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Introduction: Immunotherapies targeting T cells in solid cancers are

revolutionizing clinical treatment. Novel immunotherapies have had extremely

limited benefit for acute myeloid leukemia (AML). Here, we characterized the

immune microenvironment of t(8;21) AML patients to determine how immune

cell infiltration status influenced prognosis.

Methods: Through multi-omics studies of primary and longitudinal t(8;21) AML

samples, we characterized the heterogeneous immune cell infiltration in the

tumormicroenvironment and their immune checkpoint gene expression. Further

external cohorts were also included in this research.

Results: CD8+ T cells were enriched andHAVCR2 and TIGITwere upregulated in

the CD34+CD117dim%-High group; these features are known to be associated

with immune exhaustion. Data integration analysis of single-cell dynamics

revealed that a subset of T cells (cluster_2) (highly expressing GZMB, NKG7,

PRF1 andGNLY) evolved and expanded markedly in the drug-resistant stage after

relapse. External cohort analysis confirmed that the cluster_2 T-cell signature

could be utilized to stratify patients by overall survival outcome.

Discussion: In conclusion, we discovered a distinct T-cell signature by scRNA-

seq that was correlated with disease progression and drug resistance. Our

research provides a novel system for classifying patients based on their

immune microenvironment.
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1 Introduction

Immunotherapies have had good effects against solid cancers by

targeting immune evasion to restore T-cell immunity and are

revolutionizing cancer treatment (1, 2). However, the development of

immunotherapy for acute myeloid leukemia (AML), which is

characterized by the blockade of myeloid differentiation in

hematopoietic stem and progenitor cells, has been rather challenging (3).

AML cells can escape or inhibit immune system mechanisms

by, for example, downregulating major histocompatibility complex

(MHC) molecules or upregulating inhibitory ligands (4, 5).

Treatment for AML depends largely on T-cell-mediated effects (4,

5). Exhausted T cells play a role in AML relapse, even for patients

receiving allogeneic hematopoietic cell transplantation (6).

Deciphering the immunosuppressive microenvironment of

AML has become a research hotspot (4) (7). Recently, the

development and application of single-cell technology have

allowed the characterization of tumor-infiltrating T cells across

cancers (8–10). Notably, exhausted T cells within different cancer

types are diverse and heterogeneous.

AML with t(8;21)(q22;q22.1), a special subtype of core binding

factor carrying the RUNX1-RUNX1T1 fusion genes, accouts for

nearly 8% of all AMLs (11). Though normally considered as a

favorable subtype, nearly 30% of patients with t(8;21)AML relapse

clinically (12, 13).

Our group has been dedicated to evaluating the heterogeneity of t

(8;21) AML. We have constructed a multi-omics dataset for studying

t(8;21) AML; this dataset includes single-cell RNA-seq as well as

whole-exome sequencing data (14–16). In our previous multi-omics

studies (14, 15), patients with relapsed or refractory disease were

shown to have a greater proportion of CD34+CD117dim cells (Blast

population 1, BP1) than other patients.

Here, we aimed to apply a multi-omics approach to characterize

the heterogeneity of immune microenvironment of t(8;21) AML

patients and determine how immune cell infiltration status

influences prognosis.
2 Methods

2.1 Study design

The study design is illustrated in Supplementary Figure S1.

Briefly, we obtained data from newly diagnosed t(8;21) AML

patients, including single-cell RNA-seq and bulk RNA-seq data

(National Omics Data encyclopedia (NODE), OEP000629), from

our previous reports (14). Patients received standard “3 + 7”

induction regimens, including idarubicin and cytarabine, followed

by high-dose cytarabine-based consolidation or hematopoietic stem

cell transplantation (HSCT). In total, 28 of 62 t(8;21) AML patients

relapsed. Of these 28 relapse patients, we observed 20 patients with

drug-resistant disease stages (DRD).

