; dPIV,
dynamic change of pan-immune-inflammatory value; MPR, major pathological response.
aDiagnosed based on the AJCC criteria (8th edition).
bIncluding LELC, adenosquamous carcinoma, large cell neuroendocrine carcinoma.
Bold values mean statistical significance.
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MPR score (P = 0.028, OR 4.756; 95% CI 1.183–19.116), differentiated

degree (P < 0.001, OR 4.432; 95%CI 2.015–9.750), and histological type

(LUSC versus LUAD, P < 0.001, OR 0.139; 95% CI 0.046–0.415; LUSC

versus others, P = 0.007, OR 0.182; 95% CI 0.053–0.621) were

independent predictors of MPR for NSCLC patients who underwent

neoadjuvant immunochemotherapy.
3.5 Development of the predictive
nomogram for MPR

Based on the aforementioned three independent predictors

from the above-mentioned multivariate logistics analysis, i.e., the

MPR score, differentiated degree, and histology, a predictive model

to predict MPR derived from neoadjuvant immunochemotherapy

was developed and visually presented as a nomogram (Figure 3A).

Through this nomogram, the corresponding score of these three
Frontiers in Immunology 07
factors were determined by their projection onto the point scale. We

subsequently summed up their total scores and projected it to the

total point scale and then projected downward onto the

bottommost line to predict the probability of MPR of NSCLC

patients treated with neoadjuvant immunochemotherapy. It was

evident that higher total scores in patients were associated with an

increased probability of MPR. For easy use of our nomogram, we

provided the point for each factor and the probability of MPR

associated with the different total points (Supplementary Table S2).
3.6 Assessment of predictive performance
of the nomogram for MPR

We draw ROC curves and calibration curves of this nomogram

in the training cohort and the validation cohort to evaluate its

predictive performance. In the training cohort, the AUC value of

ROC was 0.803, which represented a high predictive efficacy in

predicting MPR (Figure 3B). The calibration curve displayed a high

agreement between the virtual (Y-axis) and predicted (X-axis)

probabilities of MPR (Figure 3C), which indicated a satisfactory

predictive performance in internal validation. In addition, we

further performed internal bootstrap validation with 1,000

repetitions. The main AUC after 1,000 times of bootstrapping

was 0.752 (IQR 0.682–0.795). The histogram in Figure 3D

showed the distribution of AUC for 1,000 times of bootstrapping,

and more than half of the repetitions of AUC were closed to 0.8.

Similarly, the predictive performance of this nomogram was

validated in the validation cohort. This nomogram also showed a

high predictive performance in the validation cohort with an AUC of

0.817 (Figure 3E). The calibration curve also displayed a relatively good

agreement between the virtual and predicted probabilities of the MPR

(Figure 3F). Moreover, DCA plots demonstrated that a net benefit for

NSCLC patients could be obtained when patients utilize this

nomogram in neoadjuvant immunochemotherapy (Supplementary

Figures S2A, B).
3.7 Prognostic value of MPR and MPR
score for EFS

The median follow-up time of all 173 patients was 26.7 months,

and 43 recurrence or death events were observed. At first, we attempted

to explore the association between MPR and EFS outcomes. As shown

in Figure 4A, significantly better EFS of NSCLC patients with MPR

after neoadjuvant immunochemotherapy than those without MPR was

seen in the Kaplan–Meier curves (log-rank test P = 0.002). Then,

maximally selected log-rank statistics determined 0.23 as the cutoff

value of MPR score, and 56 of 173 patients had a high MPR score

(Supplementary Figure S3). As shown in Figure 4B, an apparently

longer EFS time was observed in patients with high MPR score than

those with low MPR score (log-rank test P = 0.042). We also explored

the prognostic value of gender, BMI, smoking history, histological type,

differentiated degree, and cT and cN stage. Only pCR showed statistical

significance (P = 0.001) in univariable Cox regression analysis

(Supplementary Figure S4).
TABLE 2 Univariate and multivariate logistics analysis of MPR for the
training cohort.

