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Introduction: Dynamic cellular and molecular adaptations in early life

significantly impact health and disease. Upon birth, newborns are immediately

challenged by their environment, placing urgent demands on the infant immune

system. Adenosine deaminases (ADAs) are enzymatic immune modulators

present in two isoforms – ADA-1 and ADA-2. Infants exhibit low ADA activity,

resulting in high plasma adenosine concentrations and a consequent anti-

inflammatory/anti-Th1 bias. While longitudinal studies of plasma ADA have

been conducted in infants in The Gambia (GAM), little is known regarding ADA

trajectories in other parts of the world.

Methods: Herein, we characterized plasma ADA activity in an infant cohort in

Papua New Guinea (PNG; n=83) and compared to ontogeny of ADA activity in a

larger cohort in GAM (n=646). Heparinized peripheral blood samples were

collected at day of life (DOL) 0, DOL7, DOL30, and DOL128. Plasma ADA-1,

ADA-2, and total ADA activities were measured by chromogenic assay.

Results: Compared to GAM infants, PNG infants had significantly lower ADA-1

(0.9-fold), ADA-2 (0.42-fold), and total ADA (0.84-fold) activities at birth which

converged by DOL30.
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Discussion: Overall, discovery of a distinct baseline and a consistent pattern of

increasing plasma ADA activity in early life in two genetically and geographically

distinct populations validates and extends previous findings on the robustness of

early life immune ontogeny.
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1 Introduction

Early life is characterized by robust ontogenetic changes in

cellular and molecular pathways that significantly impact health

and disease in neonates. Newborns, equipped with a relatively naïve

immune system, are immediately challenged by their environment

(1–3). While the majority of infants undergo a healthy physiological

and immunological development, some experience deviations in

developmental trajectories, resulting in clinical pathology such as

infections. Human blood plasma is a rich source of age-dependent

factors that modulate immunity (4). Characterizing soluble plasma

factors that influence healthy human immune system development

is essential to understanding early life immune dynamics.

Adenosine deaminases (ADAs) -1 and -2 are soluble

immunoregulatory proteins present in human plasma that play key

roles in health and disease (5, 6). ADA-1, produced by all cells (7), has

an intracellular and extracellular role, and forms complexes with

CD26 and A2a receptors to promote T-cell proliferation (8, 9). ADA-

1 converts immunosuppressive adenosine to immunologically inert

inosine (10), thereby enhancing pro-inflammatory responses and

Th1 cytokine production (11–13). ADA-1 deficiency leads to

impaired thymocyte development and B-lymphocyte

immunoglobulin production, resulting in severe combined

immunodeficiency (SCID) (14). Furthermore, lower concentrations

of ADA-1 in early life correlate with higher adenosine and reduced

inflammatory and Th1 polarizing immune responses (6).

ADA-2 is enzymatically less active than ADA-1. While residual

ADA-2 activity is measured in patients with ADA-1 deficiency, its

specific role within the immune system is not completely

characterized (7). Secreted extracellularly by activated monocytes,

macrophages, and dendritic cells (7, 15), ADA-2 inhibits the

inflammatory response (16, 17) by binding receptors on

leukocytes, such as CD39+ regulatory T-cells or CD16+

monocytes, thereby inducing monocyte differentiation to anti-

inflammatory macrophages (16). ADA-2 is of growing interest

since the discovery of ADA-2 deficiency (DADA2) in 2014 (18,

19). This disease caused by a mutation in CERC1, the gene encoding

ADA-2, results in vasculitis and bone marrow failure, as well as

more rarely pure red cell aplasia (7, 20, 21).

In one of our previous studies, we characterized the ontogeny of

ADA activity in infants in The Gambia (GAM, West Africa), and
02
revealed an increase of ADA-1 and ADA-2 activity across the first

four months of life in healthy term African infants (5). Our

comprehensive study in the GAM described the ADA activity

trajectories in early life in a single population. To assess if the

plasma ADA patterns observed in GAM are generalizable, we

characterized plasma ADA activity in a geographical and

genetically distinct population in Papua New Guinea

(PNG, Oceania).

