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Background: Micronutrients play pivotal roles in modulating various aspects of

the immune response. However, the existing literature on the association

between micronutrients and autoimmune thyroiditis (AIT) remains limited and

contentious. To address this gap, we conducted Mendelian randomization (MR)

to investigate potential links between genetically predicted concentrations of six

micronutrients (Copper (Cu), Iron (Ir), Calcium (Ca), Vitamin D (VD), Vitamin C

(VC), Zinc (Zn)) and the risk of AIT.

Method: Utilizing summary statistics from genome-wide association studies

(GWAS) in individuals of European descent, we employed MR methodologies

to elucidate the interplay between micronutrients and AIT. Three distinct MR

techniques were employed: Inverse Variance Weighted (IVW), MR-Egger

regression, and Weighted Median Estimator (WME). Additionally, we evaluated

outcome heterogeneity using Cochran’s Q statistic and assessed pleiotropy

using the MR-Egger intercept.

Result: IVW analysis revealed no substantial evidence supporting a significant

impact of genetically predicted micronutrient concentrations on AIT risk (Cu:

OR = 0.918, P = 0.875; Ir: OR = 0.653, P = 0.264; Ca: OR = 0.964, P = 0.906; VD:

OR = 0.717, P = 0.378; VC: OR = 0.986, P = 0.875; Zn: OR = 0.789, P = 0.539).

Cochran’s Q test for IVW indicated no notable heterogeneity. Moreover, the MR-

Egger intercept method suggested the presence of horizontal pleiotropy between

serum VC levels and AIT (MR-Egger intercept = −0.037, p = 0.026), while no such

pleiotropy was observed for other micronutrients.

Conclusion: Our MR analysis does not support a causal relationship between

genetically predicted concentrations of six micronutrients (Cu, Ir, Ca, VD, VC, and

Zn) and the risk of AIT.
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1 Introduction

Autoimmune thyroiditis (AIT), also referred to as Hashimoto’s

thyroiditis or chronic lymphocytic thyroiditis stands as one of the most

prevalent organ-specific autoimmune disorders. It is typified by the

presence of antibodies targeting thyroid antigens (thyroid peroxidase

(TPO) and thyroglobulin (TG)), alongside diffuse lymphocytic

infiltration of thyroid tissue. AIT exhibits an annual incidence ranging

from 27 to 273 cases per 100,000 individuals (1, 2). The pathogenesis of

AIT remains incompletely elucidated, though it is understood to be

multifactorial, influenced by intricate interactions among multiple

susceptibility genes and environmental factors such as stress, smoking,

microbial infections, chemical pollutants, and dietary iodine (3).

Theprimarymedical intervention forAIT-inducedhypothyroidism

involves daily oral administration of levothyroxine (LT4) to maintain

normal thyroid-stimulating hormone (TSH) levels (4). Alongside LT4

therapy, dietary modifications and supplementation offer tangible

benefits and constitute integral components of the therapeutic

regimen. Observational controlled investigations have revealed

frequent occurrences of micronutrient deficiencies in AIT patients (5).

Thedeficiencyor excessof anymicronutrient (suchasCopper (Cu), Iron

(Ir), Zinc (Zn), iodine, and selenium)may affect the synthesis of TG and

disrupt thehomeostasis of the thyroidgland, thereby reducing thebody’s

immune ability and even disrupting the regulation of systemic

inflammation (6, 7). Meanwhile, observational studies have also

highlighted the important impact of various micronutrients, such as

vitamin D (VD), antioxidants, monounsaturated and polyunsaturated

fatty acids, magnesium, and Zn, as critical in reducing thyroid

inflammation (8–10). Although current observational studies report

associations between various micronutrients and AIT, concerns about

potential bias from confounding factors cannot be completely

eliminated. Furthermore, quantifying causal effects in traditional

observational studies can be challenging due to residual confounding

and reverse causation (11).

With the increase in statistical summary data from large-scale

genome-wide association studies (GWAS), Mendelian randomization

(MR) (12) has emerged as a potent tool. MR utilizes single-nucleotide

polymorphisms (SNP) as instrumental variables (IV) strongly linked
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with exposure to probe causal effects between exposure and outcome,

thereby enhancing the reliability of causal inferences and fostering

robust etiological conclusions. Because genotypes are randomly

assigned at conception, they provide an accurate representation of

exposure that is not affected by potential confounders (such as

environmental exposures) and does not change with the onset of

disease. By leveraging genotypes randomly assigned at conception,

MR circumvents potential confounding influences, such as

environmental exposures, and remains unaffected by disease onset.

