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C-reactive protein (CRP) is a plasma protein that is evolutionarily conserved,

found in both vertebrates and many invertebrates. It is a member of the pentraxin

superfamily, characterized by its pentameric structure and calcium-dependent

binding to ligands like phosphocholine (PC). In humans and various other

species, the plasma concentration of this protein is markedly elevated during

inflammatory conditions, establishing it as a prototypical acute phase protein that

plays a role in innate immune responses. This feature can also be used clinically

to evaluate the severity of inflammation in the organism. Human CRP (huCRP)

can exhibit contrasting biological functions due to conformational transitions,

while CRP in various species retains conserved protective functions in vivo. The

focus of this review will be on the structural traits of CRP, the regulation of its

expression, activate complement, and its function in related diseases in vivo.
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1 Introduction

Pentraxin (PTX) is a superfamily of multifunctional proteins that are highly conserved

in evolution and is named because of its “pentagonal” structure under electron microscope

observation. PTX originated early in evolution and is called the “living fossil”. Many forms

of PTX in ancient horseshoe crabs about 250 to 300 million years ago (1, 2). As a

superfamily protein, PTX has been conserved in phylogeny from arachnids to mammals. Its

typical feature is the presence of a 200-amino acid pentraxin domain at its carboxyl end (3,

4), called the pentramerization protein domain. Also, all members of this family share a

conservative sequence of 8 amino acids in the pentameric protein domain (His-x-Cys-x-

Ser/Thr-Trp-x-Ser, where x can be any amino acid), called the pentameric protein tag, or

the “signature sequence” of the pentameric protein (5).
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The members of the PTX family identified so far mainly include

C-reactive protein (CRP), serum amyloid protein P component

(SAP), PTX3, PTX4, and neuronal PTX (NPTX), etc. (3, 5). Tillett

and Francis first discovered CRP can react with C-polysaccharides

in the pneumococcus cell wall in the presence of calcium ions (6).

SAP is calcium-dependent recognition and binding of amyloid

deposited in tissues. It is a highly conserved plasma glycoprotein

in humans and all other species studied. Almost all amyloid

deposits have been detected. SAP is present in both of them,

which leads to a very high concentration of SAP in amyloid

deposits, which can account for about 15% of the total mass (7).

The amino acid sequence homology between SAP and CRP is as

high as 51%. The structure observed under the electron microscope

is highly similar, both showing a pentameric disc-like structure.

SAP is considered to be directly related to CRP and originated from

single gene duplication (8, 9). PTX3, as a secreted protein

containing a pentameric protein domain, was first identified in

fibroblasts, induced by IL-1 in endothelial cells, or produced by

TNF stimulation (TSG14) in fibroblasts (10). The long-chain

pentameric proteins with the same overall composition identified

after PTX3 include guinea pig acrosome pentameric protein,

neuronal pentameric protein (NPTX1, NPTX2), PTX4 and

neuronal pentameric receptor (NPR). Among them, NPR is a

transmembrane molecule with a transmembrane domain at its

amino terminus (11, 12). CRP and SAP orthologs in different

mammalian species have a high degree of sequence similarity.

Still are significant differences in serum basal levels and changes

during the acute phase reaction. CRP and SAP are the main acute

phases in humans and mice respectively (13). PTX3 is highly

conserved in humans and mice, while CRP and SAP, their

sequence and expression regulation have evolutionary differences

between mice and humans (13).

CRP is a typical short-chain PTX member, mainly synthesized

in the liver to respond to inflammation. The most significant is the

inflammatory stimulus signal mediated by the cytokine IL-6.

Pentraxins recognize a wide range of exogenous pathogenic

substances and mutated self-molecules, and behave as acute-phase

proteins in a species-specific manner. The high degree of sequence

homology and the appearance of the pentameric molecule that can

be quickly identified indicate that all the different plasma proteins

that bind to the classical pentameric ligands in a calcium-dependent

manner belong to the same family member. Although the “long

pentamer” contains moderately homologous sequence domains, it

does not have the appearance of the pentamer. Also, calcium-

dependent binding is necessary for the stability of secondary,

tertiary and quaternary structures of most pentamers. It is also an

essential element for the binding of pentamers to specific ligands,

but “long pentamers” do not have such feature.