We also used gene expression data of AML patients generated

from Affymetrix arrays and RNA-seq. Data from the GSE37642

dataset, which included data obtained via the GPL96 (n=417) and

GPL570 (n=136) platforms, and the GSE106291 (GPL18460)
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(n=250) dataset were downloaded online (17–20). We also

downloaded the Beat AML (n = 200) (21) and TCGA LAML

(n=140) (22) datasets. Patients were treated according to

protocols described in the corresponding literature. In summary,

data from 1205 patients were analyzed in this study (Table 1).
2.2 Single-cell RNA-seq and bulk RNA-
seq analysis

Bone marrow mononuclear cells (BMMCs) from t(8;21) AML

patients were collected and subjected to the 10X Chromium

platform for indexed sequencing of libraries following paired-end

(2 × 150 bp) sequencing on a NovaSeq platform (Illumina) to

conduct the single-cell RNA-seq analysis. The detailed process was

described in our previous research (14, 15). To generate gene

expression matrices, we utilized the cellranger tool (version 3.1.2,

default settings) from 10X Genomics to align single-cell RNA

sequencing (scRNA-seq) data with the human GRCh38 reference

genome (2020-A version). Both the cellranger software and the

GRCh38 reference were downloaded from the 10X Genomics

website (https://www.10xgenomics.com). Subsequently, the gene

expression matrices were imported into the Seurat package in R

for further analysis (23). For quality control, cells expressing fewer

than 800 genes or containing more than 10% mitochondrial RNA

were excluded. The resulting filtered count matrices from different

time points were then merged using the Seurat package. The

expression data underwent normalization through a global-scaling

normalization method, as implemented by default in the Seurat

package. Following normalization, 2000 variable genes were

identified to analyze expression variability across samples. Batch

effects were removed using ComBat (24, 25). The uniform manifold

approximation and projection (UMAP) technique was used for

visualization (26). Cell cycle phase scores were calculated using the

built-in function CellCycleScoring in Seurat with default

parameters (27). Cells were annotated utilizing the machine-

learning-based software SingleR (28), alongside the identification

of high expression levels of canonical markers, such as CD34 for

progenitor cells, CD3 for T-cells, CD79A for B cells, and CA1 for

erythroid cells. For T-cell cluster analysis, unsupervised clustering

was conducted on the T-cells derived from t(8;21) AML samples.
TABLE 1 The gene sets analyzed in this study.

Patients Samples Platform Accession
number

t(8;21) AML BMMC 10xGenomics
single-cell

NODE_OEP000629 (14)

t(8;21) AML BMMC bulk RNA-seq NODE_OEP000629 (14)

AML BMMC GPL96, GPL570 GSE37642 (17–20)

AML BMMC/
PBMC

GPL18460 GSE106291 (17)

AML BMMC bulk RNA-seq TCGA_LAML (22)

AML BMMC bulk RNA-seq Beat AML (21)
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This was performed using the “FindClusters” function in Seurat

with the resolution parameter set to 0.8. Following this, five distinct

T-cell clusters were identified. Marker genes for each cluster were

determined through the “FindAllMarkers” function, adhering to

criteria that included a log2(fold change) greater than 0.58 (fold

change > 1.5), min.pct > 0.1, and adjusted P < 0.05.

The raw bulk RNA-seq data from t(8;21) AML patients at diagnosis

were obtained previously. Briefly, after aligning raw reads to human

reference genome hg19, we generated indexed BAM files with SAMtools

and acquired count matrix with DESeq2 (29, 30). To calculate the gene

expression, we used the fragments per kilobase million after

nomalization. In addtion, limma package (31) was applied to identify

differentially expressed genes. A heatmap of the 79 immune checkpoint

genes was generated via the Hiplot platform (https://hiplot.com.cn/).
2.3 Cell-cell communication analysis

CellPhoneDB (http://www.cellphonedb.org/) (32) was applied

to analyze cell-cell communication between different cell types with

default parameters. Mean expression of each receptor-ligand pair

was calculated and enrolled for further analysis.
2.4 Construction of the T-cell signature
from cluster_2 T cells via scRNA-seq

Overexpressed genes in cluster_2 T cells were defined as those with

an average log2(fold change) greater than 1.0 and a p value less than

0.05 in the scRNA-seq data. A total of 178 genes were ultimately

screened out from among the highly expressed genes in the scRNA-seq

data of cluster_2 T cells (Supplementary Table S1). GSE37642

(German AMLCG 1999) dataset was applied as the training dataset.

