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Introduction: Genetic predisposition to autoimmune encephalitis with

antibodies against N-methyl-D-aspartate receptor (NMDAR) is poorly

understood. Given the diversity of associated environmental factors (tumors,

infections), we hypothesized that human leukocyte antigen (HLA) and killer-cell

immunoglobulin-like receptors (KIR), two extremely polymorphic gene

complexes key to the immune system, might be relevant for the genetic

predisposition to anti-NMDAR encephalitis. Notably, KIR are chiefly expressed

by Natural Killer (NK) cells, recognize distinct HLA class I allotypes and play a

major role in anti-tumor and anti-infection responses.
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Methods: We conducted a Genome Wide Association Study (GWAS) with

subsequent control-matching using Principal Component Analysis (PCA) and

HLA imputation, in a multi-ethnic cohort of anti-NMDAR encephalitis (n=479);

KIR and HLA were further sequenced in a large subsample (n=323). PCA-

controlled logistic regression was then conducted for carrier frequencies (HLA

and KIR) and copy number variation (KIR). HLA-KIR interaction associations were

also modeled. Additionally, single cell sequencing was conducted in peripheral

blood mononuclear cells from 16 cases and 16 controls, NK cells were sorted

and phenotyped.

Results: Anti-NMDAR encephalitis showed a weak HLA association with

DRB1*01:01~DQA1*01:01~DQB1*05:01 (OR=1.57, 1.51, 1.45; respectively), and

DRB1*11:01 (OR=1.60); these effects were stronger in European descendants and

in patients without an underlying ovarian teratoma. More interestingly, we found

increased copy number variation of KIR2DL5B (OR=1.72), principally due to an

overrepresentation of KIR2DL5B*00201. Further, we identified two allele

associations in framework genes, KIR2DL4*00103 (25.4% vs. 12.5% in controls,

OR=1.98) and KIR3DL3*00302 (5.3% vs. 1.3%, OR=4.44). Notably, the ligands of

these KIR2DL4 and KIR3DL3, respectively, HLA-G and HHLA2, are known to act

as immune checkpoint with immunosuppressive functions. However, we did not

find differences in specific KIR-HLA ligand interactions or HLA-G polymorphisms

between cases and controls. Similarly, gene expression of CD56dim or CD56bright

NK cells did not differ between cases and controls.

Discussion: Our observations for the first time suggest that the HLA-KIR axis

might be involved in anti-NMDAR encephalitis. While the genetic risk conferred

by the identified polymorphisms appears small, a role of this axis in the

pathophysiology of this disease appears highly plausible and should be

analyzed in future studies.
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Introduction

Encephalitis with antibodies against N-methyl-D-aspartate

receptor (NMDAR) is one of the most common autoimmune

encephalitides and has recently been considered of intermediate

risk for a paraneoplastic origin based on a tumor association rate of

approximately 40% (1, 2). However, tumors are extremely rare in

children and young men, ovarian teratomas are present in about

50% of women during their fertile age and heterogeneous

carcinomas identified in 30% of elderly patients (3–6). Strikingly,

it has been proven that ovarian teratomas associated with anti-

NMDAR encephalitis harbor particular immunopathological

characteristics, including more frequent glial GluN1 expression,

and harbor B cells whose B cell receptors directly bind the NMDAR

(7–9). Similarly, other malignant tumors may also express this

NMDAR subunit (4). Additionally, there are rare cases of

autoimmune encephalitis with NMDAR antibodies following
02
herpetic encephalitis (10). However, despite 70% of patients

presenting with prodromal, mild viral-like symptoms, the

pathogenesis of the remaining cases of anti-NMDAR encephalitis

remains obscure (11). Thus, although the aforementioned tumors

and perhaps herpetic encephalitis seem to be able to trigger an

autoimmune reaction in a subset of subjects, the mechanisms

underlying the initiation of the autoimmune response are still

unknown in most cases. A genetic predisposition conferring some

risk has been postulated but results remain heavily debated (12–16).

The human leukocyte antigen (HLA) region is one of the most

gene dense, complex, and polymorphic regions of the human

genome. It harbors polymorphic genes involved in antigen

presentation, where the HLA subtypes modulate immune

responses to specific peptides and antigens. As a result, genetic

associations with HLA are commonly found in infectious diseases,

although these are typically strongest with autoimmune disorders,

including specific subtypes of autoimmune encephalitis (12, 17–22).
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To date, weak HLA association findings have been reported in small

samples of patients with anti-NMDAR encephalitis (13, 14),

although these were not replicated in a large, recent cohort (16).

Even more recently, however, a genome-wide association study

(GWAS) performed in a large Chinese cohort described strong

associations with DQB1*05:02, A*11:01 and A*02:07 (23).

Interestingly, some HLA class I molecules are also ligands for

killer-cell immunoglobulin-like receptors (KIRs), a less studied

group of polymorphic immune regulators. KIRs are immune

surface receptors encoded by up to 13 polymorphic genes in each

individual (24, 25). KIRs are principally expressed by natural killer

(NK) cells, which play roles in immune responses against both

cancer and infections. Recent data also suggest specific KIRs also

regulate tolerance of CD8+ T cells (26). KIRs are key to anti-tumor

and anti-viral immune responses (27, 28), and deficiencies in NK

cell numbers are associated with increased susceptibility to infection

by Herpesviridae, such as human cytomegalovirus (CMV), Epstein-

Barr virus (EBV), herpes simplex virus (HSV) and varicella-zoster

virus, as well as by human papillomavirus and other viruses (29).