Given the pivotal role of genetic susceptibility in AIT development, a

genetic perspective is imperative. Accordingly, this study employs the

two-sampleMR approach to investigate potential causal links between

genetically predicted circulating concentrations of micronutrients

(Cu, Ir, Calcium (Ca), VD, Vitamin C (VC), Zn) and AIT.
2 Materials and methods

2.1 Study design

This study employs a two-sample MR to examine the causal

relationship between micronutrients and AIT, as depicted in

Figure 1 illustrating the research design. MR hinges on three

fundamental assumptions: (1) the assumption of association,

positing that genetic variation correlates with exposure; (2) the

assumption of independence: genetic variation should not have any

connections with confounding factors influencing the exposure-

outcome relationship; and (3) the assumption of exclusivity,

suggesting that genetic variation influences outcome solely

through exposure pathways (13). All MR analyses utilized

publicly available summary statistics, obviating the need for

additional ethical approval or informed consent.
2.2 Data sources

In this study, we searched Open GWAS for statistical summary

data related to micronutrient cycling concentrations as exposure
FIGURE 1

Flowchart of the design of a Mendelian randomized study of the causal association between micronutrients and autoimmune thyroiditis. Cu, copper;
Ir, iron; Ca, calcium; VD, vitamin D; VC, vitamin C; Zn, zinc; MR, mendelian randomization.
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(See Table 1 for details). For Cu circulating concentrations, GWAS

summary data encompassed 2,603 European individuals, revealing

2 SNP strongly associated with Cu levels (Supplementary Table S1).

In the case of Ir circulating concentrations, the dataset comprised

23,986 individuals of European ancestry, identifying 3 significant

SNP (Supplementary Table S2). Regarding Ca circulating

concentrations, data encompassed 315,153 European individuals,

identifying 212 significant SNP (Supplementary Table S3). VD

circulating concentrations were assessed in 496,946 individuals of

European descent, uncovering 118 significant SNP (Supplementary

Table S4). VC circulating concentrations were examined in 291

European individuals, revealing 68 significant SNP (Supplementary

Table S5). Finally, Zn circulating concentrations were investigated

in 2,603 European individuals, identifying 2 significant SNP

(Supplementary Table S6).

As for outcomes, GWAS summary statistics for AIT included

213,746 European individuals, comprising 244 AIT patients and

187,684 controls, sourced from the FinnGen database R8 (See

Table 1 for details).
2.3 Selection of genetic
instrumental variable

The selection criteria for genetic IV were as follows: (1)

Screening exposure databases to identify SNP loci of genome-

wide significance (p < 5 × 10-8); (2) The linkage disequilibrium

(LD) criterion set the R2 threshold (R2 < 0.001 and genetic distance

= 10,000 kb), and only those SNPs exhibiting the most significant p-

values were retained for subsequent analyses; and (3) Excluding

SNP with F-statistics <10 (14) and palindromic sequences to ensure

that the effects of SNP on exposure and outcome stemmed from the

same allele.
2.4 Statistical analysis

In this investigation, we initially harmonized the alleles

associated with both exposure (Cu, Ir, Ca, VD, VC, Zn) and
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outcome (AIT), following which a two-sample MR analysis was

conducted. We employed three MR methodologies, namely Inverse

Variance Weighted (IVW) (15), MR-Egger regression (16), and

Weighted Median Estimator (WME) (17), to assess the causal

relationship between micronutrients and AIT. The IVW method

assumes the validity of all genetic variations. Through meta-

analysis, it amalgamates the Wald estimate of each SNP and

employs weighted linear regression to synthesize these estimates,

thereby comprehensively evaluating the impact of micronutrients

on AIT (18). IVW serves as the principal analytical tool, furnishing

unbiased causal estimates in the absence of horizontal pleiotropy

(19). WME and MR-Egger regression methods are utilized as

supplementary methods to IVW estimation, as they can offer

more reliable estimates under less stringent conditions.

To gauge the robustness and sensitivity of our findings, we

conducted additional sensitivity analyses. Heterogeneity was

assessed via Cochran’s Q test, computed using the IVW method.

Furthermore, potential pleiotropy was evaluated and adjusted using

the MR-Egger intercept test (20). Additionally, we scrutinized

outliers that could potentially influence our MR estimates

through the examination of forest plots, funnel plots, and

scatter plots.

All the above-mentioned MR analyses in this study were

performed using the “TwoSampleMR” package in R 4.1.1 software.
3 Results

3.1 Selection of genetic
instrumental variable

Following a sequence of quality control procedures, a total of six

genetic instruments were established for this study. These genetic

instruments were constructed as follows: (1): For Cu exposure and

AIT outcome, two SNP were included in the analysis after merging

the relevant datasets. (2) For Ir exposure and AIT outcome, three

SNP were included in the analysis following the merging of datasets.