In this study, we characterized plasma ADA-1, ADA-2, and

total ADA activities across the first four months of life in a PNG

infant cohort. We investigated the potential effect of demographic

factors including age, sex, season of birth, maternal age, and

gestational age on ADA activity in newborns in PNG. Finally, we

compared ADA activity in the PNG infant cohort with our previous

published GAM infant cohort (5). Overall, our study shows that

activities of plasma ADA-1, ADA-2, and total ADA in infants in

PNG increase during the first four months of life. Our findings

suggest that, while some factors such as sex, birth season, and

maternal age may associate with modest differences in plasma ADA

activity, the majority of differences in ADA activity in the first weeks

of life were driven by ontogeny. When comparing both cohorts,

similar patterns in ADA activity are observed, with initial

differences detectable at birth that converge by four months of

life. Our work supports the hypothesis of diversity at baseline with

converging human immune trajectories in early life.
2 Materials and methods

2.1 Study design

This study is part of the Expanded Program on Immunization

Consortium (EPIC) clinical trial EPIC002 design as previously

described (22, 23). In brief, EPIC-002 is designed to define

biomarkers of neonatal vaccine immunogenicity and consists of 2

cohorts collected at a) the Medical Research Council (MRC) Unit at

the London School of Hygiene and Tropical Medicine site in Banjul,

The Gambia (GAM), and b) the Papua New Guinea Institute of

Medical Research (PNG-IMR) in Goroka, Papua New Guinea. At

both sites, mother-infant dyads were recruited upon delivery.

Mothers who delivered vaginally at >37 gestational weeks, were
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Hepatitis B and human immunodeficiency virus (HIV) negative,

and with no history of tuberculosis in the past six weeks (either in

the mother or a family member) were eligible for the study. Infants

were eligible if they weighed >2.5 kg, had an Apgar score >8 at 5

mins after birth, and had no congenital abnormalities nor

infections. The gestational age is reported as estimated based on

last menstrual periods or local practice which does not include

ultrasound measurements due to lack of availability. Samples were

collected across 4 visits (GAM n=720, PNG n=100). Visit 1 samples

were collected at DOL0 (within first 24 hours of life); Visit 2

samples were collected at either DOL1, DOL3, or DOL7 at the

GAM site, and DOL7 only at the PNG site; Visit 3 samples were

collected at DOL30; and Visit 4 samples were collected at DOL128

(~4 months of age). Plasma samples were collected and stored at

-80°C prior to batch shipment for storage and subsequent

ADA assay.
2.2 Adenosine deaminase assay

Plasma ADA-2 and total ADA activity were measured using

Adenosine Deaminase Assay Kits [cat. #DZ117A] (Diazyme

Laboratories; Poway, CA, USA). Each kit included an ADA

calibrator [cat. #DZ117A-Cal], Quality Controls [cat. #DZ117A-

Con], and ADA Assay Reagents [cat. #DZ117A]. The plasma

samples of participants, ADA calibrator and quality control were

loaded onto a Corning CellBIND® 384-well plate in quadruplicate,

and 20 mM of Erythro-9-(2-hydroxy-3- nonyl) adenine (EHNA)

[cat. #1261] (Tocris Bioscience; Bristol, UK) was pipetted in half of

the wells. ADA-1 is inhibited by EHNA, such that the wells

containing EHNA are only representative of ADA-2 activity. The

remaining wells were loaded with similar volumes of DPBS, which

represent total ADA activity in plasma. ADA-1 activity was

obtained by taking the difference between the total ADA and

ADA-2 activity measured. Following EHNA and DPBS loading,

the ADA assay reagents were added. To measure absorbance, each

384-well plates were individually read on an Infinite M Plex (Tecan,

Mannedorf, Switzerland) with the absorbance recorded every 5 min

for an hour at a wavelength of 550 nm and at 37°C. Plasma ADA

activity was obtained by measuring the change in absorbance and

averaging the duplicates for individual time points. The average

absorbance rate was then converted to ADA activity (in units/liter

(U/L)) using a log-standard curve.
2.3 Statistical methods

Statistical analysis was performed in R version 4.1.2. The

Wilcoxon rank-sum test was employed to compare ADA activity

in PNG, in both cohorts, and the demographic factors over time

(ggpubr_0.6.0 package). The development of each ADA group

activity over the first four months of life in the two cohorts

employed an ANOVA test (ggpubr_0.6.0 package). The

trajectories of ADA over time in both cohorts were generated

using the Locally Estimated Scatterplot Smoothing (LOESS)

method (ggplot2_3.4.2 package). The following packages were
Frontiers in Immunology 03
used for data formatting and visualization: dplyr_1.1.2,

