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Integrating machine learning
algorithms and multiple
immunohistochemistry validation
to unveil novel diagnostic
markers based on costimulatory
molecules for predicting immune
microenvironment status in
triple-negative breast cancer
Chao Zhang ‡, Wenyu Zhai ‡, Yuyu Ma ‡, Minqing Wu,
Qiaoting Cai, Jiajia Huang*†, Zhihuan Zhou*†

and Fangfang Duan*†

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for
Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
Introduction: Costimulatory molecules are putative novel targets or potential

additions to current available immunotherapy, but their expression patterns and

clinical value in triple-negative breast cancer (TNBC) are to be clarified.

Methods: The gene expression profiles datasets of TNBC patients were obtained

from The Cancer Genome Atlas and the Gene Expression Omnibus databases.

Diagnostic biomarkers for stratifying individualized tumor immune

microenvironment (TIME) were identified using the Least Absolute Shrinkage and

Selection Operator (LASSO) and Support Vector Machine-Recursive Feature

Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with

response to immunotherapy via the multiplex immunohistochemistry (mIHC).

Results: A total of 60 costimulatory molecule genes (CMGs) were obtained, and

we determined two different TIME subclasses (“hot” and “cold”) through the K-

means clustering method. The “hot” tumors presented a higher infiltration of

activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1

macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor

signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs

(CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel

diagnostic nomogram was constructed for predicting individualized TIME status

and was validated with good predictive accuracy in TCGA, GSE76250 and

GSE58812 databases. Further mIHC conformed that TNBC patients with high

CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy.

Conclusion: This study supplemented evidence about the value of CMGs in

TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential
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biomarkers , s ignificant ly promot ing TNBC pat ient select ion for

immunotherapeutic guidance.
KEYWORDS
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1 Introduction

Triple-negative breast cancer (TNBC) accounts for nearly 15% of

all breast cancers (1). Due to its paucity of definitive targets and the

intrinsic aggressiveness, most TNBC-related deaths occur, and it

remains a grave life-threatening disease among women worldwide

(2–5). In view of lacking estrogen receptor (ER), progesterone receptor

(PR), and human epidermal growth factor receptor 2 (HER2), TNBC

can’t benefit from endocrine and targeted treatments, and depend on

traditional chemotherapy with little clinical benefits realized, a median

overall survival (OS) about 12 to 18 months (6–9).

In recent years, immune-checkpoint inhibitors (ICIs) have

revolutionized the therapeutic landscape of multiple tumors, such

as nasopharyngeal carcinoma, melanoma, and lung cancer,

wherein, ICIs generated durable responses, resulted in substantial

survival progress, and have been recommended as a part of

standardized treatments (10). Compared with other breast cancer

subtypes, TNBC exhibits stronger immunogenicity, abundant

tumor-infiltrating lymphocytes (TILs), higher programmed cell

death ligand 1 (PD-L1) expression and tumor mutation burden

(TMB) (2, 11, 12), numerous explorations on adding ICIs to the

therapeutic arsenal of TNBC have acquired inspiring feedback (13–

15). While survival benefits derived from ICIs in TNBC are

relatively minimal as compared to other tumors (2, 16, 17).

Therefore, identifying and developing optimal biomarkers have

become a hot area. Currently, PD-L1 and TMB are most used

predictors for patient selection in clinical practice, but absence of

standardized criteria for the methodology and expression cutoff

values leads to their inconsistency predictive value in different

clinical trials and therapeutic regimes (16, 18, 19). Although a

possible association between higher TILs and improved pCR rates

from an immunotherapeutic perspective has been examined, it is

confined to the early stage of TNBC (20). Hence, novel predictors of

immunotherapeutic response are necessary and meaningful to

appropriately select ideal patients who can benefit from ICIs with

the aim to design individualized strategies.

The tumor immune microenvironment (TIME), composed of

various immune cells, stromal cells, mesenchymal cells, cytokines,

and chemokines, plays a crucial role in the processes of tumor

initiation, progress, development, and metastasis (21). A deep

parsing of the diversity and complexity of TIME is valuable for
02
improving anti-tumor immune responses and patient stratification

according to their unique TIME classes and subclasses, thereby

greatly improving therapeutic benefits from ICIs and unraveling

novel targets (22). Increasing evidence suggests that features

associated with the “hot” tumor, including abundant TILs in

TIME, markers related to T cell activation, as well as signatures

for adhesion, are potential factors for predicting responses to ICIs

(23). Costimulatory molecules, comprising the B7-CD28 family

with 13 molecules and the tumor necrosis factor (TNF) family

with 48 molecules, are vital for the differentiation, proliferation,

maturation, survival, activation, and functions of immune cells. The

former includes the most common PD-1 and PD-L1 axis of ICIs,

the latter includes 19 members belong to the TNF ligand

superfamily (TNFSF) and 29 members to the TNF receptor

superfamily (TNFRSF) (22, 24, 25). Moreover, they are putative

novel targets or potential additions to current available

immunotherapeutic strategies (26, 27). The predictive model

based on costimulatory molecule genes (CMGs) have been

explored in lung adenocarcinoma (28), while their functions and

clinic value in TNBC are little illustrated.