Factors Univariate analysis Multivariate
analysis

OR
(95% CI)

P-
value

HR
(95% CI)

P-
value

Gender 0.306
(0.16–0.882)

0.028 0.713
(0.166–3.065)

0.650

Age (year) 1.030
(0.986–1.077)

0.186

BMI 0.954
(0.857–1.061)

0.383

Smoking history 2.373
(1.096–5.144)

0.028 2.313
(0.696–7.683)

0.171

cT stagea 1.009
(0.680–1.498)

0.963

cN stagea 1.180
(0.797–1.749)

0.408

Histology

LUSC Ref

LUAD 0.211
(0.086–0.517)

0.001 0.139
(0.046–0.415)

<0.001

Othersb 0.203
(0.076–0.540)

0.001 0.182
(0.053–0.621)

0.007

Differentiation degree

Moderate Ref Ref

Poor
or
undifferentiated

3.172
(1.599–6.296)

0.001 4.432
(2.015–9.750)

<0.001

Score 4.234
(1.301–13.777)

0.016 4.756
(1.183–19.116)

0.028
LUSC, lung squamous carcinoma; LUAD, lung adenocarcinoma; LELC, lung
lymphoepithelioma-like carcinoma.
aDiagnosed based on the AJCC criteria (8th edition).
bIncluding LELC, adenosquamous carcinoma, large cell neuroendocrine carcinoma.
Bold values mean statistical significance.
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3.8 MPR signature and dynamic changes of
exosomal miRNA profile

As inflammatory status can suppress innate and adaptive

immune responses (31), we next sought to explore whether this

peripheral MPR signature was related to distinct transcriptional

signatures in the context of neoadjuvant immunochemotherapy.

We focused on paired analyses of baseline and post-ICI plasma of

12 patients with NSCLC in the training cohort, from which we
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firstly purified the exosomes through the GS Reagent DF Kit, and by

means of transmission electron microscopy, we observed the small

double-leaflet membrane particles (Supplementary Figure S5).

Then, we performed miRNA sequencing from plasma exosomes,

and a differential analysis found 549 DE miRNA between baseline

and post-ICI samples. Compared with baseline samples, 293

miRNAs were upregulated, and 256 miRNAs were downregulated

in post-ICI samples (Supplementary Table S3). After excluding

miRNAs with low expression, we further calculated the longitudinal
A B

D E F

C

FIGURE 3

Development and validation of the nomogram. (A) Nomogram for predicting MPR for NSCLC patients after neoadjuvant immunotherapy, according
to which each variable could be assigned a score on the point scale. By adding up the total points, we could determine the estimated probability of
MPR. (B) Receiver operating characteristic curve of the nomogram in training cohort. (C) Calibration plots for the nomogram in the training cohort.
Predicted and actual MPR probability were respectively plotted on the X-axis and the Y-axis. The 45° dashed lines through the coordinate origin
represent the excellent calibration models. (D) Distribution of AUC for 1,000 times bootstrapping. (E) Receiver operating characteristic curve for the
nomogram in the validation cohort. (F) Calibration plots for the nomogram in the validation cohort. The predicted and actual MPR probability were
respectively plotted on the X-axis and the Y-axis. The 45° dashed lines through the coordinate origin represent the excellent calibration models.
A B

FIGURE 4

Event-free survival for all patients. (A) Survival curves for patients with MPR and non-MPR. (B) Survival curves for patients with high and low MPR
score, respectively.
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dynamic change of the expression of DE miRNAs and performed