CRP is an acute-phase protein primarily synthesized in liver

hepatocytes and plays a critical role in inflammation response (14–

17). When the body is invaded by pathogens such as bacteria, fungi,

parasites or subjected to inflammatory stimuli, as well as after tissue

damage caused by trauma and progressive cancer, the plasma

concentration of CRP can increase rapidly within 6–8 hours and

reach the peak in about 48 hours, rising 1000-fold from the basal level

~ 0.5 mg/ml (18). It will return to baseline once the inflammation
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subsides (19). The plasma levels of CRP exhibit a positive correlation

with the severity of inflammation, making it a commonly employed

nonspecific biomarker in clinical applications (20–22).

Furthermore, CRP acting as an innate pattern recognition

receptor (23), can precipitate the somatic C-polysaccharide of

Streptococcus pneumoniae on microorganisms in the presence of

calcium, then triggers the innate immunity through the classical

complement pathway by interacting with the global head region of

C1q or other cell surface glycoproteins such as FcgR receptors (16,

24, 25). The structural analysis of the CRP binding phosphocholine

(PC) ligand and C1 complex using Cryo-Electron Tomography

(Cryo-ET) revealed a novel mechanism. Contrary to previous

understanding, it was observed that CRP does not form an Fc-

mediated hexamer antibody platform to bind and activate the C1

complex. Instead, CRP forms a rectangular platform assembled by

tetrameric CRP to effectively bind and activate complement (25).
2 CRP structure-related features

Human CRP (huCRP) has a molecular weight of approximate

115 kDa and is characterized by a “jelly-like lectin fold”. Generally,

CRP is composed of five identical subunits which assemble into a

cyclic pentamer around a central pore (26). One side within each

promoter contains a calcium-binding pocket, accommodating two

calcium irons to stable its structure, which further mediates PC

ligand-binding named recognition face (Figure 1). The other side

possesses a single a-helix, which binds to ligands such as C1q,

therefore named effector face (Figure 1). HuCRP is non-

glycosylated and has no inter-subunit covalent bond, while a sole

disulfide bond within each subunit formed between Cys36 and

Cys97. The formation of disulfide bonds in hCRP protomers should

occur in the early spontaneous folding stage driven by the

conformational folding of six b strands, which plays a vital role in

the subsequent conformational reconstruction of the whole subunit

and the pentamer assembly (29).
2.1 CRP-ligand affinity

The physiological function of CRP is related to calcium-

dependent ligand affinity (30, 31). Many studies have used

calcium-dependent PC affinity to successfully separate CRP from

blood, such as horseshoe crab (32), mouse (33), dog (34), cat (35),

cow (36), since the calcium-dependent PC affinity is conserved in

the species and as a basis for testing the function of multi-species

CRP in experiments. The CRP of human, mouse and rat were

expressed in different systems and purified based on the calcium-

dependent binding properties to PC (37–40). The binding ability of

pentamer CRP to pattern recognition ligand PC was no significant

difference among different species (38). In addition, CRP not only

can bind to various pathogens, including fungi, yeasts, and bacteria,

but also has calcium-dependent binding properties to chromatin,

histones, and small ribonucleoprotein U1, and glycans (41). In the

absence of calcium, CRP can bind to polycations such as poly-L-

lysine, poly-L-arginine, and myelin essential protein (42).
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2.2 Structural analysis of CRP

Shrive team first obtained the X-ray crystal structure of huCRP

in a calcium-binding state (PDB ID: 1GNH) (43). Thompson group

further resolved huCRP in PC-binding state in the presence of

calcium (PDB ID: 1B09) (44). It reveals that Phe-66 and Glu-81 are

two key residues that mediate the binding of PC to CRP. The

distance between the point and the calcium ion is only 0.4 nm (45).

Among them, Phe-66 provides hydrophobic interaction with the

methyl group of PC, while Glu-81 is located at the other end of the

pocket and interacts with the positively charged choline nitrogen

(46). Ramadan et al. solved huCRP in a calcium-depleted state

(PDB ID: 1LJ7) (26), revealing a decamer with two independent

pentamers stacked near parallel in a face A-to-face A form. In 2014,

Guillon et al. obtained two crystal structures of huCRP, assembled

in a staggered decameric form (47). One of them is stabilized by two

zinc ions trapped within a cleft on the effector’s face, also in the

presence of HIV-1 Tat protein (PDB ID: 3PVN).