Herein, we aimed to systematically dissect the expression pattern

and clinical value of costimulatory molecules in TNBC. Using the

transcriptional profiles of TNBC patients from The Cancer Genome

Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, we

stratified patients into two different TIME status (“cold” and “hot”)

through the K-means clustering method and compared their difference

in immune cell infiltrations via the CIBERSORT algorithm (29).

Subsequently, Least Absolute Shrinkage and Selection Operator

(LASSO) (30) and Support Vector Machine-Recursive Feature

Elimination (SVM-RFE) (31) were utilized to identify diagnostic

markers from CMGs. Following, a diagnostic signature for stratifying

individualized TIME status of TNBC patients was stablished, and its

predictive performance was further validated. Moreover, we conducted

a small-sample exploratory analysis via the multiplex

immunohistochemistry (mIHC) to explore the correlation between

the expression level of identified CMGs biomarkers and response

to immunotherapy.
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2 Materials and methods

2.1 Data acquisition and preparation

We downloaded the gene expression profile datasets of TNBC

patients from TCGA (https://tcga-data.nci.nih.gov/tcga/) and GEO

databases (https://www.ncbi.nlm.nih.gov/geo/) (GSE76250 and

GSE58812 datasets) using the “GEO query” package (32). All

microarray datasets were standardized via the “SVA” and

“limma” R packages. TCGA, GSE76250, and GSE58812 datasets

consisted of 168, 165, and 107 tumor samples, respectively. A total

of 60 CMGs, including 13 members of B7-CD28 family and 47

members of TNF family, were obtained from a previously published

study (Supplementary Table 1) (28).
2.2 Patient-clustering based on CMGs

To investigate the potential value and functions of

abovementioned 60 CMGs in the TIME of TNBC, we classified

patients into different clusters after the k-means machine learning

algorithm, an unsupervised consensus clustering method, using the

“Cluster” package. First, we determined the corresponding optimal

cluster numbers in three datasets via the “factoextra” package. After

k-means clustering, we performed the principal component analysis

(PCA) with the “factoextra” package. Next, we utilized the

“ESTIMATE” package (33) to calculate and compare the tumor

purity, immune, and stromal scores among different clusters in

TCGA, GSE76250, and GSE58812 datasets. TNBC patients in three

datasets were further stratified into the “hot” and “cold” tumor

groups according to their immune and stromal scores.
2.3 Estimation of the immune cell
infiltration landscape in TIME

The standardized gene expression profiles of TNBC patients in

TCGA, GSE76250, and GSED58812 datasets were performed by the

CIBERSORT algorithm with perm set to 1000 to analyze the

characteristics of 22 immune cells infiltration (29) between

patients belonging to the “hot” and “cold” tumor groups.
2.4 Functional annotation and pathway
enrichment analyses

Gene set enrichment analysis (GSEA, https://www.gsea-

msigdb.org/gsea/index.jsp) was performed for patients in “hot” vs

“cold” tumors through the Java GSEA (version4.0.1) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway in C2 and

Gene Ontology (GO) terms in C5 to evaluate potential functional

pathways and biological mechanisms enriched in patients (34).

False discovery rate (FDR) < 0.25 and normalized P < 0.05 were set

as cutoffs to obtain significant enrichment.
Frontiers in Immunology 03
2.5 Screening and identification of the
diagnostic CMGs biomarkers

In the TCGA and GSE76250, to avoid possible influence of

multicollinearity, we firstly conducted the LASSO logistic regression

analysis through the “glmnet” package to screen out biomarkers from

above all 60 CMGs at the optimal value of log lambda with the

smallest classification error (30). Besides, the SVM-RFE machine

learning algorithm based on the support vector machine was utilized

to identify the most valuable biomarkers from all 60 CMGs by

subtracting the feature vector determined using SVM with the

“e1071” and “caret” R packages (31). Next, we merged identified

CMGs from above-mentioned machine learning algorithms via the

“scMerge” package to further narrow the number of markers. These

overlapped CMGs markers were finally input for the logistics

regression analysis to identify the final diagnostic biomarkers.
2.6 Conduction and validation of the
diagnostic nomogram based on
CMGs biomarkers

Based on abovementioned final CMGs biomarkers, a diagnostic

signature for individualized TIME status was constructed and

visually presented as nomogram via the “rms” R package. Then,

we evaluated and validated the predictive accuracy and clinical

value of the CMG-based nomogram using the receiver operating

characteristic (ROC) curves, calibration curves, and decision curve

analysis (DCA) in both training and validation datasets.
2.7 Tissue multiplex immunohistochemistry

We stained TNBC samples using the multiplex fluorescence

immunohistochemical kit, PDOne four-color TSA-RM-275 (20 T)

(cat 10001100020 Panovue, Beijing, China) according to the manual

provided. Paraffin-embedded samples were sequentially incubated

with primary antibodies and horseradish peroxidase (HRP)-

conjugated secondary antibodies. Then, we performed the tyrosine

signal amplification (TSA) to label antigens, after each TSA labeling

step, we removed the primary and secondary antibodies through a

microwave treatment for heat-induced antigen retrieval. After the

sample was eluted, the next antigen was labeled, and this procedure

was repeated for all four antigen markers. Anti-CD86 (E2G8P,

dilution 1:200, Rabbit, Cell Signaling Technology, Danvers, MA,

USA), TNFRSF17 (ab245940, dilution 1:100, Rabbit, Abcam,

Cambridge, UK) and TNFRSF1B (28746–1-AP, dilution 1:200,

Proteintech, Rosemont, USA) were utilized as primary antibodies.