Because of the above, NK cells and associated receptors are plausible

candidates genetically predisposing to anti-NMDAR encephalitis.

Herein, we aimed to investigate potentialHLA and KIR associations

in a large, multiethnic cohort of anti-NMDAR encephalitis.

The analysis of KIR associations is complex, as specific receptors

may become functional only in the presence of their cognate HLA

ligand. The ligands include subsets of HLA-A, B and C alleles that

carry A3/11, Bw4, C1 or C2 motifs (24, 25, 27, 30, 31). Thus, a given

individual may not carry all the KIR or their HLA class I ligands. To

explore a possibleHLA-KIR association, we first assume that the KIR

allele association could be strong enough to manifest dominantly

independent of the presence of its ligand in the same individual. This

was followed by an analysis of the number of existing paired

interactions in each patient versus controls, as previously done in

other studies (32–34). Doing so, we also explored both presence and

number of KIR genes that are copy number variations in cases versus

controls, allelic differences within these genes when present in cases

versus controls, and presence or absence of KIR-HLA ligand pairs in

cases versus controls. Finally, as these receptors can be either

inhibitory or activating, we approximated and compared the

amount of inhibitory and activating inputs NK cells were likely to

receive in cases versus controls.
Materials and methods

Patients and controls

Amulti-ethnic cohort of patients fulfilling diagnostic criteria for

anti-NMDAR encephalitis (35) and available DNA were

retrospectively recruited (Supplementary Table 1). This sample

contains GWAS typed samples of 479 cases and 2,806 PCA

(principal component analysis) and genotyping platform-matched

controls (Supplementary Table 1). A total of 15 patients with post-

herpetic autoimmune encephalitis and presence of NMDAR
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antibodies were excluded from this study, given their known

clinical, immunological and genetic particularities (10, 36). All

samples were de-identified. This cohort was primarily used for

HLA imputation and allele comparison across the entire cohort.

A subsample of 323 cases and 1,519 controls, the main object of

this study, was drawn from this larger sample of anti-NMDAR

encephalitis cases and was analyzed using KIR and HLA

sequencing. Ethnicity distribution for the sequenced sample is

reported in Supplementary Table 2. In this sample, 71 (21.9%)

cases had teratomas, 12 (3.7%) had other tumors and 238 (73.7%)

were non-paraneoplastic; information regarding a possible

underlying tumor was unavailable for 2 (0.6%) patients.
Genome wide association

Patients and controls were genotyped using Affymetrix or

Illumina chips (see Supplementary Table 1). Only high-

imputation calls (R2>0.9) were used to conduct genotype data

calculations. All genotype data operations were performed using

PLINK 1.9 (www.cog-genomics.org/plink/1.9/) (37). Patients were

genome-wide imputed to the 1000 Genome Phase III dataset (38)

after haplotype phasing and merged using QCTOOL and were

subsequently PCA-matched by ethnicity to their closest 10 controls

based on Euclidean distance using PLINK. Ethnicity was manually

defined from PCAs. Genotypes were used, together with geographic

origin, to identify PCA matched controls for KIR/HLA sequencing,

and to conduct HLA imputation.
KIR and HLA sequencing

The subset of 323 cases and 1,519 PCA-matched control

samples were sequenced for all KIR and HLA genes, as previously

described (39–41). After sequencing, raw FASTQ files were

analyzed using our custom bioinformatics pipeline PING

(Pushing Immunogenetics into the Next Generation) to obtain

KIR gene content and KIR allelic genotypes from next-generation

sequencing (NGS) data (39). We applied an updated version of the

pipeline that precisely determines the copy number of each locus

through multiple alignment and filtration steps, also accurately

identifying KIR genotypes. The updated pipeline increased the

accuracy of KIR genotype determination and is publicly available

(40, 42). In cases where KIR sequencing was ambiguous due to

multiple allele combinations, the most frequent set of alleles was

selected based on previously reported KIR frequencies (41). In

parallel with KIR, HLA class I and class II alleles were determined

from the sequence data using the consensus calls obtained using

three algorithms: NGSengine® 2.10.0 (GenDX, Utrecht, the

Netherlands), HLA Explore™ (Omixon Biocomputing Ltd.

Budapest, Hungary) and HLA*LA (43), as previously described

(44). Included were genotyping for alleles of HLA-G, and HLA-G

14-bp insertion/deletion genotyping, a 3’UTR variant suggested to

modulate expression (45).
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HLA imputation

HLA imputation was also conducted in a larger cohort of 479

cases and 2,806 PCA-matched controls using HLA Genotype

Imputation with Attribute Bagging (HIBAG), performed post-

genome wide-imputation and using ethnic and platform-specific

models (Supplementary Table 1) (21, 46). HLA imputation was

validated using the sequenced cohort with an overall allele accuracy

of >99.9%.
10x sequencing of peripheral blood
mononuclear cells

PBMCs were obtained from 16 French patients with anti-

NMDAR encephalitis and 16 French matched controls using

Ficoll isolation and stored in liquid nitrogen until use. Median

age at disease onset for cases was 24 years (range 3–48) and 12

(75%) were female. Four (25%) had ovarian teratomas and the

remaining ones were non-paraneoplastic. Median delay between

disease onset and PBMC collection was 44 days (range 8–1220); 4

patients were untreated at sample collection, 6 received

immunotherapy close to the blood drawn (< 3 weeks, “short-term

treatment”), and 6 were treated more than 3 weeks before sample

collection (“long-term treatment”; see Supplementary Table 3).