With the rapid development of Cryo-ElectronMicroscopy (Cryo-

EM) and artificial intelligence (AI), it is more convenient and fast to
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analyze and predict the three-dimensional conformation of protein

space. Noone et al. used Cryo-EM to analyze the structure of CRP at

pH 7.5 or pH 5 and in the presence or absence of the ligand PC, and

found that the previous structure obtained from crystallography was

an imperfect pentagon with variable angles between each subunit

(48). The pentamer CRP obtained by Cryo-EM was found to have C5

symmetry, and the subunit was formed into an isometric regular

pentagon (48). Subsequently, they applied the Cryo-ET resolved the

structure of CRP binding to PC after binding to C1 complex.

Revealed new interfaces, interpreting previously contradictory

biochemical data, and clarifying the possible mechanism by which

CRP regulates the complement system (25).
2.3 Conformational forms of CRP

Generally, huCRP primarily exists in two conformational

forms. One is the native homo-pentameric form, namely

pentameric CRP (pCRP) or native CRP (nCRP), the other is the

dissociated form, namely monomeric or modified CRP (mCRP)
B

C D

A

FIGURE 1

The native structure and associated activities of CRP are evolutionarily conserved. (A) Cryo-EM structure of CRP complexes with PC. The CRP-PC
complex was achieved from Protein Data Bank (PDB entry 7PKE) and the ribbon diagram of the CRP Cryo-EM structure of CRP-PC-Ca2+ was
generated by ChimeraX software (27). (B) View of the ligand binding face of mCRP. Each protomer contains a binding site, which is shown occupied
by 2 calcium (green) and 1 PC molecule (magenta). (C) Side view of the pentameric form of CRP. Which mediates PC ligand-binding named
recognition face, and the other side possesses a single a-helix, which binds to ligands such as C1q, therefore named effector face. (D) The
pentameric form structures of mouse and rat CRP were generated with AlphaFold 3 using five subunits (28).
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(49–54). Pentameric CRP can undergo continuous structural

changes to form mCRP under various conditions, including low

pH, absence of calcium, increased temperature, urea chelation, or

binding to activated platelets, apoptotic/necrotic cells, and

microparticles (55). It is commonly accepted that pCRP responds

to tissue damage or infection by rapidly increasing its blood

concentration. Accumulating evidence suggests that pCRP

dissociates into mCRP and that most of the proinflammatory

effects of CRP are expressed only after dissociation of its native

pentamer assembly into mCRP.

It has been shown that CRP exhibits a rapid pentamer-decamer

equilibrium at 2 mM Ca2+, with the proportion of decamers

decreasing as NaCl concentration increases (56). Both pH and the

presence of PC appear to affect the ratio of CRP pentamers to

decamers, as well as particle orientation within glass ice, with a pH 5

buffer producing more decamers than a pH 7.5 buffer (48). Based on

site-directed mutagenesis studies of amino acids at specific sites,

Agrawal and Volanakis proposed that the interaction between CRP

and C1q is dependent on conformational changes in the CRP

pentamer (57). Through the ligand binding ability under

simulated acidic conditions, it was found that the ligand binding

was significantly increased at pH 5, and the binding to immobilized

C1q and immunoglobulin was also increased. That is, subtle

changes in charged residues on CRP and immune ligands can

significantly increase their association with inflammatory stimulus

response, potentially activating the downstream immune effector

function of CRP (48).

Monomeric CRP has been considered as a major contributor in

local inflammation (54, 55, 58). Not only it can induce pro-

inflammatory effects on cells such as monocytes and endothelial

cells (59), and trigger the secretion of interleukin-8 (IL-8) by human

neutrophils (60), but also promote inflammation of the human

coronary artery endothelial cells phenotype through a p38 mitogen-

activated protein kinase-dependent mechanism (61) and enhance

neutrophil localization and activation at inflamed or injured

vascular sites (62, 63). In addition, mCRP can promote

neutrophil-endothelial cell adhesion and delay apoptosis of

human neutrophils (64). With accumulating in human

atherosclerotic lesions, mCRP can induce monocyte chemotaxis,

promote neutrophil survival, which may amplify the inflammatory

response (52, 65).
3 Regulation of CRP expression

The huCRP gene is located in the 1q23–24 region of the

chromosome. It encodes 224 amino acids, of which 18 amino

acids at the N-terminus are the signal peptide sequence. The

whole gene contains only one intron, which separates the region

into encoding the signal peptide and the mature protein (66). CRP

responds to IL-6 and IL-1b combined stimulation that can produce

an acute phase typically. The promoter region contains two acute-

phase response elements, including a binding site for the liver-

specific transcription factor hepatocyte nuclear factor (HNF1) and

two C/EBPb (CCAAT/enhancer-binding protein b) binding sites

for interleukin-6 (IL-6) induced transcription (67, 68).
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The expression of CRP is tissue-specific and is mainly produced