The dyes Opal520, Opal570, Opal650 and 4′-6′-diamidino-2-

phenylindole (DAPI, Sigma-Aldrich) were utilized for staining. We

scanned TNBC samples and obtained their fluorescence images at

×20 magnification with a PanoVIEW VS200 slide scanner (Panovue,

Beijing, China) and an Olympus 20× lens. Image recognition and

analysis were performed with QuPath image analysis software
frontiersin.org

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://doi.org/10.3389/fimmu.2024.1424259
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1424259
(Version 0.3.0, Queen’s University of Belfast, Northern Ireland, UK).

The images were quantized into data by tissue segmentation and cell

segmentation using the positive threshold settings and phenotypic

recognition. By means of an R script (Version 4.0.1), we assumed the

quantitative data and basic data such as the positive cell number,

positive staining rate and density for subsequent analysis.
2.8 Statistical analysis

In current study, the expression levels of CMGs in TNBC patients

were presented as raw and standardized data. We conducted this

study in two phases. During the first phase, we classified TNBC

patients into the “hot” and “cold” tumors according to their immune

and stromal scores. During the second phase, TCGA dataset was used

as the training cohort, TCGA and the GSE76250 datasets were

utilized as internal validation cohorts, and the GSE58812 dataset

was as external validation cohort. A diagnostic signature based on

identified CMGs biomarkers for predicting individualized TIME

subclasses in TNBC was constructed and validated.

All statistical analyses herein were performed using the R

software (version 4.0.1, Vanderbilt University, Nashville, TN).

The Mann-Whitney U test and Kruskal-Wallis H test were

utilized to compare the immune score, stromal score, and tumor

purity among different clusters. The unpaired Student’s t test was

performed to compare differences in responses to immunotherapy

among patients with TNBC. A P-value <0.05 was considered

statistically significant unless specified.
3 Results

3.1 Data extraction and processing

The flow chart for the study design is presented in Figure 1. All

microarray matrixes of three publicly available datasets were
Frontiers in Immunology 04
annotated, following which, TCGA dataset consisted of 168

TNBC samples (46999 genes), GSE76250 and GSE 58812 datasets

included 165 TNBC samples (30906 genes) and 107 TNBC samples

(20161 genes), respectively. Next, 60 CMGs were overlapped with

TCGA dataset, except for the TNFRSF6B gene due to its low

expression, a total of 59 CMGs were identified. Similarly, 60

CMGs were merged with GEO datasets, wherein, only 57 CMGs

in the GSE76250 dataset and 58 CMGs in the GSE58812 dataset

were eligible. Then, we standardized the expression levels of CMGs

in three datasets using the “SVA” and “limma” R packages. Finally,

a total of 56 CMGs were used for subsequent analysis.
3.2 Patient-clustering based on CMGs

To explore the clinical value and functions of above CMGs in

TNBC, an unsupervised consensus clustering analysis was

performed to stratify patients. Figures 2A, C, E show the curves

of the total within the sum of squared error for the corresponding

cluster numbers of k. These suggested that a k value of 5, 7, and 4

were the most optimal in TCGA, GSE76250, and GSE58812

datasets, respectively. The PCA was performed to evaluate the

credibility of these cluster numbers, and it demarcated five

clusters at k = 5 in TCGA dataset (Figures 2B). Similarly, patients

were distinguished at k = 7 in the GSE76250 dataset (Figure 2D),

and k = 4 in the GSE58812 dataset (Figures 2F).

Next, we used the “ESTIMATE” R package (33) to estimate the

tumor purity, and to calculate the percentages of stromal and

immune cells infiltrations in TIME of TNBC patients based on

their CMGs expression profiles. It showed that the tumor purity

among patient clusters was significantly different for TCGA,

GSE76250 and GSE58812 datasets (Supplementary Figure 1).

Besides, significant differences among multiple clusters for tumor

stroma and immune scores in TCGA (Supplementary Figures 2A, B),

GSE76250 (Supplementary Figures 2C, D), and GSE58812

(Supplementary 2E, F) datasets were also observed. Accordingly, we
FIGURE 1

Flowchart of the study design.
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classified the TNBC patients in cluster 1 of TCGA dataset into the

“cold” tumor group, while those in clusters 2 to 5 were in the “hot”

tumor group. In the GSE76250 dataset, we categorized patients in

clusters 4 and 5 as the “hot” tumor group and patients in other

clusters formed the “cold” tumor group. In the GSE58812 dataset,

TNBC patients in clusters 1 and 2 were divided into the “hot” tumor,

while the remaining patients were in the “cold” tumor group.