(3) Upon merging Ca exposure and AIT outcome datasets, and

subsequent removal of 8 palindromic sequences (rs12626330,
TABLE 1 Genetic summary data sources for micronutrients and autoimmune thyroiditis.

Trait Sample size Number
of SNPs

Population Sex Year PMID

Copper 2,603 2,543,646 European Males and Females 2013 23720494

Iron 23,986 2,096,457 European Males and Females 2014 25352340

Calcium 315,153 19,052,100 European Males and Females 2021 34594039

Vitamin D 496,946 6,896,093 European Males and Females 2020 32242144

Vitamin C 291 6,870,007 European Males and Females 2021 33437055

Zinc 2,603 2,543,646 European Males and Females 2013 23720494

Autoimmune
thyroiditis

187,684 16,380,358 European Males and Females 2021 NA
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rs1763519, rs296849, rs4517550, rs4744854, rs490275, rs72941253,

rs7839633), a total of 195 SNP were retained for analysis. (4) After

merging VD exposure and AIT outcome datasets, and excluding 2

palindromic sequences (rs57601828, rs7955128), 115 SNP were

ultimately included in the analysis. (5) The integration of VC

exposure and AIT outcome datasets resulted in the inclusion of

65 SNPs for analysis. (6) Lastly, the combination of Zn exposure

and AIT outcome datasets included two SNPs for analysis.
3.2 Mendelian randomization analysis

We conducted a two-sample MR study on genetically predicted

micronutrient circulating concentrations and AIT, yielding no

compelling evidence to support a significant causal relationship

between genetically predicted micronutrient concentrations and

AIT (refer to Table 2 for detailed outcomes).
Fron
1. Cu: IVW analysis (OR = 0.918, 95% CI = 0.315-2.674; P =

0.875) revealed no discernible causal relationship between

serum Cu concentration and AIT.

2. Ir: IVW analysis (OR = 0.653, 95% CI = 0.309-1.379; P =

0.264) demonstrated no substantial evidence supporting a

causal relationship between serum Ir concentration and

AIT. Consistent causal effects were observed in analyses

employing WME (OR = 0.639, 95% CI = 0.288-1.415; P =

0.269) and MR-Egger regression (OR = 1.009, 95% CI =

0.218-4.676; P = 0.993) methods.

3. Ca: The results of the IVW (OR = 0.964, 95% CI = 0.523-

1.776; P = 0.906), WME (OR = 1.342, 95% CI = 0.435-

4.139; P = 0.609), and MR-Egger regression (OR = 1.310,

95% CI = 0.436-3.935; P = 0.631) analyses collectively failed

to provide evidence supporting a causal link between serum

Ca concentrations and AIT.
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4. VD: The results of IVW (OR = 0.717, 95% CI = 0.341-

1.504; P = 0.378), WME (OR = 1.265, 95% CI = 0.398-

4.026; P = 0.690) and MR-Egger regression (OR = 1.951,

95% CI = 0.623-6.111; P = 0.254) method analyses

indicated no observable causal relationship between

serum VD concentration and AIT.

5. VC: IVW analyses (OR = 0.986, 95% CI = 0.828-1.175; P =

0.875) provided no evidence supporting a causal

relationship between serum VC concentrations and AIT.

Comparable causal effects were observed in WME (OR =

0.845, 95% CI = 0.645-1.108; P = 0.223) and MR-Egger

regression (OR = 0.847, 95% CI = 0.549-1.306; P =

0.455) analyses.

6. Zn: IVW analysis (OR = 0.789, 95% CI = 0.370-1.682; P =

0.539) yielded no indication of a causal relationship

between serum Zn concentration and AIT.
3.3 Sensitivity analysis

In our sensitivity analysis, we initially employed IVW’s

Cochran’s Q test to assess the heterogeneity of results. The

findings revealed that all analyses yielded p-values exceeding 0.05,

indicating the absence of significant heterogeneity in our study

(refer to Table 2). Subsequently, we utilized the MR-Egger intercept

method to scrutinize horizontal pleiotropy. Results indicated that

the p-value of the MR-Egger intercept method for serum VC and

AIT was below 0.05 (MR-Egger intercept = -0.037, p = 0.026),

suggestive of the presence of horizontal pleiotropy. Conversely, p-

values of the MR-Egger intercept method for other scenarios

surpassed 0.05, signifying the absence of horizontal pleiotropy

(refer to Table 2). Additionally, we conducted visual inspections

of the funnel plot, which displays a roughly symmetrical
TABLE 2 Mendelian randomized estimation of the association between micronutrients and autoimmune thyroiditis.