by hepatocytes. However, it can also be synthesized in monocytes,

neuronal cells, lymphocytes, and atherosclerotic plaques, although

CRP produced in those cells or tissues does not contribute to the

serum level (69). Its serum concentration is significantly increased in

inflammatory diseases such as cardiovascular complications (70).

CRP plasma base level can be affected by many factors, such as

chronic infectious diseases caused by pathogen invasion or smoking,

bodymass index (BMI), coffee intake, oral contraceptives, and genetic

factors, etc. (71).

The synthesis of CRP in hepatocytes is mainly regulated at the

transcription level by the stimulator cytokine IL-6 and interleukin-

1b (IL-1b) (67, 72). Transcription factors, such as STAT3, Rel p50,

c-Rel, and C/EBPb/d are mainly involved in the regulation of CRP

expression. STAT3 and Rel bind adjacent to the CRP promoter in

the non-coding region, allowing closer binding of C/EBP, an

important signaling molecule, to the nucleic acid and promoting

its efficiency in inducing CRP expression (73). The NF-kB binding

site is located at -69 in the proximal CRP promoter, overlapping

with the transcription factors OCT-1/HNF-1/HNF-3 binding sites.

IL-1b induces CRP transcription through the proximal CRP

promoter by activating NF-kB-p50/p65 in synergy with IL-6-

activated C/EBPb (74). In the absence of C/EBPb, a complex

containing C/EBPd and RBP-Jk is formed at the C/EBP-p50 site.

The synergistic effect of IL-6 and IL-1b in the induction of CRP

gene expression is partially mediated through the NF-kB locus (74).

OCT-1 can inhibit CRP transcription induced by IL-6 and IL-

1b through the proximal CRP promoter (75). In addition, post-

transcriptional level regulation also plays a particular role in CRP

expression, especially in the acute phase when CRP is secreted in

large amounts. Under normal physiological conditions, CRP

expression is at a very low level. Most CRP is bound to

carboxylesterase and stored in the endoplasmic reticulum (ER)

(76). In the acute phase, the conformation of carboxylesterase

changes, which significantly reducing the binding capability with

CRP, thus CRP is released from ER (77).

The expression pattern of CRP is causally determined by the

promoter methylation status tuned by DNMT3A and TET2 (21).

The CpG deficient promoter motif of CRP is located at the binding

sites of STAT3, C/EBP-B, and NF-kB. These motifs are highly

methylated in the resting state but undergo STAT3 and NF-kB-

dependent demethylation in response to cytokine stimulation,

leading to a significant increase in C/EBP-B, thereby promoting

CRP expression (21). Further analysis showed that reversible

methylation could also regulate highly induced gene expression

with CpG promoters represented by APRs. Thus, these promoters

lacking CpG may evolve TF binding sites containing CpG, utilizing

dynamic methylation to achieve a rapid and reversible response

(21, 78).

Natural conformational CRP is the dominant conformation

secreted by most cell types, but some cells also directly release

mCRP. When mCRP is injected into circulation can be rapidly

redistributed into tissues through a lipid raft mediated mechanism.

However, the transport of mCRP locally produced in the

inflammatory microenvironment into the circulation remains

unclear (79, 80).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1425168
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2024.1425168
4 Functional differences of CRP in
humans and experimental animals

Currently, research on the impact of human CRP has

predominantly involved introducing human CRP into mouse and

rat models either through transgenic methods or direct injection

(72, 81, 82). It is recognized that CRP behaves differently in mice

and rats compared to humans, particularly in its role as an acute

phase protein and its interaction with the complement system (83).