Next, we used the “ESTIMATE” R package (33) again to

calculate and compare the tumor purity, stromal, and immune

cells infiltrations between “cold” and “hot” tumors. There were

significant differences in the stromal and immune cell types among

TCGA (Figures 3A, B), GSE76250 (Figures 3C, D), and GSE58812

datasets (Figures 3E, F). A significantly higher tumor purity in the
Frontiers in Immunology 05
“cold” tumor relative to the “hot” tumor in TCGA, GSE76250, and

GSE58812 datasets (Supplementary Figure 3) was observed.
3.3 Estimation of the immune cell
infiltration landscape in TIME

The landscape of 22 immune cell type infiltrations in TNBC

tissues were estimated based on the gene expression profiles via the

CIBERSORT algorithm (29), and we also evaluated the correlation

between the immune cells in the TIME of TNBC patients. In TCGA

dataset, the distribution of immune cells between “cold” and “hot”

tumors were significantly different, including CD8 T cells (P =
B

C D

E F

A

FIGURE 2

TNBC patient-clustering based on costimulatory molecule genes (CMGs). (A) The curve of the total within the sum of squared error curve for the
corresponding cluster number k in TCGA dataset; (B) The principal component analysis (PCA) plot of clustered patients in TCGA dataset; (C) The
curve of the total within the sum of squared error curve for the corresponding cluster number k in GSE76250 dataset; (D) The PCA plot of clustered
patients in GSE76250 dataset; (E) The curve of the total within the sum of squared error curve for the corresponding cluster number k in GSE58812
dataset; (F) The PCA plot of clustered patients in GSE58812 dataset.
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0.001), CD4 memory activated T cells (P < 0.001), resting NK cells

(P = 0.028), monocytes (P = 0.011), M0 macrophages (P = 0.005),

M1 macrophages (P < 0.001), and M2 macrophages (P = 0.001).

Among them, the proportion of M0 and M2 macrophages were

higher in the “cold” tumor (P < 0.05), while that of others was

higher in the “hot” tumor (P < 0.05) (Figure 4A). Significant

differences in the proportion of immune cells between the “cold”

and “hot” tumors were also found in GSE76250 dataset, namely,
Frontiers in Immunology 06
memory B cells (P < 0.001), CD8 T cells (P < 0.001), resting CD4

memory T cells (P < 0.001), CD4 memory activated T cells (P <

0.001), follicular helper T cells (P = 0.001), regulatory T cells (Tregs)

(P < 0.001), activated NK cells (P = 0.028), monocytes (P = 0.011),

M0 macrophages (P = 0.017), and M1 macrophages (P < 0.001).

Among them, the distributions of memory B cells, resting CD4

memory T cells, CD4 memory activated T cells, and M1

macrophages were higher, while CD8 T cells, follicular helper T
B

C D

E F

A

FIGURE 3

Calculation and comparison of tumor-stromal and immune scores between different TIME subclasses in TNBC, where red represents patients in the
“hot” tumor and green shows patients in the “cold” tumor. The comparison of stromal scores (A) and immune scores (B) between “hot” (clusters 2 to
5) and “cold” (cluster 1) tumor groups in TCGA dataset; The comparison of stromal scores (C) and immune scores (D) between “hot” (clusters 4 and
5) and “cold” (clusters 1,2,3,6 and 7) tumor groups in GSE76250 dataset; The comparison of stromal scores (E) and immune scores (F) between “hot”
(clusters 1 and 2) and “cold” (clusters 3 and 4) tumor groups in GSE58812 dataset.
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cells, Tregs, activated NK cells, monocytes and M0 macrophages

were lower in the “hot” tumor (P < 0.05) (Figure 4B). In GSE58812

dataset, multiple immune cell types infiltrating the “cold” and “hot”

tumors showed significantly different distributions, including the

naïve B cells (P < 0.001), CD8 T cells (P < 0.001), CD4 naïve T cells

(P < 0.001), resting CD4 memory T cells (P < 0.001), CD4 memory

activated T cells (P < 0.001), M0 macrophages (P = 0.003), and M2

macrophages (P = 0.006). Among them, the proportions of naïve B
Frontiers in Immunology 07
cells, CD8 T cells, CD4 naïve T cells, and CD4 memory-activated

T cells were higher in the “hot” tumor (P < 0.05) (Figure 4C).

Additionally, the correlation matrix for the 22 immune cells in

TNBC tissues was constructed (Supplementary Figure 4). For example,

a positive correlation between CD4 memory-activated T cells and M1

macrophages (Cor = 0.37), and CD4 memory-activated T cells and

CD8 T cells (Cor = 0.31) was observed in TCGA dataset

(Supplementary Figure 4A). Likewise, a positive correlation between
B

C

A

FIGURE 4

Evaluation and visualization of 22 immune cell type infiltration landscape between different TIME status. The violin plot depicts infiltration disparities
among immune cell types between the “hot” tumor (red) and the “cold” tumor (blue) in TCGA (A), GSE76250 (B), and GSE58812 datasets (C).
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CD8 T cells and activated NK cells (Cor = 0.66) in GSE76250 dataset

(Supplementary Figure 4B), a positive correlation between CD4

memory activated T cells and M1 macrophages (Cor = 0.31) in the

GSE58812 dataset (Supplementary Figure 4C) were observed.
3.4 Functional annotation and pathway
enrichment analyses

We performed GO and KEGG enrichment analyses for the

“cold” and “hot” tumors to reveal potential functions and pathways.