We first conducted univariate cox regression analyis to determine the

significantly prognostic genes in cluster_2 T cells. Then, least absolute

shrinkage and selection operator (LASSO) regression analysis was

utilized to calculate the parameters of lambda.min and lambda.1se,

which providing the optimal gene number interval to construct the

model. Afterwards, we performed the multi-variate Cox regression to

determine the final risk model, of which 14 genes with high coefficients

were selected, 14 T-cell-related genes (named the 14TGS).
2.5 Immune cell infiltration

QuanTIseq (33), CIBERSORT (34) and EPIC (35) were used to

estimate the proportions of infiltrated immune cell types in the

bone marrow microenvironment of t(8;21) AML patients. Groups

were compared with the two-sided Wilcoxon rank-sum test.
2.6 Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) (36) and

Gene Ontology (GO) (37) enrichment analyses were applied to the
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178 genes that characterized the cluster_2 T cells.The adjusted

Benjamini-Hochberg P value was calculaeted to compare groups.
2.7 Statistical analysis

Kaplan–Meier plots were generated, and P values were

determined via the log-rank test. Receiver operating characteristic

(ROC) curves were analyzed with the timeROC package to calculate

the areas under the ROC curves (AUCs) (38). R software (version

4.0.2) was used to perform the analysis.
3 Results

3.1 Heterogeneous immune infiltration
profiles of the CD34+CD117dim

%-high subgroup

To determine the landscape of infiltrating immune cells, we first

conducted immune infiltration analysis with bulk RNA-seq data

from patients newly diagnosed with t(8;21) AML (n = 62) in our

cohort. The proportion of CD34+CD117dim cells in the total CD34+

population of the BM was determined previously by multiparameter

flow cytometry at diagnosis (14). Patients then received standard

induction chemotherapy as described (14). Here, we dichotomized

the whole cohort into two subgroups around the median proportion

of CD34+CD117dim cells (45.5%).

To estimate the proportions of various immune cell subsets, we

used multiple methods, including quanTIseq (33), CIBERSORT

(34) and EPIC (35). The immune infiltration results from

quanTIseq showed that the CD34+CD117dim%-High subgroup

had more CD8+ T cells and monocytes than the CD34+CD117dim

%-Low subgroup (Supplementary Figure S2A). The EPIC and

CIBERSORT algorithms also indicated a higher infiltration of

CD8+T cells in the CD34+CD117dim%-High subgroup, though

the P values were only 0.055 and 0.054, respectively

(Supplementary Figures S2B, C). For the other infiltrating

immune cells, we did not observe intergroup differences by these

three methods. Thus, we further focused on the role of infiltrating

CD8+ T cells, which might indicate a dysfunctional status of the T

cells in the CD34+CD117dim%-High subgroup.
3.2 Overexpression of immune exhaustion-
related genes in the CD34+CD117dim

%-high subgroup

Immune checkpoint genes regulate the immune response by

stimulating or inhibiting pathways (39) [for a summary of immune

checkpoint genes, see (40)]. We hypothesized that CD8+ T cells in

the CD34+CD117dim%-High subgroup were dysfunctional. We then

analyzed the 79 immune checkpoint genes that function as active,

inhibitory or two-sided immune chekcpoint genes (40), most of

which were receptors or ligands in immune-related pathways.
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The CD34+CD117dim%-High risk subgroup had a differential

expression profile than the CD34+CD117dim%-Low risk subgroup

had (Figure 1). Notably, the CD34+CD117dim%-High subgroup

expressed high levels of immune checkpoint inhibitors, including

HAVCR2 (encoding the TIM-3 protein) and TIGIT (encoding the

immunoglobin protein), which were known to be associated with

immune exhaustion (Figure 1; Supplementary Figure S3). In

addition, CD27, CD70, CD226, CD276 and TNFSF9 were also

more highly expressed in the CD34+CD117dim%-High subgroup.

On the other hand, CEACM1 and TNFRSF9 were more highly

expressed in the CD34+CD117dim%-Low subgroup (Supplementary

Figure S3). The highly immunosuppressive phenotype of the

microenvironment might play an important role in promoting

inferior outcomes in the CD34+CD117dim%-High subgroup.
3.3 Single-cell RNA-seq atlas of dynamic
T-cell subsets in t(8;21) AML

To elucidate the complexity of the classifications and functions

of T cells, we reanalyzed our previously generated scRNA-seq

datasets of t(8;21) AML patients at different stages of disease

progression, including the diagnosis, relapse and post-relapse

drug-resistant stages (14). The t(8;21) AML patient received

standard “3 + 7” induction chemotherapy to achieve complete

remission (CR) followed by 3 courses of cytarabine consolidation.

Relapse was observed, and then the patient was treated with IA
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combined with dasatinib which failed to achieve a CR (drug-

resistant disease stage, DRD).