Exposure Outcome IVW MR-Egger Weighted
median

OR
(95% CI)

P-
value

Cochran
Q

P-
value

OR
(95% CI)

P-
value

MR-
Egger

intercept

P-
value

OR
(95% CI)

P-
value

Copper Autoimmune
thyroiditis

0.918
(0.315-2.674)

0.875 3.069 0.080 NA NA NA NA NA NA

Iron Autoimmune
thyroiditis

0.653
(0.309-1.379)

0.264 0.756 0.683 1.009
(0.218-4.676)

0.993 -0.086 0.639 1.639
(0.288-1.415)

0.269

Calcium Autoimmune
thyroiditis

0.964
(0.523-1.776)

0.906 216.124 0.132 1.310
(0.436-3.935)

0.631 -0.010 0.512 1.342
(0.435-4.139)

0.609

Vitamin D Autoimmune
thyroiditis

0.717
(0.341-1.504)

0.378 90.420 0.949 1.951
(0.623-6.111)

0.254 -0.037 0.026 1.265
(0.398-4.026)

0.690

Vitamin C Autoimmune
thyroiditis

0.986
(0.828-1.175)

0.875 76.166 0.142 0.847
(0.549-1.306)

0.455 0.089 0.454 0.845
(0.645-1.108)

0.223

Zinc Autoimmune
thyroiditis

0.789
(0.370-1.682)

0.539 1.479 0.224 NA NA NA NA NA NA
front
NA, Insufficient number of SNPs for analysis.
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distribution, implying a relatively low risk of bias and high

reliability of the results. Further scrutiny involved the

examination of scatter plots, wherein each point represented an

instrumental variable. The forest plot depicted each horizontal solid

line reflecting the outcome of a single SNP estimated using the

Wald ratio method. Detailed scatter plots, funnel plots, and forest

plots are available in the Supplementary Material.
4 Discussions

In this two-sample MR analysis investigating the relationship

between six micronutrient concentrations and the risk of AIT, we

did not identify a significant association between genetically

predicted circulating micronutrient concentrations and the risk

of AIT.

Cu functions by binding to ceruloplasmin in plasma, thereby

stimulating the activities of both innate and adaptive immunity. A

population-based study utilizing data from the 2011-2012 U.S.

National Health and Nutrition Examination Survey(NHANES)

revealed that serum Cu concentrations were 20% higher in

women compared to men. Furthermore, it was observed that

circulating serum Cu concentrations correlated with elevated

levels of free thyroxine (fT4) and total thyroxine (tT4) in women,

whereas in men, circulating Cu concentrations correlated with

elevated levels of total triiodothyronine (tT3) and tT4 (21).

Another study indicated that Cu proportion may directly impact

thyroid function in individuals with AIT or overt hypothyroidism

(22). Moreover, Cu may influence thyroid hormone levels through

autoimmune mechanisms, given the close association between

thyroid autoimmunity and dysfunction (23). While observational

studies suggest an association between Cu and AIT, our study

reveals no relationship between genetically predicted circulating Cu

concentrations and AIT.

Ir, found in plasma as a constituent of hemoglobin, myoglobin,

enzymes, and other proteins, plays a regulatory role in innate

immunity by modulating monocytes and neutrophils. TPO is a

heme enzyme that becomes active only upon binding to heme—a

non-protein pseudogroup containing Fe2+ ions—and is primarily

responsible for synthesizing thyroid hormones. Consequently, Ir

deficiency impairs thyroid metabolic function. Of note, low Ir stores

may contribute to the persistence of symptoms after LT4 therapy in

5%-10% of patients with hypothyroidism (24). Patients with AIT

often suffer from autoimmune gastritis, which leads to reduced Fe

absorption, or celiac disease, which causes Fe loss, and then

develops Fe deficiency (25). Findings from a retrospective study

involving 180 female patients with positive thyroid autoantibodies

revealed higher frequencies of abnormal hemoglobin, Ir, and

ferritin levels compared to healthy controls. Additionally, a

negative correlation was observed between Thyroid Peroxidase

Antibodies (TPOAb) levels and serum ferritin and Ir levels (26).

Another cross-sectional study involving 7463 pregnant women and

2185 nonpregnant women with subclinical hypothyroidism

demonstrated an association between Ir deficiency and a higher

prevalence of isolated TPOAb positivity among pregnant women

and nonpregnant women of childbearing age (27). Despite
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observational studies suggesting an association between Ir and

AIT, our investigation reveals no causal relationship between

genetically predicted circulating concentrations of Ir and AIT.