It demonstrated that “hot” tumor group was enriched in the

chemokine signaling pathway, cytokine-cytokine receptor

signaling pathway, JAK-STAT signaling pathway, nature killer

cell-mediated signaling pathway, B cell receptor, and T cell

receptor signaling pathway in TCGA (Figure 5A), GSE76250

(Figure 5C), and GSE58812 datasets (Figure 5E). As for the
Frontiers in Immunology 08
biological processes (BP), the “hot” tumor was mainly associated

with the T cells activation and the regulation of immune responses

in all three datasets (Figures 5B, D, F).
3.5 Screening and identification of the
diagnostic CMGs biomarkers

In TCGA dataset, we performed the LASSO logistic regression

analysis and screened out 27 CMGs from 56 candidates, having

zero coefficients at the optimal value -5.830026 of log lambda

(Figures 6A, B). 26 CMGs from 56 candidates were recognized as

diagnostic biomarkers based on the result of SVM-RFE algorithm

(Figure 6C). Diagnostic biomarkers identified using above two

algorithms were overlapped and 13 CMGs remained to be

biomarkers (Figure 6G). Similarly, in GSE76250 dataset, 11

CMGs and 46 CMGs from 56 candidates were identified as
B

C D

E F

A

FIGURE 5

Functional analysis for the “hot” tumor and the “cold” tumor based on costimulatory molecule genes (CMGs). (A, C, E) The Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis in TCGA, GSE76250, and GSE58812 datasets, respectively; (B, D, F) Gene Ontology (GO) analysis
for biological processes in TCGA, GSE76250, and GSE58812 datasets, respectively.
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putative diagnostic biomarkers via the LASSO (a value -3.836916

of the optimal log lambda) (Figures 6D, E) and SVM-RFE

(Figures 6F) machine learning algorithms. Among these, 11

CMGs were overlapping (Figure 6G). Next, we merged

candidate CMGs identified from above two datasets and
Frontiers in Immunology 09
performed the logistic regression analysis to further narrow the

number of diagnostic biomarkers, three CMGs (CD86,

TNFRSF17, and TNFRSF1B) were determined as final diagnostic

biomarkers (Figure 6G). All CMGs analyzed in this phase were

listed in Supplementary Table 2.
B

C

D E

F

G

A

FIGURE 6

The selection of diagnostic biomarkers from candidate costimulatory molecule genes (CMGs). The lower abscissa is the log lambda value, while the
upper abscissa is the number of CMGs with non-zero coefficient; the vertical axis represents the Least Absolute Shrinkage and Selection Operator
(LASSO) coefficient of CMGs, and each curve shows the variation trajectory of the coefficients of each gene. (A) Determination of the number of CMGs
with non-zero coefficients at the optimal value -5.830026 of log lambda in TCGA dataset; (B) LASSO coefficient profiles of 27 candidate CMGs after the
10-fold cross-validation in TCGA dataset; (C) Support Vector Machine-Recursive Feature Elimination (SVM-RFE) method to identify markers in TCGA
dataset; (D) Definition of the number of CMGs with non-zero coefficients at the optimal value -3.836916 of log lambda in GSE76250 dataset; (E) LASSO
coefficient profiles of 35 candidate CMGs after the 10-fold cross-validation in GSE76250 dataset; (F) SVM-RFE method to identify markers in GSE76250
dataset; (G) Venn diagram presents the overlapping diagnostic markers identified by LASSO and SVM-REF algorithms.
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3.6 Construction and validation of the
diagnostic nomogram based on CMGs

To develop a practical tool for individually predicting TIME

subclass in patients with TNBC, we constructed the diagnostic

nomogram incorporating above three final CMGs biomarkers,

including CD86, TNFRSF17, and TNFRSF1B, based on findings

in TCGA (Figure 7A). Each biomarker could be scored in points
Frontiers in Immunology 10
line according to its expression, and after summation, every TNBC

patient could have a total score, based on which, the probability of

“hot” tumor could be predicted by locating the total score on the

probability of the hot tumor scale. For example, TNBC patients with

high expression of above three CMGs were more likely to be

recognized as “hot” tumor. We further assessed the diagnostic

efficiency of this nomogram in three datasets by calculating the

area under the ROC curve (AUC), which suggested a satisfactory
B C D

E F G

H I J

A

FIGURE 7

Development and validation of the diagnostic nomogram. (A) A nomogram for diagnosing individualized tumor immune environment subclass. The
receiver operating characteristic (ROC) curve of the diagnostic efficacy verification in TCGA (B), GSE76250 (C), and GSE58812 datasets (D); The
calibration plots of the diagnostic accuracy validation in three datasets (E–G); The decision curve analysis (DCA) of the clinical value for therapeutic
guidance in TCGA (H), GSE76250 (I), and GSE58812 datasets (J).
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diagnostic accuracy in TCGA (Figure 7B), GSE76250 (Figure 7C),

and GSE58812 datasets (Figure 7D). Moreover, a favorable

agreement between actual and predicted probability through the

diagnostic nomogram in all three datasets was observed via the

calibration curves (Figures 7E–G). Additionally, the DCA results

demonstrated a good clinical value of this diagnostic nomogram in

predicting TIME status (Figures 7H–J).
3.7 Expression of CMGs markers positively
related to efficacy of immunotherapy