Pearson correlation analysis with the predictive score of our MPR

score. As shown in Table 3, five miRNAs were significantly related

to our MPR score, among which two miRNAs were negatively

associated with the MPR score and three miRNAs showed a positive

correlation with the MPR score. Subsequently, we predicted the

targeted genes of these five miRNAs and performed KEGG

enrichment analysis to explore the potential function of these

miRNAs. These analyses revealed enrichments in some immune

regulation and signal transduction pathways, specifically speaking,

miRNAs positively correlated with the MPR score showed

enrichments in platelet activation, PI3K-Akt signaling pathway,

chemokine signaling pathway, PD-L1 expression and PD-1

checkpoint pathway, leukocyte transendothelial migration, Th17

cell differentiation, and so on. Other two miRNAs negatively

correlated with the MPR score were enriched in transcriptional

misregulation in cancer, p53 signaling pathway, mTOR signaling

pathway, B cell receptor signaling pathway, T cell receptor signaling

pathway, and so on (Figures 5A, B).
4 Discussion

Mechanically speaking, an intact host immunity status tends to

release or expose to tumor neoantigens to activate tumor-specific T

cells; thus, preoperative immunotherapy has much advantage to

eradicate tumor cells and micrometastases (32). ICI-based

neoadjuvant therapy has been recommended as a prior antitumor

strategy for patients with locally advanced NSCLC in consideration of

its remarkable tumor-killing effects and sustaining clinical benefits (2–

4). Due to the heterogeneous response rate to neoadjuvant

immunochemotherapy in NSCLC patients, an accurate and

reproducible prediction of antitumor immune responses among

patients with NSCLC who underwent ICI-based neoadjuvant

regimens is much essential to optimize patient benefits, improve

clinical outcomes, and reduce social medical cost. In this

retrospective study, we monitored the longitudinal dynamic changes

in peripheral blood inflammatory indexes in NSCLC patients treated

with preoperative immunochemotherapy. Utilizing the LASSO

algorithm, we revealed four dPBI (dMLR, dPLR, dPAR, and dPNI)

to be associated with MPR and further developed a MPR score to

model their longitudinal dynamics. The MPR score was subsequently

identified as an independent predictor of MPR; a predictive model on

the basis of this MPR score was subsequently constructed and showed

good stratification performance on MPR prediction in NSCLC
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patients treated with neoadjuvant immunochemotherapy. Besides

that, miRNA transcriptomic analysis of plasma exosomes represents

a significant correlation between the MPR score and immune cell

regulations as well as immune-related pathways. Taken together, our

study suggested that dPBI might be an indirect reflection of antitumor

immune responses derived from neoadjuvant immunochemo-therapy

and, ultimately, favorable clinical outcomes.

The value of inflammation-nutrition-related biomarkers in

predicting the prognosis and immunotherapeutic efficacy in

patients with NSCLC has become a research hotspot in recent

years (13, 33–36). Diem et al. found that baseline NLR ≥5 was

independently correlated with the inferior overall survival (OS) of

nivolumab-treated patients with advanced NSCLC (33). Similarly,

Sun et al. reported that the high baseline NLR was an independent

predictor of poor pathological response and shorter disease-free

survival for resectable NSCLC patients receiving neoadjuvant

chemotherapy plus ICIs (34). Sekine et al. revealed that a rapid

decrease of the peripheral MLR was significantly associated with the

efficacy of nivolumab monotherapy in advanced NSCLC (35).

Advanced NSCLC patients with higher baseline PNI exhibited

better clinical outcomes from immunotherapy (36). On the one

hand, inflammation, as the recognized hallmark of tumors, reflects

the overall immune function of the body and is substantially

associated with anti-tumor immunity. Previous researches have

reported that the expression pattern of inflammation-related genes,

proteins, and cytokines was a vital part of the TME (37, 38). On the

other hand, the systemic inflammatory-nutrient status plays a vital

role in tumor progression and patients’ survival. Usually, cancer

patients tend to experience malnutrition due to vigorous metabolism

and abnormal proliferation of tumor cells, leading to loss of muscle,

fat, and body weight. Furthermore, malnutrition might damage the

immune system, causing an imbalance between immune-suppression

and tumor proliferation; hence, the body’s immune system fails to

eliminate tumor cells, and the possibility of cancer-related death

finally increases (39). Thus, considerable efforts on combining

peripheral inflammatory and nutrition-related indexes to predict

the prognosis and immunotherapeutic efficacy of NSCLC patients

have been conducted (6, 13–16).

Although the underlying causal effects of the above-mentioned

association are still unclear, several hypotheses can be proposed.

Circulating classical monocytes extravasate into tissues and further

differentiate into macrophages. Tumor-associated macrophages

(TAMs) contribute to tumor progression in diverse ways, including

promoting genetic instability, stimulating angiogenesis and

lymphangiogenesis, facilitating tumor cell extravasation, survival,

proliferation, and persistent growth, nurturing tumor stem cells,

promoting epithelial–mesenchymal transition, remodeling the

extracellular matrix, priming the premetastatic site, and supporting

metastasis. TAMs also induce immunosuppression through secreting

cytokines such as IL-10 and TGF-b to prevent tumor cells from being

attacked by natural killer and T cells during progression and after

recovery from chemotherapy or anti-tumor immune (40–42). Low

grade TAMs correlate with better prognosis and improve overall

survival (41). Platelets have been shown to actively contribute to the

process of tumor metastasis, and these bind to circulating tumor cells

(CTCs), forming a platelet shield around CTCs, which protect CTCs
TABLE 3 miRNA significantly correlated with MPR signature.