Single cell libraries were prepared using 10x as instructed by the

manufacturer. Briefly, individual PMBCs were thawed and washed

with complete RPMI medium (RPMI (Cat# 61870–036, Gibco)

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/

streptomycin) and then counted. An equal number of live PBMCs

from each sample was pooled and loaded into a 10x chip. Single cell

3’ and 5’ libraries were prepared by Chromium Single Cell 3’

Reagent Kits (v3.1 Chemistry) and Chromium Next GEM Single

Cell V(D)J Reagent Kits v1.1 with Feature Barcode technology for

Cell Surface Protein, respectively. These libraries were next

sequenced on a HiSeq4000 platform at Stanford Genomics for a

paired end 2x150 run with a depth of >20,000 read pairs per cell.

Sequencing data were processed using the 10x Genomix Cell Ranger

v6.0. Single cell was identified using demuxlet (47).
Phenotype clustering

10x sequencing results of single cell 3’ and 5’ libraries were

imported into Python, concatenated into a single dataset, and

analyzed using Scanpy standard workflow (48). Briefly, cells with less

than 200 genes were removed from the dataset. Genes that were found

in less than 4 cells or encoding hemoglobin/immunoglobulin

sequences were removed. Total counts per cell were normalized.

Each cell was assigned to a respective stage of cell cycle using a

publicly available list of cell cycle genes (49). Next, total counts, cell

cycle and mitochondrial content were regressed out. Highly variable

genes were identified and used to perform PCA. The first 20 PC were

used as an input for Shared Nearest Neighbor clustering and for

embedding using the Uniform Manifold Approximation and

Projection (UMAP) (Figure 1). Marker genes for each cluster were
Frontiers in Immunology 04
identified computationally using default Scanpy settings. The clusters

were manually annotated according to their gene expression pattern.

To further identify and cluster NK cells, single cells of PBMCs

expressing high level of NKG7 and GNLY were extracted and re-

clustered as above, from which NK cells that were NKG7/GNLY/CD7

positive and CD3/CD14/CD19 negative were extracted and re-clustered

(50–53).
FACS sorting

NK cells were sorted as previously described (54). Briefly,

PBMCs were recovered in complete RPMI medium overnight at

37°C, 5% CO2. Cells were stained with the following combination of

antibodies: Brilliant Violet 421® (BV421) (Pacific Blue)-CD7

(clone, CD7–6B7, Cat# 343132), Alexa Fluor® 488 (AF488)-CD14

(clone, HCD14, Cat# 325610), AF700-CD16 (clone, B73.1, Cat#

360718), BV605-CD57 (clone, HNK-1, Cat# 393304), APC-CD3

(clone, UCHT1, Cat# 300412), BV650-CD19 (clone, HIB19, Cat#

302238), APC/Cy7-CD20 (clone, 2H7, Cat# 302314), and PE-CD56

(clone, QA17A16, Cat# 985902). Cells of CD7+CD3-CD14-CD19-

were sorted in bulk with BD ARIA II at Stanford shared FACS

facility (SSFF). Propidium iodide (PI) was added to separate live

cells. Data were analyzed using FlowJo (v10.0.8r1). Sorted cells were

immediately loaded into a 10x chip and phenotype analysis were

conducted as above.
Standard protocol approvals, registrations,
and patient consents

This study was approved by local ethics committees (IGNITE,

#65073), and written informed consent was obtained from all the

patients for the storage and use of biological samples and clinical

information for research purposes.
Statistical analysis

KIR and HLA allele association
To avoid stratification issues due to different case-control

matching ratios in each ethnic group, a logistic regression

controlling for the three first PC (ethnicity) was conducted for

each ethnic group and a meta-regression on each allele’s effects was

performed using METAL (55). For clarity, we report HLA and KIR

associations with anti-NMDAR encephalitis in all cases and

controls in one set of analyses, and in European descent (the

largest group) only in another.

HLA allele analysis was explored as previously conducted (21);

multiple testing was controlled by comparing alleles having a carrier

frequency of at least 5% in any group (cases or control) and by using

Bonferroni correction. For non-framework KIR genes, we first

studied if cases versus matched controls differed in presence/

absence of each KIR genes and in the mean number of each

specific KIR genes. Following this, we studied allelic associations

comparing % individuals with each allele in cases versus matched
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controls (carrier frequency differences). In cases where a positive

association was found (specific KIR2DL4 and KIR3DL3 alleles,

presence of KIR2DL5B), we next analyzed if associations were

independent of each other (versus the result of linkage). To do so,

we iteratively controlled for the most significant alleles/presence of

genes until no significant association remained. Associations were

also conducted in teratoma vs. non-teratoma cases, and in teratoma

plus non-teratoma vs. controls.

Following these analyses, for non-framework genes, we next

explored if cases versus matched-controls differed in effective pairs

of KIR-HLA ligand. Finally, as these receptors can be either

inhibitory or activating (24), we compared the amount of

inhibitory and activating inputs NK cells were likely to receive in

cases versus controls.

Combined HLA-KIR association studies
HLA-KIR interaction associations in anti-NMDAR patients vs.

controls were also modeled (30, 32). To do so, we listed all possible

KIR interactions with HLA (categorized as A3, A11, Bw4, C1, C2)

and assigned them a negative or a positive value from 1–3

depending of each pair effect based on the existing literature for

each HLA-KIR pair (24, 25, 27, 30, 31). We then computed and

compared the resulting scores in cases and controls using

generalized linear and ordinal regression after control of first

three PC.