To further verify the associations between the expression level

of these three CMGs biomarkers in tumor tissues of TNBC patients

receiving immunotherapy and patients’ response to treatment, we

collected 27 patients’ paraffin-embedded samples and performed

the mIHC assays. Figures 8A, B showed the representative mIHC

images of DAPI and three CMGs biomarkers in tumor tissues of

responders and no-responders, i.e., DAPI (blue), CD86 (green),

TNFRSF17 (purple) and TNFRSF1B (red). Further statistical

analysis demonstrated that there were significant associations
Frontiers in Immunology 11
between high expression of CMGs biomarkers and patients’

positive response to immunotherapy (Figure 8C).
4 Discussion

In recent years, the therapeutic landscape of TNBC patients has

broadened owing to the rapid development of immunotherapy, but

only a few patients benefit from ICIs treatment unlike the excellent

therapeutic responses achieved in other tumors (16). Effective

biomarkers for predicting responses to ICIs in TNBC are lacking

in the clinical setting (19). Increasing evidence demonstrated that

understanding the unique subsets of personalized TIME is

meaningful for identifying novel therapeutic targets and guiding

immunotherapeutic strategies (21). In current study, we creatively

classified TNBC patients into the “hot” and “cold” tumors

according to their TIME clusters determined by CMGs. Further,

we executed two machine learning algorithms and identified three

CMGs (CD86, TNFRSF17, and TNFRSF1B) as diagnostic

biomarkers, based on which, a diagnostic nomogram for

predicting TIME subclasses in TNBC in TCGA dataset was
B

CA

FIGURE 8

Expression of CMGs biomarkers are positively related to the efficacy of immunotherapy in TNBC. Representative multiplex immunofluorescence
images demonstrating the protein expression of CD86 (blue), TNFRSF1B (red) and TNFRSF17 (purple) in samples from nonresponders (A) and
responders (B); (C) Correlation analysis showed that TNFRSF1B, CD86 and TNFRSF17 were significantly associated with the immune response.
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constructed, which presented satisfactory predictive accuracy and

good clinical value in both the training and validation datasets.

Moreover, exploratory analysis in a real-world clinic cohort of

patients with TNBC via mIHC also revealed an apparently

positive association between the expression level of these three

CMGs biomarkers with responses to immunotherapy. This suggest

that these CMGs biomarkers might be promising tool for TNBC

patients’ stratification to immunotherapeutic guidance.

The failure of current immunotherapy targeting CTLA-4 or

PD-1 may be caused by intratumor T cell exhaustion (2), therefore

increasing interests revolve around costimulatory molecules

residing in the TIME in TNBC tumors. The costimulatory

molecules mainly include the B7-CD28 family and the TNF

family of proteins (24, 25). Their expressions on tumor cell and

lymphocyte surfaces play important roles in regulating the anti-

tumor immune responses (22). The immune surveillance function

of the immune system in the human body helps to distinguish

malignant from normal cells and initiates subsequent attacks.

During this process, the naïve T cells should be activated through

two indispensable signals, one of which is the costimulatory signal

(35), so the activation of T cells could be blocked without

costimulatory signals (28). Generally, malignant cells deliver

incorrect messages to T cells and prevent the recognition of

costimulatory signals by altering their structures and expressions

in TIME, and further inducing an immunosuppressive TIME,

thereby helping tumor cells to evade immune-induced

elimination (36). A single-cell RNA profile analysis of B cells in

breast cancer showed that tumors elicited immune-suppressive B

cells owing to their failure in extracting costimulatory signals from

them, which facilitated further breast tumor cell evasion of immune

surveillance (37). ICIs, by blocking the PD1-PD-L1 and the CD86/

CTLA4 axes, prevent tumor cells from releasing wrong messages to

T cells, thereby restoring tumor-induced immuno-deficiency in

TIME (38). While except for common realized PD1/PD-L1 and

CD86/CTLA4 axes, many costimulatory members are still poorly

understood. To explore the clinical value of costimulatory

molecules in TNBC, we obtained 56 CMGs from public databases

in this study. Utilizing the unsupervised consensus clustering

algorithm, we clustered patients into two different TIME

subclasses, namely the “cold” tumor and the “hot” tumor. TIME,

composed of several immune cells, carcinoma-associated

fibroblasts, stromal cells, and tumor endothelial stromal cells,

plays a crucial role in multiple biological processes, including

tumor initiation, angiogenesis, and immune regulation (21, 22).

Classifying the immune contexts within a TIME represents the first

level of cognizing immunological composition and status (activated

or suppressed), their influence on survival outcomes and responses

possibilities to anti-tumor treatment. Moreover, TIME

classifications might also promote to understand its principle of

affecting the establishment and maintenance of specific

immunological compositions (21).