miRNA R2 P-value Relation

hsa-miR-5586–5p -0.66341 0.019 Negative

hsa-miR-3159 -0.66068 0.019 Negative

hsa-miR-6124-p5 0.681547 0.014 Positive

hsa-miR-501–5p 0.782831 0.002 Positive

hsa-miR-3614–5p 0.628972 0.028 Positive
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from shear stress by reducing the exerted force, avoid CTCs from

being recognized by the immune system to facilitate immune evasion,

and provide adhesive sites on the wall of blood vessels to promote

tumor cells to extravasate into tissues (43, 44). Depleted platelet has

been observed to be correlated with decrease in tumor growth (45). In

contrast, peripheral albumin level sensitively reflects the nutrition

status of the body; a low albumin causes a high level of malnutrition

and is related to poor clinical outcomes for lung cancer patients (46).

Lymphocytes, especially CD8+ T cells, play an important component

in anti-tumor immune response through inhibiting tumor cell

proliferation and migration and inducing cytotoxic deaths. CD8+ T

cells not only directly kill cancer cells via perforin and granzyme

pathways or the Fas/Fas ligand pathway but also indirectly destroy

tumors through secreting cytokines such as IFN-g and TNF-a (14, 47,

48). High peripheral blood lymphocytes indicate stronger

endogenous anti-tumor capacity in the body, and lymphocytopenia

is associated with poor survival in numerous settings as tumors might

induce lymphocyte apoptosis both within the TME and in peripheral

circulation as a means of avoiding immune recognition (49). In line

with this notion, we focused on the dPBI and identified a MPR

signature, named MPR score, based on these dynamics during

neoadjuvant immunochemotherapy. Furthermore, we revealed a

significant correlation between an increased MPR score during the

treatment, that is, reduction of MLR, PLR, PAR, and PNI, with a

higher possibility of MPR. Additionally, NSCLC patients with MPR

after ICI-based regimens of neoadjuvant treatment presented

significantly better clinical responses (EFS) than those without MPR.

Previous homogeneous research usually paid attention to the

value of pretreatment peripheral inflammatory biomarkers in

predicting the anti-tumor immune responses in NSCLC patients

(13), which neglected the dynamic nature and plasticity of the tumor–

immune system interplay of the immune checkpoint blockade and

was not very robust. Analyses integrated with tumor-intrinsic and

immune cell-focused features showed that nuanced characteristics of

the tumor genomic landscape together with proinflammatory

signatures in TME could better distinguish responding from non-

responding tumors (9, 50, 51)—for instance, the recruitment of

TAMs to tumors is mainly mediated by a range of tumor-derived

chemokines, including CCL2, VEGF, CCL5, and CSF1 (41). Ali HR
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et al. identified that immunotherapy distinctively remodeled the

tumor structure; non-responders were characterized by increasing

levels of CD15+ cells (a carbohydrate blood group antigen expressed

by neutrophils and monocytes), while key leukocytes, such as T cells,

increased dramatically on treatment and the dynamics of

macrophages and dendritic cells mirrored that of T cells (17). In

addition, a significant overlap between responders and non-

responders to ICIs exists for biomarkers tested just based on the

analysis of pretreatment tumor biopsies (52, 53). Wargo et al.

obtained longitudinal tumor biopsies of metastatic melanoma

patients treated with ICIs. Immune profiling analysis of immune

cell infiltrates in TME showed that there was no difference in any of

the measured markers between responders versus non-responders to

CTLA-4 blockade at the pretreatment time point, while an analysis of

early on-treatment tumor biopsies revealed a significantly higher

density of CD8+ T cells in responders than non-responders to CTLA-

4 blockade. Although further immune profiling analysis for patients

treated with anti-PD-1therapy had a modestly statistically significant

difference in the density of T cells subsets in the pretreatment baseline

samples of responders compared to non-responders, their values

were largely overlapping. In contrast, a profound and highly

statistically significant difference in the expression of markers for T

cell subsets and immunomodulatory molecules was shown in

responders versus non-responders to therapy in early on-treatment

tumor samples, with little to no overlap between groups (50).