Single cell analysis
For single cell RNA-sequencing studies, a linear regression was

fitted to study differences in frequency between CD56dim and

CD56bright and in gene expression between cases and controls,

and controls and each stage of treatment using an ordinal

categorization (in order: control, long-term treatment, short-term

treatment, no treatment). Similarly, cells with a T lymphocyte

(CD3+) and NK cell (CD3-CD56+) were separated and %

population carrying KIR genes of interest compared between

controls and patients as described above. Differences in other

gene expression between cells positive for these KIRs were also
Frontiers in Immunology
 05
compared in disease vs control. Population age, sex, and PC were

controlled for but removed from the model due a lack

of significance.

Statistical significance
We report FDR (false discovery rate) corrected p-values in alleles

with >5% in either case or control carrier frequency for all analyses.

Uncorrected p-values are also reported in exploratory analyses and

when sample sizes are small, as indicated in each table. Analyses were

conducted in R 4.1.0 (R Core Team, 2021) (56), using a significance

level of p values < 0.05.
Results

Weak HLA class II association with
DRB1*01:01~DQA1*01:01~DQB1*05:01 in
anti-NMDAR encephalitis

Using the largest sample possible (imputed HLA), controlling for

ethnicity/PC (within each ethnic group) and conducting a meta-

analysis, a complex HLA association pattern was revealed, with

multiple weakly significant HLA class II allele associations. These

included an increase in frequency of DRB1*01:01~DQA1*01:01~

DQB1*05:01, and DRB1*11:01, and a protective effect of

DRB3*03:01 (Table 1). The DRB1*01:01~DQA1*01:01~DQB1*05:01

increase was more significant in non-teratoma cases (Supplementary

Table 4). This finding contrast with recent works have outlined that

when autoimmune encephalitis is paraneoplastic, HLA associations

are frequently weaker or non-existent (19, 57). Further,

DRB1*01:01~DQA1*01:01~ DQB1*05:01 was also most significant

in the sequenced European descent population, doubling the risk of

anti-NMDAR encephalitis (Supplementary Tables 5, 6). Finally, we

specifically analyzed the carrier frequencies of DQB1*05:02, A*11:01

and A*02:07, as these have recently been reported in a large Chinese

cohort (23); we confirm the association with the former but not with

the class I alleles (Supplementary Table 7).
FIGURE 1

Uniform Manifold Approximation and Projection by cell type and treatment.
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Copy number variation analysis effects
suggest increased presence of KIR2DL5B in
anti-NMDAR encephalitis
Most KIR genes display copy number variations (CNVs). Using

a meta-analysis of all cohorts we found that the number of

KIR2DL5B copies was higher in cases versus controls overall

(Table 2; Supplementary Table 8). This was significant exclusively

in European descent cases (Supplementary Tables 9, 10); only in the

very small cohort of Asian American was the trend direction

reversed (Table 2; Supplementary Table 8). Of note, as KIR2DL5

was largely represented by KIR2DL5B*00201, only presence of

KIR2DL5B was significantly increased (Supplementary Table 11).
KIR2DL4*00103 and KIR3DL3*00302
associations in anti-NMDAR encephalitis

Comparison of alleles across other loci was first conducted only

considering alleles that have amino acid changes, with FDR

correction for each locus. As this revealed no significant

differences, we explored all known alleles and this revealed three

other independent FDR-corrected significant findings (Table 3),

two of which were present in the European descent only cohort

(Supplementary Table 12). The same findings were found using a

meta-analysis (Supplementary Table 13), and the finding did not

differ in patients with teratoma versus non-teratoma cases

(Supplementary Table 14).

One association signal was due to increased telomeric framework

gene allele KIR2DL4*00103 in patients with anti-NMDAR encephalitis

overall (25.4% vs. 12.5%, OR=1.98, p=6.60×10-4, Table 3). In addition,

presence of centromeric framework gene KIR3DL3*00302, a rare allele

only carried by 1.3% of European descent controls was also increased to

5.3% (OR=4.44, p=4.61×10-4, Table 3). As mentioned, the two effects

were independent of each other and carrying KIR2DL4*00103 was

independently associated, not surprisingly since they are located on two

unlinked segments. Finally, a weak effect of KIR2DL1*00401 remained

(OR=1.6, p=2.35×10-2), which as mentioned above was not significant

in European descent alone and is thus not discussed further (Table 3).

As KIR3DL3 and KIR2DL5B are both centromeric, and

KIR3DL3*00302 is rare, we conditioned the KIR3DL3*00302

association by presence of KIR2DL5B and found these effects to

be largely independent (Supplementary Table 15). The

KIR2DL4*00103, KIR2DL5B, KIR3DL3*00302 effects were

significantly increased in patients with teratoma and non-

teratoma cases with a larger effect in the former group

(Supplementary Table 14). Similar results were obtained using a

meta-analysis per ethnic groups (Supplementary Table 13). Meta-

regression analysis also identified another rare allele,

KIR3DL2*10701, associated with the disease (OR=5.47, p=0.007)

and which was removed from the Caucasian analysis due to low

carrier frequency. KIR2DL1*00401 was associated with a higher risk

of developing the disease in the whole cohort but was not confirmed

in the meta-regression.
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Balance of KIR activation/inhibition and
HLA ligand pairs

We next explored if specific KIR-HLA ligand interactions

(presence of ligand and receptor in the same individual) differed

between European descent cases and controls using generalized

linear regression after control of first three PC (Supplementary

Tables 16, 17). This was also done by meta-regression across all

ethnic groups (Supplementary Tables 18, 19) using approximate

scores reflecting strength of signaling as reported in Supplementary

data. As can be seen, KIR2DL1_C2 and KIR2DL2_C1_C2

inhibitory scores were significantly higher in cases versus

controls. As a final analysis, Supplementary Table 20, a total

inhibitory score, total excitatory score, and a sum of both

(excitatory minus inhibitory) was compared using a formulation

described in Supplementary data, revealing no significant difference.