Tumors were generally classified as “cold” with immune

deficiency if their TIME population included immune cells but

lacked activation, which could promote metastasis and disease

progression as adaptive immunity could not recognize extrinsic

antigens or malignancies (39). Whereas, a high expression of
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activation biomarkers, such as PD-L1, on activated immune cells

or tumor cells within a tumor, are the key characteristics of an

immunological “hot” tumor, which is likely to initiate anti-tumor

immune responses to attack tumors (21). Herein, we

simultaneously examined the immune cells infiltrations in the

“hot” and “cold” tumors to elucidate the differences in their

TIME. The findings demonstrated that immunosuppressive cells,

such as M0 and M2 macrophages, had significant infiltration in the

“cold” tumor. Typically, M1 macrophages secret cytokines to

activate T cells and exert antitumoral effects, while M2

macrophages are pro-tumorigenic factors via angiogenesis and the

chemotaxis of Tregs (40). Therefore, the presence of poor

immunogenic TIME in patients with “cold” tumors was

reasonably speculated. The “hot” tumor exhibited significantly

higher infiltrations of various activated immune cells, including

CD4 memory activated T cells, resting NK cells, M1 macrophages,

and CD8 T cells, which demonstrated that TNBC patients with

“hot” tumors had an immuno-active TIME. Similarly, our

functional enrichment analysis presented that B cell and T cell

receptor-signaling pathways were significantly enriched in “hot”

tumors. Significant associations with the activation of T cells and

the regulation of immune responses were found in “hot” tumors.

Complex interactions between immunosuppressive cells cooperate

to suppress the anti-tumor immune responses and promote disease

progression. Hence, our findings might provide a reference for

guiding combinatorial immunotherapy strategies. For example, a

patient with “hot” TNBC tumors might respond to a single ICI,

resulting in the intensification of the preexisting anti-tumor benefits

and further prolonging survival. However, in TNBC patients with

“cold” tumors, a single-agent ICI might not be sufficient. Thus,

radiotherapy, chemotherapy, or novel therapeutic strategies, such as

inducible T cells co-stimulator (ICOS) agonist, NCT03829501,

t rans forming growth factor-be ta (TGF-b ) inhib i tor ,

NCT04429542, along with ICIs might unleash the silent anti-

tumor immunity and further generate promising clinical

prognosis by transforming the “cold” tumor into a “hot” tumor

(2, 16, 41).

Different predictive models focus on the TIME and immune

landscape for TNBC clinical prognosis and therapeutic sensitivity,

but most of them only emphasized clusters and characteristics of

intratumoral immunes cells, mRNA panels, and/or protein

signatures, and their clinical applications remain to be clarified

(42–45). Given the current unsatisfactory immunotherapeutic

benefits in patients with TNBC, patient selection using reliable

biomarkers for predicting responses is necessary (2). PD-L1, TILs,

and TMB are commonly used to guide treatment, but they were

subjected to inconsistent results and low predictive accuracy in

different clinical trials (16, 18–20). Herein, we highlighted the

comprehensive landscape and diagnostic value of CMGs, for the

exploration of novel biomarkers. Moreover, traditional prognostic

signatures were established through an individual-based model,

which required the recognition of survival event information a

priory, i.e., it was “supervised”. In current study, we executed the

unsupervised consensus clustering algorithm based on expression

profiles of CMGs to evaluate the characteristic subclasses of TIME,

which could maximize the homogeneity of immune composition
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within the same cluster and the heterogeneity among different

clusters (46). In addition, we identified candidate CMGs

rigorously by integrating LASSO regression analysis with the

SVM-RFE machine learning algorithm to reinforce the statistical

power of the results.

Subsequently, we identified three CMGs (CD86, TNFRSF17, and

TNFRSF1B) as diagnostic markers by numerous bioinformatics. CD86,

also termed as B70 (B7–2), exerts a suppressive role through CTLA-4

on T cells activation. Thus, its competitive stimulation signal by

binding to CD28 is crucial in immune responses, survival of T

lymphocytes, and generation of cytokines (47). In the stimulatory

status, CD86 can up-regulate its expression via antigen-presenting cells

(APCs), and further combine with CD28 delivering stimulation signals

to promote anti-tumor immune and enhance activating T cells (48, 49).

TNFRSF17, a transmembrane glycoprotein, also known as B cell

maturation antigen, is preferentially expressed by mature B

lymphocytes and critically regulate B cell proliferation and survival,

as well as maturation and differentiation into plasma cells. Previous

studies indicated that TNFRSF17 has a dispensable role in overall B

cells homeostasis and is an important surface protein supporting the

survival of multiple myeloma cells (50, 51). Preclinical models found

that the overexpression and activation of TNFRSF17 was associated

with multiple myeloma, supporting its potential utility as a therapeutic

target. And significant clinical responses in patients with refractory

multiple myeloma who failed at least three prior treatments had been

achieved by the anti-TNFRSF17 antibody-drug conjugate (52).

TNFRSF1B or TNFR2, a member of the TNF receptor superfamily,

is expressed by T cells, deliver activating signals, which are largely

dependent on antigen recognition and participate in activation, clonal

expansion, and differentiation of T cells. Accumulating evidence in

recent years indicates that costimulatory signals via TNFR2 plays

indispensable roles in protective immunity, inflammatory,

autoimmune diseases, and tumor immunotherapy (53).