Integrated analysis of T cells at 3 time points revealed 5 subtypes

of T cells (Supplementary Figures S4A, B). Cells were annotated

utilizing the machine-learning-based software SingleR (28),

verifying the identity of T cells (Supplementary Figure S4C).

Compared to the rest BMMCs, T cells had a higher expression of

T-cell markers, including CD3D, CD3E and CD7, each subtype had

a unique gene signature (Supplementary Figures S4D, E).

To identify the subsets of T cells, we compared the expression of

each gene between the clusters and the average of the other cells. We

also conducted a functional enrichment analysis of the highly

expressed genes in each cluster with Gene Ontology. Specifically,

LYZ, CLEC11A, MGST1 and IFITM3 were highly expressed in

cluster_0 (Figure 2). GO enrichment analysis showed that cluster 0

was enriched in the regulation of cell adhesion and T cell activation

(Figure 3A). The genes overexpressed in cluster_1 were LTB, IL7R

and CXCR4, which are markers of naïve T cells. Cluster_1 T cells

were enriched in the T cell differentiation and lymphocyte

differentiation (Figure 3A).

Cluster_2 highly expressed GZMB, NKG7, PRF1 and GNLY,

which are cytokines and effector molecules (Figure 2). Leukocyte-

mediated immunity and cell killing were enriched in cluster_2 T

cells. Cluster_3 highly expressed CD34, IL8 and SOX4, which are

required for T-cell development (Figure 2). Cluster_4 highly

expressed KIAA0101, TYMS, TK1 and PCNA, which are involved

in the cell cycle, as further demonstrated by its higher G2M and S
FIGURE 1

Heatmap of the expression of 79 immune checkpoint genes from bulk RNA-seq of t(8;21) AML patients at diagnosis. Each column represents a
sample, and each row represents an immune checkpoint gene. The 79 genes were characterized as having active, inhibitory and two-sided effects
on the immune responses. The upper row shows the corresponding percentage of CD34+CD117dim cells in each sample detected via flow
cytometry. The lower row shows the corresponding subgroup separated by the median CD34+CD117dim population, namely CD34+CD117dim%-High
subgroup and CD34+CD117dim%-Low subgroup. *Denotes the differentially expressed genes between the two subgroups, namely CD34+CD117dim

%-High subgroup and CD34+CD117dim%-Low subgroup. Statistical analyses were conducted with a two-sided Wilcoxon rank-sum test. *p < 0.05.
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scores (Supplementary Figure S4F). DNA replication was enriched

in cluster_4 T cells (Figure 3A).

We observed dynamic changes in the proportions of T-cell

subtypes as the disease progressed and after treatment with multiple

chemotherapies (Figures 3B, C). Specifically, cluster_2 T cells made

up a low percentage of cells at disease onset and relapse, while in

samples from patients who presented resistance to cytarabine

treatment, cluster_2 T cells exhibited marked expansion, which

may suggest that this T subtype reflected treatment failure and that

the number of T cells contributed to drug resistance (Figure 3C).
3.4 Construction of the T-cell signature
from cluster_2 T cells via scRNA-seq

AML cells interact with the immune microenvironment,

including dysfunctional T cells and the accumulation of

macrophages, further influencing patient prognosis and clinical

outcome (4). We thus hypothesized that in AML patients,

dysfunctional T cells existed and impaired survival. To test the

potential prognostic value of the cluster_2 T-cells signature in the

AML cohort, we constructed a T-cell signature. According to the

criteria described in the Methods section, a total of 178 genes were

included (Supplementary Table S1).

To identify T-cell-related genes related to the prognosis of AML

patients, we used the GSE37642_GPL96 (German AMLCG 1999)

dataset as the training dataset. By means of univariate Cox

regression, 34 of 178 genes were prognostic factors associated

with overall survival (Supplementary Table S2). We further

utilized LASSO regression to calculate the weighting coefficient at

the optimal parameter l (Figures 4A, B).
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Using multivariate Cox regression analysis, a final risk model

based on these 14 T-cell-related genes [AES, DDIT4, GPR56

(ADGRG1), HOPX, IFITM1, IFITM2, LAIR2, LSP1, MGEA5

(OGA), OPTN, PRKCH, SH3BGRL3, SUN2 and YWHAQ] was

constructed, which we named 14TGS (Supplementary Figures

S5, S6).