It is noteworthy that none of the KIR we identified in the association

analysis bind to classical HLA class I ligands.
Frontiers in Immunology 07
HLA-G genotyping

Since HLA-G is the ligand of KIR2DL4 (58), we also analyzed

differences in HLA-G genotypes between cases and controls.

However, we found no differences in either HLA-G 14-bp

Ins e r t i on /De l e t i on 3 ’UTR promotor po lymorph i sm

(Supplementary Table 21) or in the frequency of HLA-G*01:05,

the rare null allele (Supplementary Table 22).
Differences in NK cell frequencies and
gene expression

To assess the immune cell type most related to KIRs, CD56dim or

CD56bright cells were next sorted and examined for gene expression

(Table 4). This was then used to cluster NK cells into CD56dim or

CD56bright subtypes across cases by phase of therapy and controls

(Table 4; Supplementary Table 21). Using this method, percentage of
TABLE 2 Meta-regression of Additive Count Number Variation effects in all cases and controls, analyzed using General Linear Regression modelling
after control of first three intra-ethnic Principal Components.

Allele Effect Std. Error
P-

value
P-value

FDR corrected
Direction*

Heterogeneity
P-value

KIR2DL3 -0.055 0.040 0.1743 0.3835 —+ 0.9663

KIR2DS3T 0.022 0.017 0.2016 0.4032 ?+-++ 0.7370

KIR2DL1 0.024 0.033 0.4665 0.6842 ++–+ 0.8283

KIR2DL2 0.055 0.040 0.1719 0.3835 ++++- 0.9571

KIR2DS4Del -0.002 0.044 0.9714 0.9714 +–+- 0.8354

KIR2DL5 0.037 0.050 0.4628 0.6842 ++— 0.7386

KIR3DL2 N/A N/A N/A N/A N/A N/A

KIR2DP1 0.009 0.033 0.7786 0.9714 -+–+ 0.7344

KIR2DL5B 0.101 0.028 0.0003 0.0056 +++– 0.1845

KIR2DL4 0.041 0.016 0.0108 0.1191 -++++ 0.2680

KIR3DL3 N/A N/A N/A N/A N/A N/A

KIR2DS3 0.054 0.037 0.1459 0.3835 ++— 0.7279

KIR2DS3C 0.044 0.031 0.1511 0.3835 +++– 0.8106

KIR2DS5 -0.006 0.033 0.8523 0.9714 +— 0.9992

KIR2DS1 -0.041 0.034 0.2214 0.4059 +— 0.5479

KIR3DS1 0.003 0.030 0.9148 0.9714 +—+ 0.7697

KIR3DL1 0.056 0.036 0.1182 0.3835 +++++ 0.9586

KIR2DS4wt 0.055 0.039 0.1558 0.3835 -++-+ 0.5115

KIR2DS2 0.058 0.040 0.1439 0.3835 ++++- 0.8043

KIR2DS5C 0.011 0.007 0.1234 0.3835 -+— 0.6663

KIR2DS5T 0.005 0.028 0.8687 0.9714 +-+-+ 0.7893

KIR2DL5A -0.031 0.034 0.3713 0.6284 +—+ 0.5406
N/A, not applicable.
*Order of cohorts: African, European, Asian, African-European, Asian-European; “+”, increased in cases; “-”, decreased in cases; “?”, not examined in cohort and thus has a smaller
corresponding weight.
Bold values means significant.
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CD56dim or CD56bright NK cells did not differ between cases and

controls nor across stages of therapies (coded as controls, long-term

treatment, short-term treatment, no treatment), although a non-

significant decrease in NK CD56bright cells was found in untreated

cases vs. controls.

In term of gene expression profile, as expected, CD56bright

mostly differed from CD56dim as follows: increased CD56/

NCAM1 (neural cell adhesion molecule 1), KLRC3/NKG2E (killer

cell lectin like receptor C3) and KLRC1/NKG2A plus decreased

NKG7 (natural killer cell granule protein 7), CD16/FCGR3A (Fc

gamma receptor IIIa), KIR2DL1 and CD57/B3GAT1 (beta-1,3-

Glucuronyltransferase 1). KIR2DL4 was also significantly

increased in CD56bright as expected.

We next compared gene expression within NK cells in cases

versus controls. Because only four untreated cases were available (in

almost all cases, anti-NMDAR encephalitis cases receive

immunosuppression early in the disease course), to test a

difference by disease status, we expected a gene to be most

different in these four cases and to recover closer to control values

as treatment progressed and the case resolved. For this reason, an

ordinal model (controls, long-term treatment, short-term treatment,

no treatment) was set up looking at expression, also controlling for

age and sex; however, the results did not change (data not shown).

In general, we found that expression of many genes was

decreased in anti-NMDAR encephalitis vs. controls and by phase

of therapy, most notably KLRD1/CD94, KLRK1/NKG2D, NKG7,

NCAM1/CD56, KLRB1/CD161 and KLRC4/NKG2F. Importantly,

KIR2DL4 did not differ. KIR3DL3 expression was also examined but

it was low (data not shown) and based on its recently reported

cellular distribution in gd and CD8+ T cells (59) that was not clearly

observed in our dataset (data not shown), data for this gene was not

reported. KIR2DL5B expression was also not observed, in line with

reports that it is generally silenced (60–62).
Discussion

In this work, we conducted HLA imputation/sequencing and

KIR sequencing in the largest reported genetic analysis of anti-

NMDAR encephalitis cases, using a recently described pipeline.