This variation has led to the consideration of these animal models as

naturally deficient in CRP expression or function, thus rendering

their endogenous CRP activity negligible. However, whether CRP

can activate auto-complement in rats is still controversial, and there

are concerns that serum CRP levels in mice may be inaccurately

measured (84). Human CRP recognizes microorganisms and

apoptotic cells by binding to PC and promotes phagocytosis of

phosphorylated substances by activating the classical pathway of

complement (CP) (9). In addition, CRP inhibits complement

hyperactivation by binding to complement factor H (CFH), the

major inhibitor of the alternative pathway (AP) (85). While human

CRP is known to adopt an activated conformation and interact with

C1q and CFH to activate or inhibit complement, respectively (86),

doubts have been raised about the conservation of these interactions

in rodents (86, 87). Our recent findings show that mouse, rat, and

human CRPs all exhibit complement activating capacity, binding to

their own C1q and activating their respective classical complement

pathways alone (38, 86).

Moreover, endogenous CRP knockout in mice and rats, and

human CRP complementation (intravenous injection and gene

knock-in) showed consistent significant phenotypes in acute liver

injury models that contribute significantly to complement

activation. CRP has a protective effect on acute liver injury and is

able to delay death caused by sepsis, indicating that CRP plays an

important protective function and is conserved among species (38,

86). It is further pointed out that endogenous CRP in mouse and rat

animal models should not be ignored when studying the function of

human CRP. This suggests that the research paradigm and

experimental design of relevant animal models need to be

reconsidered and optimized.
5 CRP and clinical diseases

Until now, no human CRP gene defects have been reported, nor

even any sequence polymorphisms in the protein itself. Although

their actual function in humans is unknown, gene deletion studies

in mice suggest that CRP contribute to innate immunity. CRP is the

quintessential human acute-phase protein that is used in clinical

practice around the world to monitor disease activity. A growing

number of clinical trials have shown that CRP is related to many

diseases. In cardiovascular research, CRP has been used to diagnose

cardiovascular disease (CVD) and as a marker to indicate disease

status and incidence (88). Besides, CRP is associated with

atherosclerotic vascular disease (ASVD), systemic lupus

erythematosus (SLE), cancer, and other diseases (14, 89–91). Its
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influence on these diseases occurrence, development, and prognosis

should not be underestimated (92, 93). CRP is also related to the

epidemic virus COVID-19 and is an independent predictor of

mortality from COVID-19 infection (94–97).
5.1 CRP and innate immunity

CRP participates in the innate immune response as a pattern

recognition receptor, and each offive homologous globular subunits

has a calcium-regulated binding pocket for ligands expressing the

PC moiety. Upon binding to ligands on damaged and apoptotic

cells, it undergoes a conformational change that allows binding and

activation of C1 and may lead to dissociation of monomeric CRP

(81). Although CRP recognition of PC or related molecules on

microorganisms plays an important role in our defense, a more

important role may be the binding of CRP to PC in damaged

membranes. PC are not normally exposed to the cell surface but are

exposed due to damage by complement or certain phospholipases

(98). CRP binds to apoptotic and necrotic cells, and defective

clearance of apoptotic cells is associated with autoimmune

diseases (81). The colocalization of CRP with fixed complement

in areas of tissue injury suggests that CRP may play a role in

clearing cellular debris from tissue. Mark et al. showed that CRP

had inherent pro-inflammatory effects, either on human peripheral

blood mononuclear cells in vitro or when administered parenterally

to mice or healthy human volunteers in vivo (99, 100). Genetic and

epigenetic studies of gene targeting mice and humans have shown

that CRP plays a crucial non-redundant function in innate

immunity, inflammation, and tissue remodeling. The innate

immune response is activated when the conserved structure on

the pathogen surface, the pathogen-associated molecular pattern

(PAMP), is recognized by CRP, a pattern recognition molecule

(PRM) (101).

For CRP, the mouse is not an ideal model as its CRP levels do

not respond to inflammatory stimuli (102). Several studies have

been performed to assess the role of huCRP in transgenic mice

overexpressing huCRP. Those studies found that huCRP facilitates

the survival of mice infected with S. pneumoniae (103, 104). This

effect is mediated mainly by the strong response of CRP to the PC

present in the cell walls of these bacteria (105). These data indicate

that CRPtg mice infected with S. pneumoniae are resistant to

infection, showing longer survival time and lower mortality than

non-transgenic littermates (wild type) (106). Similar studies have

shown that CRP administration can prevent the invasion and

infection of Haemophilus influenzae (107). CRPtg animals can

resist infection by the Gram-negative pathogen Salmonella even

without CRP binding (108).
5.2 CRP and CVD

CVD is one of the major diseases threatening human health

today, mainly caused by atherosclerosis (AS). Cardiovascular risk

factors such as obesity, hypertension, diabetes, smoking, and

dyslipidemia can lead to intravascular inflammatory response and
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endothelial cell activation and dysfunction, the earliest event in the