tidyr_1.3.0, tidyverse_2.0.0, table1_1.4.3, rstatix_0.7.2,

patchwork_1.1.2, grid_4.1.2, gtsummary_1.7.2, and alpacage_0.1.0.
3 Results

Out of the 720 participants enrolled in GAM and 100

participants enrolled in PNG, samples from 646 and 83 infants,

respectively, were included in the final analysis of this work. As

presented in Table 1, most mothers were < 35 years old when giving

birth (81.9% in PNG and 76.9% in GAM). Two-thirds (67.5%) of

mothers at the GAM site reached an estimated full-term pregnancy,

defined as >39 to <41 gestational weeks, whereas only 33.7% of

mothers in PNG reached an estimated full-term. 66.3% of mothers

in PNG delivered at an estimated early term (37 to 38.6 weeks of

gestation). Newborns were 53.0% female in PNG and 48.6% female

in GAM. The average birth weight was 3,300g in PNG and 3,160g in

GAM, and most infants were breastfed at birth (98.8% in PNG and

88.7% in GAM). Most infants in our PNG cohort were born during

the wet season (57.8%), while most infants in our Gambian cohort

were born during the dry season (66.1%).
TABLE 1 Clinical cohort for participants recruited at the Institute of
Medical Research in PNG and Medical Research Council Unit in GAM.

PNG
(N=83)

GAM
(N=646)

Maternal Age (years)

<35 68 (81.9%) 497 (76.9%)

>=35 15 (18.1%) 149 (23.1%)

Gestational Age (weeks)

Early Term (37-38 wks)
Full Term (39-41 wks)
Missing

55 (66.3%)
28 (33.7%)
0 (0%)

162 (25.1%)
436 (67.5%)
48 (7.4%)

Sex

Female 44 (53.0%) 314 (48.6%)

Male 39 (47.0%) 332 (51.4%)

Weight at Birth (gram)

Mean (SD)
Median [Min, Max]

3330 (458)
3330 [2500, 4300]

3160 (383)
3150 [2500, 4400]

Breastfeeding at Birth

Yes
No

82 (98.8%)
1 (1.2%)

575 (88.7%)
73 (11.3%)

Season of Birtha

Dry season
Wet season

35 (42.2%)
48 (57.8%)

427 (66,1%)
219 (33.9%)

APGAR Score

Mean (SD)
Median [Mean, Max]

9.87 (0.823)
10.0 [8.00, 15.0]

9.61 (0.587)
10.0 [8.00, 10.0]
aDry Season= May-Oct in PNG and Nov-May in GAM; Wet Season= Nov-Apr in PNG and
June-Oct in GAM.
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3.1 Ontogeny of ADA activity in the PNG
cohort over the first four months of life

We investigated the effect of ontogeny on plasma ADA activity

across the first four months of life in healthy infants in the PNG

cohort. The scatterplot of ADA-1 vs. ADA-2 revealed that both

isoforms increased over time and fell into clusters based on day of

life (DOL) (Figure 1A). A similar positive correlation between

ADA-1 and ADA-2, as well as age-based groupings were

observed in infants in GAM (Supplementary Figure S1),

highlighting that variation in plasma ADA activity were

associated with changes of ontogeny.

Overall, activity of ADA-1, ADA-2, and total ADA significantly

increased over the first four months of life (p<2e-16)

(Supplementary Table S1). Between DOL0 and DOL128, there

was a 1.8-fold increase in ADA-1 activity, 5.1-fold increase in

ADA-2 activity, and 2.4-fold increase in total ADA activity

(Figure 1B). No significant increase was observed for ADA-1

during the first week of life (p=0.17) (Supplementary Table S1).

We also noted that the activity of ADA-1 was greater than that of

ADA-2 at DOL0 in infants in PNG but was lower than ADA-2

activity by DOL128 (Figure 1B).
3.2 ADA activity in PNG appears to be
driven by ontogeny

Among the demographic features we measured, few appeared to

be associated with higher plasma ADA concentrations. Some

differences include 1) male sex: boys had elevated activity of ADA-

1 at DOL 30 compared to girls (p=0.039), 2) birth during the dry

season (May to October) was associated with higher total ADA

activity at DOL 0 than birth during wet season (April to November)

(p=0.043), and 3) birth to younger mothers (<35 years old) was

associated with a higher total ADA activity at birth compared to birth

to older mothers (>35 years old; p=0.031). No other significant

differences were identified in association with the other

demographic features measured including estimated gestational age

at birth (Supplementary Figure S3 and Supplementary Tables S2-S4).
Frontiers in Immunology 04
3.3 Plasma ADA activities are lower at birth
in PNG vs GAM but converge across the
first weeks of life

Comparison of plasma ADA activity over the first four months

of life revealed that activity of ADA-1, ADA-2, and total ADA in

healthy infants from both PNG and GAM differed at birth but

followed a similar pattern that converged over time (Figure 2A). A

comparison over time followed by an ANOVA test demonstrated

differences in ADA-1, ADA-2, and total ADA activity within each

individual cohort (Supplementary Figure S2). Initial differences in

ADA activity were observed between cohorts, with newborns in

PNG showing significantly lower activity of ADA-1 (Mean PNG/

Mean GAM = 0.90, p=6.6e-5), ADA-2 (Mean PNG/Mean GAM =

0.42, p=7.6e-4), and total ADA (Mean PNG/Mean GAM = 0.84,

p=4.8e-9) at birth compared to newborns in GAM (Figures 2A, B).