Anti-NMDAR encephalitis was a particularly interesting candidate

disease in which to explore effects of KIR and HLA, given it is
Frontiers in Immunology 08
autoimmune and associated with both viral infection (post-HSV

encephalitis) and tumors.

We found a weak HLA as soc i a t ion wi th DRB1*

01:01~DQA1*01:01~DQB1*05:01, a frequent haplotype, that

will need to be replicated. Previously, weak associations were

reported with B*07:02 in White adult patients (13), DRB1*16:02

in Chinese populations (14), and DRB1*15:02 in a pediatric Thai

cohort (63). More recently, a large Chinese study revealed rather

strong associations with DQB1*05:02, A*11:01 and A*02:07 (23).

Altogether, these results suggest that, in contrast to other

autoimmune encephalitides with strong and homogeneous

HLA associations across different ethnicities, such as those

related to antibodies against leucine-rich glioma-inactivated 1

(LGI1) or IgLON5 (21, 64), the HLA associations in anti-

NMDAR encephalitis are more diverse and likely reflect a less

significant role in the pathogenesis of the disease.

More interestingly, we found an association with increased

number of copies of KIR2DL5B and two allele associations in

framework genes, KIR2DL4*00103 and KIR3DL3*00302. KIR2DL4

is a framework gene. KIR2DL4 is likely an activating receptor that

recognizes HLA-G as its ligand (58). HLA-G is highly expressed in

trophoblast, although expression is also present in thymus, cornea,

and pancreas islet (65, 66). HLA-G is also present as a secreted

protein. The KIR2DL4-HLA-G interaction may be particularly

important in the context of the feto-maternal interface. Indeed,

KIR2DL4 is primarily expressed in CD56bright NK cells (as

confirmed in this study), cells that also include decidual NK cells.

Interestingly, KIR2DL4 is mostly intracellular and only a small

portion is expressed at the surface of NK cells (58). In this context,

CD56bright NK cells, a subtype of NK cells considered less

differentiated and more cytokine-producing than cytotoxic, is

likely useful to induce tolerance to trophoblastic invasion though

KIR2DL4-HLA-G interactions. A similar role may be played in the

context of virally infected or cancerous cells. Ectopic expression of

HLA-G in tumor and in virally infected cells has also been reported,

where it binds leukocyte immunoglobulin-like receptors (LILR)

subfamily B and likely operates as a checkpoint inhibitor,

dampening NK cell activity (66). KIR2DL4*00103 amino-acid

s equence doe s no t d i ff e r f r om the mos t common

KIR2DL4*00102, an allele that was not associated with anti-

NMDAR encephalitis in our dataset (31.2% vs. 33.6% in controls,

ns, data not shown). Thus, the difference observed here with
TABLE 3 KIR association effects in all anti-NMDAR cases versus controls, analyzed using a Generalized Linear Equation modeling after control of
three Principal Components and iteratively controlling for significant alleles.

Iteration Allele OR
Cases
(n=323)

Controls
(n=1519)

P-value

Allele* KIR2DL4*00103 KIR3DL3*00302

1 KIR2DL4*00103 1.98 0.254 (82) 0.125 (190) 6.60E-04 N/A N/A

2 KIR3DL3*00302 4.44 0.053 (17) 0.013 (20) 4.61E-04 2.09E-05 N/A

3 KIR2DL1*00401 1.60 0.272 (88) 0.185 (281) 2.35E-02 1.09E-05 1.38E-04
N/A, not applicable.
*P-value corrected for multiple comparisons.
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TABLE 4 Gene expression analysis between CD56bright and CD56dim NK cells using Generalized Linear Models and controlling for Age and Sex.

bright dim vs. Controls

Long-
m treatment

Short-
term treatment

No
treatment

3.903 ± 0.080 3.713 ± 0.286 3.577 ± 0.325

0.160 ± 0.063 0.161 ± 0.085 0.113 ± 0.075

0.388 ± 0.181 0.265 ± 0.182 0.270 ± 0.119

0.319 ± 0.131 0.364 ± 0.232 0.172 ± 0.131

0.383 ± 0.142 0.499 ± 0.378 0.276 ± 0.127

0.073 ± 0.041 0.085 ± 0.079 0.084 ± 0.095

0.200 ± 0.158 0.211 ± 0.174 0.164 ± 0.078

0.009 ± 0.008 0.005 ± 0.011 0.006 ± 0.008

0.065 ± 0.028 0.083 ± 0.056 0.042 ± 0.043

0.084 ± 0.061 0.095 ± 0.076 0.098 ± 0.050

0.181 ± 0.121 0.205 ± 0.138 0.239 ± 0.239

0.050 ± 0.022 0.039 ± 0.016 0.055 ± 0.052

4.389 ± 0.447 4.195 ± 0.769 4.534 ± 0.304

0.095 ± 0.059 0.085 ± 0.103 0.049 ± 0.048

0.132 ± 0.070 0.128 ± 0.069 0.077 ± 0.062

2.235 ± 0.144 2.067 ± 0.388 1.873 ± 0.363

(Continued)
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Gene

CD56 vs. CD56 Case

Intercept Beta
P-

value*
CD56bright CD56dim Intercept Beta

P-
value*

Controls
te

NKG7
38972 -08639 134E-09 3.166 ± 0.504 4.028 ± 0.313 4009 -0196 153E-04

4.135
± 0.221

NCAM1
(CD56)

01240 02777 421E-09 0.423 ± 0.195 0.145 ± 0.064 0178 -0033 153E-02
0.206
± 0.063

FCGR3A
(CD16)