We chose the median 14TGS score as the cutoff value to divide

the whole group into a high-14TGS subgroup and a low-14TGS

subgroup. In the training cohort, the high-14TGS subgroup had

inferior outcomes, with a median OS time of 0.658 years vs. 3.181

years in the low-14TGS subgroup (Figure 5A). The area under the

curve (AUC) values of the ROC curves for the prediction of 1-year,

3-year and 5-year OS were 0.726, 0 .814 and 0.808,

respectively (Figure 5A).
3.5 Expanded external cohorts to validate
the 14TGS signature

Next, we tested the prognostic efficiency of 14TGS in external

cohorts, including expression profiling by array (17–20), data

generated with bulk RNA-seq, the TCGA dataset and the Beat

AML dataset (21, 22).

In validation cohort_1 (GSE37642_GPL570), the median OS

times in the high and low subgroups were 0.866 years and 2.236

years, respectively (log rank test, p < 0.001) (Figure 5B). The AUCs

for predicting 1-year, 3-year and 5-year OS were 0.62, 0.68 and

0.748, respectively (Figure 5B). In validation cohort_2

(GSE106291), the median OS times in the high and

low subgroups were 1.20 years and 4.19 years (log rank test, p <
FIGURE 2

Heatmap of selected top differentially expressed marker genes for each of the 5 T-cell clusters across different stages, including diagnosis, relapse
and post-relapse, according to the single-cell RNA-seq data. The upper row shows the corresponding sample from different stages. The lower row
shows the cell clusters. Each row represents the relative expression level of genes, and each column represents a cell from the scRNA-seq data.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1424933
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1424933
0.001), respectively. The AUCs for the prediction of 1-year, 3-year

and 5-year OS were 0.618, 0.639 and 0.695, respectively (Figure 5C).

14TGS had good performance in terms of gene expression

according to the array platform, and we further tested the
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prognostic value of the data generated via the bulk RNA-seq

platform. In validation cohort_3 (TCGA), the median OS times

in the high and low subgroups were 0.838 years and 2.589 years (log

rank test, p < 0.001), respectively. The AUCs for the prediction of 1-
B C

A

FIGURE 3

Single-cell RNA-seq atlas of T cells across disease states in the AML-016. (A) Gene Ontology enrichment analysis of the highly expressed genes in T
cell clusters across disease stages. Biological process (BP) terms are shown, and the P value was adjusted by Benjamini-Hochberg correction. (B) Bar
plot showing the relative proportions of the T-cell clusters across the disease samples. Each color represents a different T cell cluster. (C) Line chart
showing the dynamic changes in the proportions of T-cell clusters across the disease samples. The lower panel shows the treatment course of
AML-016. Briefly, patient received standard “3 + 7” induction chemotherapy to achieve complete remission (CR) followed by 3 courses of cytarabine
consolidation. Relapse was observed, and then the patient was treated with IA combined with dasatinib which failed to achieve a CR.
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year, 2-year and 3-year OS were 0.653, 0.718 and 0.683, respectively

(Figure 6A). In validation cohort-4 (Beat AML), the median OS

times in the high and low subgroups were 1.06 years and 2.38 years

(log rank test, p = 0.001), respectively. The AUCs for the prediction

of 1-year, 2-year and 3-year OS were 0.678, 0.687 and 0.74,

respectively (Figure 6B). In addition, we compared the 14TGS

score among the different risk subgroup stratified by European

LeukemiaNet (ELN) recommendations (41). As shown in

Supplementary Figure S7, the adverse subgroup had the highest

14TGS score than favorable and intermediate subgroup, both for

the TCGA AML and Beat AML datasets.

Consistent with the results in the training cohort, patients with

high 14TGS scores presented poorer clinical outcomes than those

with low 14TGS scores. All the AUC values supported the

prognostic value of the 14TGS model.
4 Discussion

Our previous multiomics studies identified a unique cell subset,

namely CD34+CD117dim cells (Blast population 1, BP1) that

promoted disease progression in t(8;21) AML. In this work, we

characterized the special immune microenvironment of high risk t

(8;21) AML patients (CD34+CD117dim%-High subgroup) and

evaluated longitudinal dynamic changes in the expression profiles

of immune cells. Our research further characterized the complex

microenvironment of AML, including malignant blast populations

and complex T-cell subsets leading to clinical relapse and an

unresponsive state to chemotherapy. In addition, we constructed

the 14TGS model to stratify AML patients by their predicted

survival outcomes.