Thyroid disease significantly influences mineral metabolism,

particularly the mineral density of bone tissue. This is attributed to

the involvement of thyroid hormone in regulating the metabolism

of Ca and phosphorus, with Ca being an essential mineral in bone

tissue. In patients with hypothyroidism, the mean serum Ca

concentration tends to decrease, and there exists a negative

correlation between Ca and TSH (28, 29). Conversely, patients

with hyperthyroidism often exhibit elevated serum Ca levels,

potentially increasing the risk of osteoporosis and fractures (30).

While observational studies have not directly established a link

between Ca and AIT, our investigation reveals no causal

relationship between genetically predicted circulating Ca

concentrations and AIT.

VD is primarily synthesized endogenously following exposure

to sunlight, particularly UVB radiation, through the skin. It plays a

crucial role in regulating calcium-phosphate metabolism and

promoting bone homeostasis. Recent research has unveiled VD’s

immunomodulatory functions within both the innate and adaptive

immune systems, suggesting its potential to foster immune

tolerance, which, in turn, could inhibit the immunopathological

processes underlying AIT (8). A study conducted among Polish

women revealed an inverse correlation between TSH, TPOAb,

thyroglobulin antibodies (TGAb), and serum VD levels across

healthy individuals, AIT patients, and those with hypothyroidism

(31). Similarly, another study demonstrated significantly lower

serum VD levels in AIT patients compared to controls, with the

severity of VD deficiency correlating with the duration of AIT and

thyroid antibody levels (32). While some observational studies have

suggested a potential association between VD deficiency and an

elevated risk of AIT (33–35), others have failed to establish a clear

link between serum VD levels and antithyroid antibodies or thyroid

function (36, 37). These inconsistencies may stem from various

factors, yet our investigation did not uncover a causal relationship

between circulating VD concentration and AIT. Thus, further

randomized, double-blind, placebo-controlled trials are warranted

to elucidate the ambiguous causal relationship between VD and

thyroid disease.

VC not only safeguards thyroid acini from oxidative damage

owing to its antioxidant properties but may also potentially aid in

the restoration of thyroid function through its non-oxidative

activity, thereby facilitating the recovery of thyroid hormone

synthesis function (38). For example, VC has been shown to

contribute to the synthesis of paraoxonase, which contributes to

the detoxification of OPs (39). While investigations into the role of

VC in thyroid disease are limited, our study marks the first

exploration of the causal relationship between VC and AIT.

Nevertheless, studies have revealed no causal effect between

circulating VC concentration and AIT.

Zn plays a key role in thyroid hormone metabolism by

regulating deiodinase activity, the synthesis of thyrotropin-

releasing hormone (TRH) and TSH enzymes, and the structure of

transcription factors essential for thyroid hormone synthesis (40).

Numerous studies in the literature have explored the relationship
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between Zn and thyroid hormones, with both hypothyroidism and

hyperthyroidism being linked to low Zn concentrations (41). Zn

deficiency can disrupt thyroid hormone levels and potentially lead

to elevated antibody titers against thyroid antigens (42). Moreover,

autoimmune diseases are associated with pathological alterations in

circulating Zn concentrations (43). However, our study did not

uncover a causal association between circulating Zn concentrations

and AIT.

Previous research on the relationship between micronutrients

and AIT was controversial. This study marks the first attempt to

investigate the causal connection between micronutrients and AIT

utilizing a two-sampleMR approach. Importantly, employing distinct

databases for exposure and outcome datasets helped mitigate the risk

of bias arising from overlapping samples. Furthermore, the selection

of SNP with robust correlations (p < 5×10−8) and high intensity

(F statistic > 10) to construct IV bolstered the comparability and

credibility of the study. Nevertheless, it is imperative to acknowledge

the study’s limitations. Firstly, in the two-sample MR analyses of

exposure (Cu, Ir, and Zn) and outcome (AIT), the inclusion of a small

number of SNP—2, 3, and 2, respectively—unable the testing for

pleiotropic effects. Secondly, the study sample comprised individuals

of European ancestry, potentially constraining the generalizability of

our findings to other populations.
5 Conclusion

In conclusion, our study findings indicate the absence of a causal

relationship between genetically predicted circulating concentrations

of six micronutrients (Cu, Ir, Ca, VD, VC, Zn) and the risk of AIT.

Future studies are warranted to elucidate the effects of micronutrients

on AIT and unravel their underlying mechanisms.
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