06225 -04943 172E-07 0.085 ± 0.143 0.580 ± 0.386 0691 -0199 248E-03
0.751
± 0.365

KLRC1
(KLRC1)

02479 05604 111E-05 0.906 ± 0.542 0.344 ± 0.218 0512 -0103 218E-02
0.495
± 0.245

NCR3 (CD337)
04770 -02598 489E-05 0.233 ± 0.190 0.492 ± 0.229 0495 -0081 481E-02

0.534
± 0.145

KIR2DL1
01049 -00689 534E-05 0.026 ± 0.053 0.095 ± 0.064 0123 -0012 261E-01

0.097
± 0.051

KLRC3
(NKG2E)

01552 02564 534E-05 0.453 ± 0.271 0.195 ± 0.125 0238 -0025 369E-01
0.239
± 0.119

B3GAT1
(CD57)

00134 -00165 124E-04 0.000 ± 0.000 0.016 ± 0.020 0015 -0007 438E-02
0.024
± 0.022

KIR2DL3
00814 -00531 151E-03 0.027 ± 0.057 0.081 ± 0.056 0086 -0011 302E-01

0.082
± 0.054

KIR3DL2
01160 -00590 151E-03 0.033 ± 0.066 0.092 ± 0.064 0098 0010 398E-01

0.081
± 0.062

KLRC2
02395 02400 151E-03 0.453 ± 0.328 0.213 ± 0.160 0302 -0029 393E-01

0.277
± 0.187

KIR2DL4
00953 00955 206E-03 0.133 ± 0.156 0.038 ± 0.024 0085 -0005 398E-01

0.055
± 0.044

GNLY
45563 03235 992E-03 4.735 ± 0.366 4.415 ± 0.530 4740 -0033 713E-01

4.546
± 0.402

KIR3DL1
00595 -00631 992E-03 0.029 ± 0.109 0.091 ± 0.079 0075 -0019 141E-01

0.089
± 0.080

KLRG1
01179 -00761 992E-03 0.086 ± 0.110 0.161 ± 0.099 0150 -0035 483E-02

0.190
± 0.108

KLRB1 (CD161)
20964 -02592 471E-02 1.981 ± 0.616 2.239 ± 0.297 2168 -0139 614E-03

2.331
± 0.176
s
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TABLE 4 Continued

bright dim Cases vs. Controls

CD56dim Intercept Beta
P-

value*
Controls

Long-
term treatment

Short-
term treatment

No
treatment

0.674 ± 0.289 0912 -0208 225E-05
0.910
± 0.178

0.519 ± 0.154 0.487 ± 0.256 0.342 ± 0.082

0.136 ± 0.073 0147 -0030 382E-02
0.154
± 0.059

0.137 ± 0.054 0.131 ± 0.109 0.053 ± 0.048

1.941 ± 0.249 1979 0041 393E-01
1.881
± 0.211

1.975 ± 0.221 2.018 ± 0.393 2.048 ± 0.161

0.091 ± 0.062 0113 -0033 153E-03
0.127
± 0.037

0.047 ± 0.024 0.088 ± 0.083 0.032 ± 0.028

1.336 ± 0.460 1700 -0318 474E-05
1.648
± 0.335

1.219 ± 0.130 1.113 ± 0.426 0.671 ± 0.304

0.910 ± 0.384 0922 -0176 122E-02
1.092
± 0.384

0.754 ± 0.245 0.815 ± 0.304 0.582 ± 0.225

0.001 ± 0.003 0002 0000 734E-01
0.000
± 0.001

0.003 ± 0.006 0.000 ± 0.000 0.000 ± 0.000

gnificance. Mean of means shown.
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Gene

CD56 vs. CD56

Intercept Beta
P-

value*
CD56bright

KLRK1
(NKG2D)

06562 01177 259E-01 0.791 ± 0.393

NCR1
01156 -00221 549E-01 0.114 ± 0.135

CD7
19797 -00354 836E-01 1.906 ± 0.457

KLRC4
(NKG2F)

01007 00054 847E-01 0.096 ± 0.110

KLRD1 (CD94)
13727 00430 847E-01 1.378 ± 0.576

KLRF1
07242 -00258 847E-01 0.888 ± 0.363

KIR3DL3
00007

431E-
05

966E-01 0.001 ± 0.005

*P-values FDR corrected for multiple comparisons. Covariates not shown due to lack of s
i
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KIR2DL4*00103, if replicated, is more likely to result from

differences in expression.

To complement this finding, we also explored whether HLA-G

genotypes differ across cases and controls, finding no differences in

either HLA-G promotor polymorphisms or in the frequency of the

rare HLA-G null allele across cases and controls (Supplementary

Tables 19, 20). This, together with the fact KIR2DL4*00103 does not

differ in sequence with KIR2DL4*00102 makes this pathway

unlikely to be strongly involved in anti-NMDAR encephalitis.

Sequencing of additional samples will be needed to confirm the

association with non-coding allele KIR2DL4*001.

Another finding was an association with the rare

KIR3DL3*00302 allele. Similar to the above, KIR3DL3*00302 does

not differ in amino acid sequence from the more common

KIR3DL3*00301, which did not differ in our data set (22.9 vs.