development of AS. The most widely studied inflammatory marker

related to CVD is CRP. Elevated CRP levels are directly

proportional to CVD risk and are an independent risk factor for

cardiac death. By measured serum CRP and creatine kinase levels in

patients with CVD but without cardiogenic chest pain. The results

showed that all individuals with acute myocardial infarction showed

elevated CRP secretion levels, and there was a significant correlation

between peak CRP concentration and creatine kinase values (109,

110). Mild, 2 - to 5-fold increases in baseline plasma CRP levels in

asymptomatic individuals are associated with an increased risk of

cardiovascular events such as stroke and myocardial infarction

(111, 112). And the use of mildly elevated CRP levels to guide

primary prevention has led to a significant reduction in major

cardiovascular events in apparently healthy persons (113).

Although the exact role of CRP in atherosclerosis and its

complications remains unclear, there is now increasing evidence

that it may be a direct causative factor (9, 114). The crucial role of

CRP in the prevention, treatment, and prognosis of CVD has been

agreed upon and is even used as the “gold standard” for CVD risk

assessment (115, 116).
5.3 CRP and cancer

CRP is a human acute-phase protein, and its plasma level is

associated with cancer risk (117, 118). In clinical practice, the CRP

test is widely used to monitor disease severity, the clinical course of

the disease, and treatment responses. Recent studies have strongly

suggested that CRP acts as a pivotal contributor to the development

and progression of tumors. Increased CRP level is reported in

colorectal, lung, and gastric cancer cases (50). The host interacts

with tumor factors, and these interactions can accelerate tumor

progression or regression. Lymphocyte-to-CRP ratio (LCR) has

been used as a post-surgical prognostic biomarker in gastric and

colorectal cancer (119). Studies have shown that CRP reduction is

an early predictor of post-operative complications of gastric cancer

and a reliable discharge indicator after gastric cancer (120, 121).

Elevated preoperative CRP predicts increased post-operative

morbidity in a patient with colorectal neoplasia (122).

Anastomotic leakage is associated with higher CRP levels each

post-operative day than no anastomotic leakage after colorectal

surgery. The cut-off CRP values can be used to predict anastomotic

leakage to expedite investigation and treatment (123).

Inflammation in the tumor microenvironment plays a vital role

in cancer invasiveness, progression, and metastasis. Preoperative

CRP levels help to diagnose differentiated thyroid carcinoma (50,

124). CRP has been reported to be consistently increased in the

circulation of patients with body wasting associated with chronic

diseases. In addition, CRP as an enhancer of in vitro IgG-mediated

erythrocyte and tumor cell destruction (125). Simultaneously, CRP

is a highly sensitive marker of inflammation to be considered in

diagnosing cancer cachexia (126). Moreover, CRP levels are very

responsive to lifestyle and several pathophysiological conditions.

Thus, identifying cut-off values for CRP values is needed and should

consider the heterogeneity of cancer patients’ clinical profiles.
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5.4 CRP and SLE

CRP is associated with the binding and regulation of SLE

associated nuclear antigens such as chromatin, histones, small

nuclear ribonucleoprotein U1, and apoptotic cells (127). Several

studies have shown delayed disease progression and increased

survival in NZB/NZW mice carrying huCRP transgene, a

protective effect associated with CRP’s ability to limit kidney

damage by preventing immune complex deposition (128). SLE

patient sera containing high levels of pCRP had an inhibitory

effect on type I IFN induction compared with patient sera

containing low levels of pCRP (58).