Based on above three diagnostic markers, we developed a

diagnostic nomogram for TNBC patients, which showed that

patients with high expressions of CD86, TNFRSF17, and

TNFRSF1B had a high probability of “hot” tumor. Besides,

satisfactory predictive performance of this nomogram was

validated in three independent datasets, including the TCGA,

GSE76250, and GSE58812. The “hot” TNBC tumors were mainly

related to the BPs of T cell activation and immune response

regulation, which implied that patients with “hot” tumors might

likely respond to immunotherapy. In consistent with above

presumption, the mIHC results showed that responders to

immunotherapy were significantly associated with high

expressions of CD86, TNFRSF17 and TNFRSF1B in TNBC

patients. Hence, our diagnostic nomogram has the potential to

aid identifying ideal TNBC patients who may benefit from ICIs,

thereby providing immunotherapeutic guidance.

There were some limitations in this study. First, although we

included three different independent datasets in current study, it is a

retrospective analysis and all data were obtained from public

databases, so practical bias might be unavoidable. Second, the

underlying mechanism of these three diagnostic markers
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(TNFRSF17, CD86 and TNFRSF1B) remain poorly understood.

Third, we performed this research by means of bioinformatics,

further experimental validation of their predictive ability and

clinical value are needed in future. Finally, although we

constructed our diagnostic model based on CMGs from TCGA

data consisting of samples from the United States and validated it

using GEO datasets comprising of populations from France and

China, prospective studies in different populations are warranted to

further validate these results.
5 Conclusions

In summary, we comprehensively parse the expression patterns

and clinical value of costimulatory molecules in TNBC patients and

further clustered patients into two TIME subclasses (“hot” and

“cold”) for patients’ stratification. In addition, we identified three

CMGs (CD86, TNFRSF17 and TNFRSF1B) as putative diagnostic

markers, based on which, a novel diagnostic nomogram for

predicting TIME status were constructed and validated with good

predictive accuracy and clinical value. This may provide a new insight

into the value of CMGs in stratifying TIME status of patients with

TNBC, which might serve as a tool to identify ideal candidates and

tailor rational immunotherapeutic strategies for TNBC patients.
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SUPPLEMENTARY FIGURE 1

Comparison of tumor purity among different TNBC patient clusters. The

comparison of tumor purity in TCGA (A); GSE76250 (B); and GSE58812
datasets (C).

SUPPLEMENTARY FIGURE 2

Comparison of tumor-stromal and immune scores among different TNBC

patient clusters. The comparison of stromal scores (A) and immune scores (B)
among different clusters in TCGA dataset; The comparison of stromal scores

(C) and immune scores (D) among different clusters in GSE76250 dataset; The
comparison of stromal scores (E) and immune scores (F) among different

clusters in GSE58812 dataset.

SUPPLEMENTARY FIGURE 3

Comparison of tumor purity between different immune environment
subclasses. Significant differences in tumor purity between the “cold” and

the “hot” tumor groups in TCGA (A); GSE76250 (B); and GSE58812
datasets (C).

SUPPLEMENTARY FIGURE 4

The correlation heat map shows the correlation of 22 immune cells

between two TIME subclasses in TCGA (A), GSE76250 (B), and GSE58812
datasets (C). The number within colored squares represents the strength of

the correlation; the larger is the number, the stronger is the correlation.
Blue represents a negat ive corre lat ion and red represents a

positive correlation.
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5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC
5). Ann Oncol. (2020) 31:1623–49. doi: 10.1016/j.annonc.2020.09.010

7. Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, et al. Advancements in
clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer.
(2023) 22:105. doi: 10.1186/s12943-023-01805-y

8. Masuda N, Lee SJ, Ohtani S, Im YH, Lee ES, Yokota I, et al. Adjuvant capecitabine
for breast cancer after preoperative chemotherapy. N Engl J Med. (2017) 376:2147–59.
doi: 10.1056/NEJMoa1612645
9. Mougalian SS, Soulos PR, Killelea BK, Lannin DR, Abu-Khalaf MM, DiGiovanna
MP, et al. Use of neoadjuvant chemotherapy for patients with stage I to III breast cancer
in the United States. Cancer. (2015) 121:2544–52. doi: 10.1002/cncr.29348

10. Isaacs J, Anders C, McArthur H, Force J. Biomarkers of immune checkpoint
blockade response in triple-negative breast cancer. Curr Treat Options Oncol. (2021)
22:38. doi: 10.1007/s11864-021-00833-4

11. Criscitiello C, Corti C, Pravettoni G, Curigliano G. Managing side effects of
immune checkpoint inhibitors in breast cancer. Crit Rev Oncol Hematol. (2021)
162:103354. doi: 10.1016/j.critrevonc.2021.103354

12. Burstein HJ, Curigliano G, Thürlimann B, Weber WP, Poortmans P, Regan MM,
et al. Customizing local and systemic therapies for women with early breast cancer: the
St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021.
Ann Oncol. (2021) 32:1216–35. doi: 10.1016/j.annonc.2021.06.023
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