25.0, ns, data not shown). KIR3DL3 ligand is HHLA2 (Human

endogenous retrovirus-H long terminal repeat-associating 2), a

variant of the B7 family that is mostly expressed in monocytes,

but is also present in trophoblastic cells. Like HLA-G, it may

function as a checkpoint inhibitor. Interestingly, KIR3DL3 was

recently shown to be mostly expressed in CD8+ T cells and gd T cells

(59), a finding we could not confirm in our single cell sequencing

due to low expression of this receptor in peripheral blood. As for the

KIR2DL4 association, the fact the allele does not differ from a more

common variant that is not associated is not strongly supportive of

involvement, although the fact both KIR2DL4 and KIR3DL3 have

related function is intriguing.

A more solid finding pertained to increased copy number

variation of KIR2DL5B. KIR2DL5 is present as two extremely

similar genes , KIR2DL5A (te lomeric) and KIR2DL5B

(centromeric). KIR2DL5 was considered an orphan molecule

until recent studies identified it as a new binding partner of

poliovirus receptor (PVR, also known as CD155) using high-

throughput screening of receptor-ligand interactions (67–69).

KIR2DL5A frequency, a receptor expressed in both innate (NK

and gd T cells) and adaptive (CD8+ T cells) immune cells from

human peripheral blood (70), did not differ globally in our study.

While most KIR5DL5B alleles are considered transcriptionally silent

because of an impaired RUNX binding site conserved in the

promoter region of most KIRs (-97A), most known KIR2DL5A

alleles and a few KIR2DL5B alleles have intact RUNX binding sites

and are expressed (70).

Expression of PVR is low or absent in most healthy tissues;

however, it is overexpressed on numerous types of tumors,

including colorectal cancer, glioma, myeloid leukemia, ovarian

cancer, lung cancer, pancreatic cancer, melanoma, and other

tumors (71). Accumulating evidence suggests that PVR

overexpression induces the immune escape of tumor cells and is

associated with a poor prognosis and enhanced tumor progression

(70). Besides its tumor-intrinsic roles, PVR participates in multiple

immunoregulatory events through finely tuned interaction with the

stimulatory receptor DNAX accessory molecule 1 (DNAM-1, also

known as CD226) and the inhibitory receptors T cell

immunoreceptor with Ig and ITIM domains (TIGIT) and CD96

(72). Further, the KIR2DL5-PVR pathway has been shown to be

important in modulating responses of HIV infected cells by NK
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cells (73). Finally, KIR2DL5 polymorphisms have been associated

with multiple sclerosis, a disease associated with EBV infection (74).

In our study, increased KIR2DL5B copy number was found in

anti-NMDAR encephalitis (Table 1). As expected, the increase was

mostly due to KIR2DL5B*00201 (27.5 vs. 19.5%, p=0.03), the most

frequent allele, although other alleles, which are rare, were also

increased. Interestingly, KIR2DL5B*00201 and most other alleles

are characterized by the presence of 162Asp and 174Gly in the D2

domain (exon-5) of the KIR molecule, an area known to be essential

to PVR binding (70). As such, most KIR2DL5B alleles are not only

known to be expressed under normal conditions but also unlikely to

bind PVR as their ligand. These changes are characteristic of most

KIR2DL5B alleles and also shared by KIR2DL5A*00501, the only

KIR2DL5A allele slightly increased in anti-NMDAR encephalitis

(10.6% vs. 8.7%, ns). Interestingly, KIR2DL5A*00501 is also

transcriptionally silent (60, 70). Although most KIR2DL5B alleles

including KIR2DL5B*00201 (and KIR2DL5A*00501) are

transcriptionally silent in normal conditions in blood (other tissues

have not been tested), demethylation of the promotor could restore

expression, thus whether increased KIR2DL5B and allele differences

in KIR2DL5A are relevant to anti-NMDAR encephalitis is still

possible. Of note, however, all alleles associated with anti-NMDAR

encephalitis are not those binding PVR, thus interaction with another

yet unknown ligand would have to be involved.

We next explored gene expression differences in NK cells of

patients versus controls across therapy. Interestingly, decreased

KLRD1/CD94, KLRK1/NKG2D, NKG7, NCAM1/CD56, KLRB1/

CD161 and KLRC4/NKG2D were found (Table 4). Most of the

changes were due to changes observed within the NK CD56dim

population, were present in untreated patients and improved

partially with therapy (data not shown), as predicted from the

analysis we designed. CD94, which is decreased, heterodimerizes

with NKG2A and C to interact with HLA-E (27), and is either

inhibitory or activating. KLRK1/NKG2D is activating and recognizes

MIC and RAET1/ULBP families which appear on the surface of

stressed, malignant transformed, and infected cells. It is thought to be

important in viral and cancer control and viruses/cancer have adapted

mechanisms by which to evade NKG2D responses such as with CMV

(75). As for intracellular NKG2F, NKG2D does not pair with CD94;

its function is largely unknown. Overall, the profile of these cells is

consistent with a population of NK cells that may be more difficult to

activate, although it is important to realize circulating NK cells are not

representative of tissue homing NK cells, which are mostly CD56bright

and cytokine producing. Additional studies will be needed to confirm

and expend on these findings.

The main limitations of the current study are the relatively low

number of non-European and teratoma-related patients included,

which hindered the identification of specific HLA and KIR

associations in these subsets of patients, as well as the small

number of untreated patients from whom PBMCs were used to

investigate NK cell frequencies and gene expression.

In conclusion, our study of anti-NMDAR encephalitis revealed

minor changes in KIR polymorphism distribution, although

increased KIR2DL5B copy number was found. No significant

differences in cell numbers for all major cell categories were found,

although a trend in decreased CD56bright was observed. Many of these
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changes could reflect past or current viral infection, or be the result of

the autoimmune process. Gene expression in NK cells revealed

changes that are predicted to result in less easily activatable cells.
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