By the first week of life, the activity of ADA-1 was similar between

the two cohorts (Mean PNG/Mean GAM = 1.03, p = 0.44). PNG

study infants still had lower activity of ADA-2 (Mean PNG/Mean

GAM = 0.81, p=0.0013) and total ADA (Mean PNG/Mean GAM =

0.92, p=0.0018) compared to those in GAM. However, the ratio of

mean was closer to one at DOL7 compared to DOL0, highlighting

an already noticeable convergence in ADA activity. At one month

of life, no significant differences in ADA activity were noticeable

between cohorts, and at four months of age, only a slight difference

in ADA-2 was observed with infants in PNG having a lower activity

compared to infants in GAM (Mean PNG/Mean GAM =

0.94, p=0.0309).
4 Discussion

Herein, we provide the first comparison of plasma ADA activity

across the first weeks of life in two genetically and geographically

distinct unique longitudinal infant cohorts. We found that the

activity of plasma ADA-1, ADA-2, and total ADA in a PNG

infant cohort is driven by ontogeny, as observed by the significant

increases over the first four months of life. Moreover, comparison of

PNG to GAM cohorts revealed that PNG infants demonstrated
FIGURE 1

Plasma ADA activity increased over the first four months of life in infants in PNG. (A) Activity of ADA-1 and ADA-2 (in U/L) positively correlated over
time and are organized by clusters based on day of life, revealing the role of ontogeny on ADA development in early life. (B) Activity of ADA-1, ADA-
2, and total ADA over the first four months of life showed that ADA activity (in U/L) increased over time. Activity of ADA-1 is higher than ADA-2 at
birth but lower at DOL128. The trend lines were generated using LOESS method.
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lower ADA activity in the first week of life compared to GAM

infants; however, differences were no longer apparent by one month

of age. Thus, the PNG cohort confirms our previous findings on

ADA activity in GAM infants and elucidates a robust trajectory of

ADA activity across different populations.

The infant immune system undergoes important age-dependent

changes in early life (24–27). The dynamic cellular and molecular

changes follow a developmental trajectory, as illustrated with

immunological changes (28), such as the switch from a Th2-

polarized cytokine production to a more balanced Th1/Th2

immunity (29). Relative deficiency of ADA-1 in early life

corresponds to high plasma adenosine concentrations and thereby

contributes to Th2 polarization and impaired cellular immunity (6).

The increasing levels of ADA-1 across the first weeks and months of

life noted in this study may contribute to a gradual acquisition of

Th1-polarized immunity by late infancy. ADA-2 can promote

monocyte differentiation to anti-inflammatory macrophages and

CD4+ T cell proliferation (8, 30–32). However, despite the growing

interest in ADAs (33–35), the functional role of ADA-2 in infants is

not fully understood, and further research is needed to characterize

its contribution to the maturation of the infant immune system.

Comparison of plasma ADA-1, ADA-2, and total ADA activity

in the PNG cohort compared to the GAM cohort demonstrated

early differences, with PNG study infants expressing lower ADA

activity in the first week of life, followed by convergence by one

month of age. The two study populations live in distinct regions of

the world. Infants in the GAM cohort were born in Banjul, a coastal

city located in The Gambia, West Africa, while infants in the PNG

cohort were born in Goroka in the highlands of PNG, Oceania.

Among demographic factors captured in this study, ontogeny

appears to be the primary driver of changes in plasma ADA in

these infants born in different highly endemic settings. The

observation that gestational age difference between 37-41 weeks
Frontiers in Immunology 05
did not significantly affect plasma ADA levels is not surprising as a

prior systems biology study evaluating multiple immune cell

development in preterm versus term infants demonstrated early

divergence followed by convergence by 3 months of age (36).

Multiple environmental factors such as nutrition, gut

microbiome, socioeconomic status, stress, or maternal lifestyle

can affect the immune development in early life (36–44).

Elucidating which of these mechanisms account for the early life

differences between PNG and the GAM cohort noted requires

further investigations which should include confirming that ADA

developmental trajectories are similar between infants born in

pathogen low and non-endemic settings, such as the United States.

Although newborns in PNG had lower plasma ADA activity

than GAM newborns, ADA activity converged over time. Similar

plasma activity of ADA-1 was observed by one week of age, and

differences were not statistically significant after 30 days of life.