The CRP subunit is similar to pCRP andmCRP, but its monomeric

structure exposes protein regions hidden in pentameric forms,

including hidden protein neoepitopes (129, 130). Autoantibodies

against these neoepitopes on mCRP have been demonstrated in SLE

patients. The inflammatory environment can induce dissociation of

pCRP into mCRP, which may be a way to limit PCRP-induced

inflammation. In addition, mCRP has been shown to promote the

removal of immune complexes (ICs) (131). Both mCRP and pCRP

induced low levels of TNF and IL-1b without the need for immune

complexes (ICs) (58). The genetic association between non-coding

polymorphisms in CRP and human susceptibility to SLE has not been

established. Autoantibodies against CRP are often present in patients

with lupus nephritis (LN). Amino acid residues 35–47 constitutes the

major epitope recognized by anti-CRP autoantibodies in patients with

LN. Anti-a.a.35–47 autoantibodies are closely associated with renal

prognosis, suggesting a pivotal role for mCRP in LN (132).
5.5 CRP and virus infection

CRP is one of the most frequently tested molecules in clinical

medicine. In daily practice, it is used for nonspecific initial diagnosis

of viral or bacterial infections and also for monitoring the course of

such infections under drug therapy (87). Severe coronavirus disease

2019 (COVID-19) is a public health emergency due to its high

infectiousness (133) and high morbidity and mortality rate in

critically ill patients. COVID-19 has been associated with

inflammation in its induced neurological, cardiovascular, and

other end-organ. It is indispensable to explore biomarkers to

assess the extent of lung disease and the severity of COVID-19

(134–136). Plasma levels of CRP can be used for the early diagnosis

of pneumonia (137), independent of patient age, gender, and

physical condition, and correlate with inflammation levels (138),

higher in patients with severe pneumonia. Thus, it is an important

indicator for diagnosing and evaluating severe pulmonary infectious

diseases (139). Some studies have shown that CRP levels in early

COVID-19 are positively correlated with lung lesions, and CRP

levels can reflect disease severity and should be used as a critical

indicator for disease monitoring (140). Based on this, several studies

have evaluated CRP levels in COVID-19 patients and their risk of

death. Importantly, CRP plasma levels were generally significantly

lower in viral infections than in bacterial infections (141). This is

particularly important when studying diseases caused by COVID-19.

Before COVID - 19 pandemic, as much as 90% of CRP were
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significantly elevated due to infectious etiology, is one of the most

common bacterial pathogens (142). CRP levels are alarmingly high

in COVID-19 patients with poor prognosis, despite their viral illness.

Plasma concentrations as high as 400 mg/l are usually seen only in

severe bacterial infections or sepsis, often in harmful COVID-19

pneumonia without superinfection (143).

Study shows that the magnitude of CRP upregulation exhibited

by patients with the severe acute respiratory syndrome (SARS) was

associated with their respiratory dysfunction and death (140, 144).

Besides, CRP levels were also significantly elevated in patients with

the Middle East respiratory syndrome (MERS) and H1N1 influenza

(94, 145–147). Based on this, several studies have evaluated CRP

levels in COVID-19 patients and their risk of death (148). One of

the results showed that CRP levels were significantly higher in

deceased patients than surviving patients (95).

Although elevated CRP blood level is associated with death

caused by COVID-19, results are inconsistent across populations

(149, 150). CRP is closely related to the grade of disease severity

caused by the COVID-19, oxygenation rates, radiological evidence of

ARDS, and level of respiratory support (134). CRP blood level rise of

COVID-19 patients in their first 7 days of hospitalization can predict

disease progression and serve as a basis for the need to transfer

patients to the ICU at an early stage. The median value of CRP

correlates with the severity of COVID-19 and is an independent

predictor of mortality caused by COVID-19 (95). However, whether

the determined CRP threshold can be used for early risk stratification

of patients and to guide intensive management of respiratory

support and corticosteroid immunosuppression still needs to be

determined in future prospective studies.
6 Conclusions and prospects

At present, the animal models used to study the function of

human CRP mainly rely on mice and rats, whose serum CRP

baseline levels and inflammatory stress levels are very different from

those of humans. The baseline CRP concentrations in mice was

trace, ~7.5 mg/ml, which rise only twofold in the acute phase

response (151), and have been reported to be a minor acute phase

reactant in response to inflammatory stimuli (152). In healthy and

pathogen-free rats, CRP ranges from 300–600 µg/ml (153). After

injection of casein or croton oil, rising 3- to 4-fold in the acute phase

response, it rose only up to about 900 µg/ml, indicating that it is a

poor marker of acute inflammation. In humans, the median

baseline CRP concentration is 0.8 µg/ml, and can rise to > 500

µg/ml at the peak of the acute phase response.