Therefore, our study provided novel evidence that assessing

neoadjuvant immune-chemotherapy responses could be precisely

achieved through minoring the dPBI during the treatment, rather

than solely according to examination at baseline. Theoretically, ICIs

and chemotherapy can influence the proliferation, migration,

chemotaxis, and activation of peripheral blood mononuclear cell

(PBMC) to killing tumor cells, and we guess tumor cells counteract

the killing through a series of biological reaction such as secreting

exosomes containing characteristic substances, and this process can

show up in the dPBIs (54–57). Therefore, we performed exosomal

miRNA seq analysis to dissect the possible intrinsic relationship

between the MPR score and MPR. Furthermore, the exosomal

miRNA sequencing and DE analysis obtained at baseline and

posttreatment time points showed a significant Pearson correlation
A B

FIGURE 5

Scatter plot of KEGG enrichment analysis. (A) Pathways involved in immune regulation and signal transduction of three miRNAs which positively correlated
with MPR signature. (B) Pathways involved in immune regulation and signal transduction in two miRNAs which negatively correlated with MPR signature.
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among the certain miRNAs and our MPR score. The targeted genes

of the abovementioned miRNAs as well as their enriched pathways

dissected the possible intrinsic relationship between the MPR score

and MPR, that is, patients with a high MPR score might not have a

weakened anti-tumor immune, such as decreased platelet activation.

Similar to a previous study, we report that early on-treatment tumor

samples of patients treated with immunotherapy showed significant

DEGs in responders and upregulated DEGs related to processes such

as antigen presentation, T cell activation, and T cell homing, but there

were no significant differences in targeted gene expression profiling at

pre-treatment ICIs (50). Hence, our MPR score might represent

another strategy through which clinicians could best predict

responders to neoadjuvant immunochemotherapy.

Despite our MPR score integrating dPBI during neoadjuvant

immunochemotherapy and the considerable predictive efficiency of

this MPR score-based model, several limitations should be

acknowledged for this study. First, confounding factors or

uncaptured sources of bias should be noted due to the

retrospective nature of this investigation, and the relatively small

sample size of the validation cohort was limited. Although we

adopted an independently managed cohort (NCT04304248) to

evaluate the predictive capacity of the MPR model, larger-scale

studies in a prospective design and external validation are

warranted in the future. Second, although we dissected the

correlation between the MPR score and miRNA transcriptomic

analysis of plasma exosomes, we did not explore the intratumoral T

cell clonal dynamics in peripheral blood during this ICI-based

neoadjuvant treatment; hence, if this MPR score could be linked

with the expansions in peripheral effector lymphocytes are worthy

of consideration. However, our findings are strengthened by the

consistency with another similar study in NSCLC patients, which

demonstrated that peripheral inflammatory indexes captured the T

cell repertoire reshaping post-ICI. Third, though this study revealed

the prognostic value of MPR, pCR is the most important thing in

the treatment strategy. In the future, prospective exploration of

markers of pCR will be a more valuable work.
5 Conclusion

We comprehensively analyzed the dPBI and constructed the

MPR score for non-invasive prediction of neoadjuvant

immunochemotherapy responders for patients with NSCLC.

Furthermore, our analysis supported the notion that this MPR

score was associated with underlying transcriptome dynamics in

plasma exosomes in the quality of the antitumor immune response

in the TME, providing the potentially biological foundation to

dissect their association. Hence, for patients with NSCLC planned

for neoadjuvant immunochemotherapy, integrative predictive

models of response incorporating this non-invasive, readily

available biomarkers might help to identify patients who are less

likely to obtain clinical outcome benefits on ICI-based treatment,

allowing for rapid adaptive changes in therapeutic strategy.
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SUPPLEMENTARY FIGURE 1

Identification of predictor of major pathological response among dynamics of
peripheral blood inflammatory indexes (dPBI) in training cohort. (A) Selection
of the optimal candidate dPBI in the LASSO model. (B) LASSO coefficients of

dPBIs, each curve represents a dPBI.

SUPPLEMENTARY FIGURE 2

The decision curve analysis of the clinical value for the nomogram. (A) The
decision curve of training cohort; (B) The decision curve of validation cohort.

SUPPLEMENTARY FIGURE 3

Determination of cut-off value of MPR score by the maximally selected log-
rank statistics.

SUPPLEMENTARY FIGURE 4

The forest plot of univariable cox regression analysis of gender, BMI, smoking
history, histological type, differentiated degree, cT and cN stage.

SUPPLEMENTARY FIGURE 5

Representative electron microscope image of purified plasma-derived exosome.
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