Convergence of inflammatory and immune pathways has

previously been demonstrated in neonatal immunity. In a

previous multi-omics analysis focusing on cellular and molecular

ontogeny across the first week of life in these two cohorts, we found

that infants’ immune systems develop in a similar pattern (28),

although ADA was not included in these analyses. Here, we report

that after four weeks of life, healthy term infants born in different

parts of the world reach similar levels of plasma ADA activity,

demonstrating convergence in expression of plasma ADAs. This

international multi-site study increases our knowledge of immune

development in early life. It reveals the need for future

investigations of the immune development in different

geographical regions and its response to challenge by infections

or immune stimuli such as vaccines.

About 15% of newborns diagnosed with SCID have ADA

deficiency as a basis for this condition- i.e. ADA-SCID (45). The

occurrence of SCID in newborns is rare [~1:60,000 in regions
FIGURE 2

Activity of plasma ADA-1, ADA-2, and total ADA in PNG infants are lower than those of GAM infants in the first week of life then converge by 30 days
of life. (A) Initial differences between both sites are observed, with infants in PNG having lower ADA-1, ADA-2, and total ADA activity at birth
compared to infants in GAM. Activity converged by the first week of life for ADA-1, and by the first month of life for ADA-2 and total ADA. ADA
activity was log10 transformed and the trend lines were generated using the LOESS method. (B) P-values and mean ratios comparing ADA-1, ADA-2,
and total ADA activity of newborns in PNG to those in GAM at DOL0, 7, 30, and 128. Statistical differences were observed at birth, but differences
generally decreased over time. A Wilcoxon Rank-sum Test was performed comparing both cohorts, with ns= not significant, *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.
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without inbreeding; ~1:2,000 in regions with inbreeding (46)].

Current screening methods include a T-cell Recombination

Excision Circle (TREC) assay from dried blood spots quantified

by qPCR (47). Neither The Gambia nor PNG employ routine SCID

screening and thus no SCID screenings were performed in our

study participants. This is in part due to the fact that newborn

screening is limited in most African countries in general (48).

However, our study focused on soluble plasma ADA1 and ADA2

which to our knowledge is not an assay used for screening. Of note,

a rapid and cost-effective mass spectrometry-based screening

method measuring plasma adenosine and deoxyadenosine in

dried blood spots may detect ADA-SCID (49). Implementation of

a cost-effective screen for ADA-SCID, combined with a second-tier

test to reduce false positives (49), could improve routine newborn

screening and thereby newborn health.

Our study features several strengths, including (a) comparable

design, as the exact same protocol were used in both sites, (b) robust

sample sizes, in contrast to many systems immunology studies

limited by small sample sizes (36, 50, 51), (c) longitudinal design

enabling comparison of each study participants across time including

their birth timepoint, and (d) rigorous capture of clinical data.

As with any research effort, our study also has limitations. While

sample deterioration was a theoretical risk, we followed a standard

operating procedure (SOP) to ensure a cold chain was maintained,

samples were sorted and transported at -80C. The samples were

analyzed within a year of collection. Our comparison involved a

sample size difference between the PNG (n = 83) and GAM (n = 646)

cohorts. Despite a smaller PNG cohort, we were able to detect

differences in baseline ADA concentrations and validate the pattern

in plasma ADA-1, ADA-2, and total ADA activity over the first four

months of life. Additionally, while we did not measure the functional

consequences of differences in plasma ADA concentrations, we infer

their importance based on extensive prior literature (52–54).Wewere

unable to consistently collect maternal plasma ADA concentrations,

smoking status, or nutrition of the mother and child (apart from

breastfeeding) across the two cohorts. Future studies of maternal and

infant plasma ADA dynamics should include pregnancy data and

maternal factors for a comprehensive overview.

To our knowledge, this study is among the largest longitudinally

sampled ADA studies in infants. It validates previous findings

describing ontogeny as the main driver of ADA activity across

the first four months of life (5). Comparing both cohorts revealed

that levels of ADA-1, ADA-2, and total ADA activity in PNG

infants were initially lower than those in GAM but converged by

one month of age.

For future studies, it will be important to determine if the

development of plasma ADA activity in infants is congruent over

an extended period at multiple geographic sites including pathogen

low and non-endemic settings. It is essential to note that ADA is only

one component of a highly complex immune system. Understanding

other parameters will be essential in understanding any functional

differences between populations. Additionally, investigating whether

the immune system of healthy infants converges more rapidly than

that of infants with pathology would provide valuable insights into

the long-term dynamics of immune system development in early life

in relation to health and disease.
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