The mechanism by which dysfunctional T cells impact the

chemotherapy response is rather complex (42). First, AML induces

a largely immunosuppressive bone marrow microenvironment, as
Frontiers in Immunology 07
indicated by reduced levels of cytotoxic T cells and NK cells, and

this immunosuppressive state facilitates the immune escape of

leukemic stem cells (LSCs), leading to chemotherapy resistance

(4). Other reports have shown that the increase in senescent-like T

cells in AML is associated with a weaker reponse to induction

chemotherapy (43).

T-cell exhaustion, characterized by the expression of inhibitor

proteins, including PD-1 and TIM3, is a phenotypically and

mechanistically distinct state of T cells (44). The presence of

exhausted T cells is usually related to poor outcomes in patients

with a variety of cancers (45). Several studies have described the

heterogeneity and functions of T cells in AML. Van Galen et al.

reported a reduction in the proportion of CTLs in AML patients

compared to that in healthy controls (46), and Schnorfeil et al.

reported an increase in PD-1 expression on T cells in the bone

marrow at relapse posttransplantation (47). Additionally, the

efficacy of immunotherapies, such as immune checkpoint

inhibitors, is largely dependent on the levels of “precursor

exhausted” CD8+ T cells, which have been suggested to exist

according to studies of multiple tumor models (48–50).

In this study, we identifed 5 clusters of T cells. There was a high

proportion of cluster_0 T cells (which highly expressed LYZ,

CLEC11A, MGST1 and IFITM3) at diagnosis and relapse, but this

proportion declined sharply in the drug-resistant disease stages.

Research has shown that LYZ (lysozyme) and IFITM3 are

important for antioxidant and anti-inflammatory effects (51, 52).

This was in accordance with the phenomenon that the reduction of

this cluster was drug resistant. Cluster_4 T cells (highly expressing

KIAA0101, TYMS, TK1 and PCNA), reflecting the state of cell

proliferation rate, were reduced to an extremely low level. This

finding was also consistent with the findings in another research

analyzing the immune environment of melanoma (53), showing

that the number of cycle-stage T cells decreased compared to that in

the pre-treatment stage.
BA

FIGURE 4

Construction of the T-cell signature from cluster_2 T cells via scRNA-seq based on LASSO regression in the training cohort (AMLCG 1999,
GSE37642_GPL96). (A) The cross-validation results for determining the optimum value of log(l). The dased line showed the value of lamda.min (Left)
and lambda.1se (Right). (B) LASSO coefficients of the T-cell cluster model in the training cohort. Different curve denoted different genes.
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Cluster_1 T cells (which highly express LTB, IL7R and CXCR4)

showed a unique dynamic pattern; compared with those at

diagnosis, these cells decreased in number during relapse but

increased in number during drug-resistant disease stages.

Considering that these genes are involved in chemokine responses

(54), this indicated a higly unstable inflammatory state.

Cluster_2 T cells, which highly expressed GZMB, NKG7, PRF1

and GNLY, expanded rapidly and greatly following disease

progression. Given that the expansion of cluster_2 T cells had no

clinical response to reinduction therapy at the post-relapse stage.

Cluster_2 T cells should not be characterized as cytotoxic T cells.
Frontiers in Immunology 08
Further in vitro experiments, which directly analyze the interaction

between cluster_2 T cells and blasts, are still needed to clarify their

role in disease progression.

The gene signature we constructed included 14 genes, namely,

AES (TLE5), DDIT4, GPR56 (ADGRG1), HOPX, IFITM1, IFITM2,

LAIR2, LSP1, MGEA5 (OGA), OPTN, PRKCH, SH3BGRL3, SUN2

and YWHAQ. Most of these genes, including those encode IFITM

proteins and leukocyte-associated immunoglobulin-like receptors,

function in immune-related processes. The prognostic efficiency of

14TGS was further validated in other AML cohorts, and 14TGS

demonstrated robust predictive value. Interestingly, one recent
B

C

A

FIGURE 5

Overall survival (OS) and receiver operating characteristic (ROC) curve analysis of the 14TGS model in the training cohort (AMLCG 1999,
GSE37642_GPL96, (A), validation cohort-1 (GSE37642-GPL570, (B) and validation cohort-2 (GSE106291, (C). (Left panel) Kaplan-Meier curves and
log-rank tests were used to estimate and compare the survival differences between the high- and low- risk subgroup. (Right panel) Specificity and
sensitivity of the 14TGS model was calculated using the timeROC package and aera under (AUC) at 1-year, 3-year, 5-year were shown.
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study published in Blood reported a distinct single-cell T-cell

signature associated with stem cell transplantation outcome in

AML patients; one of the included genes was GPR56, a biomarker

of alloreactive CD8+ T cells (55). This further suggested that

cluster_2 T cells are a novel subset that has different phenotypes

and mechanisms of action.