Nevertheless, the sequence homology of CRP among different

species is relatively high, its structural characteristic may vary as

indicated by its different in vivo function and the available structure

information. Minor alteration in the pentameric assembly and

subunit conformation of mouse, rat, and human CRP by electron

microscopy visualization, single-particle analysis, and homology

modeling (38). These findings suggest that various CRP may have

different functions in different species, and therefore a possible

functional role of CRP in humans cannot be reliably inferred from

experimental animal studies.
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Recent findings indicate that pCRP can be separated by platelets

in areas of inflammation, leading to the deposition of mCRP. mCRP

can exert local pro-inflammatory effects through a variety of

mechanisms, which have been studied before. Therefore, the local

formation of mCRP in the inflammatory area may represent the

“activation signal” of other inflammatory cells, and mCRP may help

stimulate the local inflammatory process.

However, the dissociation process of pCRP is still not fully

understood, and more experimental models need to be designed to

help develop and test potential therapeutic mCRP blockers or pCRP-

dissociation blockers. Future research needs to further solve the

problem of mCRP receptors and signal transduction. Conclusive

animal data on the role of mCRP and the dissociation process of

pCRP are still lacking, and it is necessary to establish animal models of

acute and chronic inflammation (including AS) suitable for CRP

research. This will enable the confirmation of existing in vitro data and

therapeutic strategies for the dissociation process of mCRP or pCRP.

Circulating CRP concentration correlates with the severity,

degree, and progression of many different pathologies and the

prognostic significance of these correlations, which is consistent

with CRP as a marker of disease and contributes to the

pathogenesis. Understanding the structure and function of CRP,

including its 3D structure and its complex with ligand can establish

a good platform for drug design. In view of the problem that

endogenous CRP in animal models cannot be ignored, the design of

animal models using mice and rats as animal models to study the

function of human CRP should be reviewed as soon as possible in

the field, and the experimental design should be optimized to

further clarify the role and function of CRP in diseases.
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Garcıá-Ávila C, et al. A simple and readily available inflammation-based risk
scoring system on admission predicts the need for mechanical ventilation in
patients with COVID-19. Inflammation Res. (2021) 70:731–42. doi: 10.1007/s00011-
021-01466-x

151. Teupser D, Weber O, Rao TN, Sass K, Thiery J, Fehling HJ. No reduction of
atherosclerosis in C-reactive protein (CRP)-deficient mice. J Biol Chem. (2011)
286:6272–9. doi: 10.1074/jbc.M110.161414

152. Lin CS, Xia D, Yun JS, Wagner T, Magnuson T, Mold C, et al. Expression of
rabbit C-reactive protein in transgenic mice. Immunol Cell Biol. (1995) 73:521–31.
doi: 10.1038/icb.1995.82

153. Rassouli M, Sambasivam H, Azadi P, Dell A, Morris H, Nagpurkar A, et al.
Derivation of the amino acid sequence of rat C-reactive protein from cDNA cloning
with additional studies on the nature of its dimeric component. J Biol Chem. (1992)
267:2947–54. doi: 10.1016/S0021–9258(19)50678–0
frontiersin.org

https://doi.org/10.1161/01.Atv.18.9.1386
https://doi.org/10.1093/eurheartj/ehaa1103
https://doi.org/10.1007/s00011-021-01465-y
https://doi.org/10.1007/s00011-021-01465-y
https://doi.org/10.1001/jamainternmed.2020.2233
https://doi.org/10.3389/fimmu.2018.00754
https://doi.org/10.1007/s00011&ndash;018-1188-x
https://doi.org/10.3389/fpubh.2020.574915
https://doi.org/10.1016/j.cca.2020.06.013
https://doi.org/10.1007/s00011-021-01466-x
https://doi.org/10.1007/s00011-021-01466-x
https://doi.org/10.1074/jbc.M110.161414
https://doi.org/10.1038/icb.1995.82
https://doi.org/10.1016/S0021&ndash;9258(19)50678&ndash;0
https://doi.org/10.3389/fimmu.2024.1425168
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	C-reactive protein: structure, function, regulation, and role in clinical diseases
	1 Introduction
	2 CRP structure-related features
	2.1 CRP-ligand affinity
	2.2 Structural analysis of CRP
	2.3 Conformational forms of CRP

	3 Regulation of CRP expression
	4 Functional differences of CRP in humans and experimental animals
	5 CRP and clinical diseases
	5.1 CRP and innate immunity
	5.2 CRP and CVD
	5.3 CRP and cancer
	5.4 CRP and SLE
	5.5 CRP and virus infection

	6 Conclusions and prospects
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