In conclusion, through a multi-omics study of longitudinal t

(8;21) AML, we revealed the heterogeneity of immune cells in the

microenvironment and described the gene signatures and dynamic

evolution of T-cell subsets. Further exploration of the gene

signature of cluster_2 T cells revealed that this signature was a

valuable prognostic indicator of survival in AML cohorts; the genes

in this signature may represent clinical targets that could be

investigated in more depth. Our research provides a novel system

for classifying patients based on their immune microenvironment.
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SUPPLEMENTARY TABLE 1

Overexpressed genes in the cluster_2 T cells based on the single-cell RNA-
seq data of AML-016. Genes were defined as those with an average log2(fold

change) greater than 1.0 and a p value less than 0.05 in the scRNA-seq data. A
total of 178 genes were ultimately screened out.

SUPPLEMENTARY TABLE 2

Univariate Cox analysis of the cluster_2 T genes to assess genes significantly
correlated with overall survival in the training cohort (AMLCG 1999,

GSE37642_GPL96). HR, hazard ratio.
Frontiers in Immunology 10
SUPPLEMENTARY TABLE 3

LASSO Cox multivariate regression analysis to construct the risk model in the
training cohort (AMLCG 1999, GSE37642_GPL96). 14 genes with high

coefficients were selected and constitude the 14 T-cell-related genes

(named the 14TGS). HR, hazard ratio. Coef, Coefficient.

SUPPLEMENTARY FIGURE 1

Overview of the study design.

SUPPLEMENTARY FIGURE 2

Infiltrating immune cells in the BM microenvironment of t(8;21) AML patients.

Bar plot showing the comparison of inferred infiltrated immune cells between
the two subgroups, namely CD34+CD117dim%-High subgroup and

CD34+CD117dim%-Low subgroup, through quanTIseq (A), EPIC (B) and

CIBERSORT (C). Statistical analysis was compared with a two-sided
Wilcoxon rank-sum test.

SUPPLEMENTARY FIGURE 3

Differences in the expression of immune checkpoint genes between the two

subgroups, namely CD34+CD117dim%-High subgroup and CD34+CD117dim

%-Low subgroup. Statistical analysis was compared with a two-sided

Wilcoxon rank-sum test.

SUPPLEMENTARY FIGURE 4

Single-cell RNA-seq atlas of T cells across disease states in the AML-016
cohort. (A, B). Uniformmanifold approximation and projection (UMAP) plot of

T cells analyzed via scRNA-seq and integrated across all samples after
removal batch effects. (A) T-cell clusters annotated with different colors. (B)
Sample information annotated with different colors. (C) UMAP plot showing
annotation results according to the the machine-learning-based software

SingleR. (D) Violin plot showing the expression of T-cell markers, including

CD3D, CD3E, CD7, between T cells and the rest of BMMCs in AML-016. (E)
UMAP plot showing the expression of T-cell markers, including CD3D, CD3E,

CD7 and RORA. (F) Violin plot showing the scores of cell cycle-related genes,
namely G2M and S scores. (G) CellPhoneDB analysis showed the potential

communication of cluster_2 T cells with AML blasts.

SUPPLEMENTARY FIGURE 5

Forest plot showing the multivariate analyses in the training cohort (AMLCG
1999, GSE37642_GPL96). HR, hazard ratio. CI, confidence interval.

SUPPLEMENTARY FIGURE 6

Kaplan-Meier curves showed the survival difference stratified by T-cell-

related genes in the training cohort (AMLCG 1999, GSE37642_GPL96). Log-
rank tests were used to compare the survival differences.

SUPPLEMENTARY FIGURE 7

Comparsion of 14TGS score among different risk subgroup according to the
ELN risk stratification. Wilcoxon test was performed to calculate the statistical

differences. *p < 0.05; **p < 0.01; ***p < 0.001.
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