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As the dimensionality, throughput and complexity of cytometry data increases,

so does the demand for user-friendly, interactive analysis tools that leverage

high-performance machine learning frameworks. Here we introduce FlowAtlas:

an interactive web application that enables dimensionality reduction of

cytometry data without down-sampling and that is compatible with datasets

stained with non-identical panels. FlowAtlas bridges the user-friendly

environment of FlowJo and computational tools in Julia developed by the

scientific machine learning community, eliminating the need for coding and

bioinformatics expertise. New population discovery and detection of rare

populations in FlowAtlas is intuitive and rapid. We demonstrate the capabilities

of FlowAtlas using a human multi-tissue, multi-donor immune cell dataset,

highlighting key immunological findings. FlowAtlas is available at https://

github.com/gszep/FlowAtlas.jl.git.
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1 Introduction

Rapid advancements in flow and mass cytometry have brought

about a new era of high-dimensional cell phenotyping. However,

traditional gating methods fail to provide an adequate overview of

all possible marker combinations, making them insufficient for

analyzing such complex datasets. Instead, high-dimensional data

is typically visualized by embedding it onto a 2D-map, where the

relative distance between data points (events) reflects their

phenotypic similarities. In addition to dimensionality reduction

(DR), algorithms can automatically identify subpopulations of

events with shared characteristics, assigning them into clusters.

These clusters can then be projected onto the DR data embedding,

enabling users to simultaneously view all populations and

parameters within their dataset, assign identities to cell clusters,

and discover novel cell populations. Several algorithms have been

developed for non-linear DR, including tSNE (1) and UMAP (2).

One of the most widely used tools for automatic population

clustering is FlowSOM, a self-organizing map (SOM)-based

algorithm (3).

DR and cell population clustering algorithms have gradually

been integrated into popular analysis platforms such as FCS express

and FlowJo, either as core features or add-on plugins. However

these can lack downstream interactivity with the DR data and,

typically require substantial down-sampling, where only a small

portion of the data is selected for analysis to reduce the

computational burden. Unfortunately this risks loss of rare cell

populations. Furthermore these packages do not support the

integration of datasets acquired using different cytometry panels.

In contrast, computational pipelines built in scripting languages

such as R or Python require significant coding literacy, so

hampering their adoption by the wider biomedical community.

As data complexity increases and open data access becomes the gold

standard there is a growing need for powerful computational tools

that do not require coding expertise, can process large datasets, and

enable data integration.

Here we introduce FlowAtlas — a free-access, graphical data

analysis environment that aims to overcome the limitations of

current tools. We chose to write FlowAtlas in Julia (4), a

programming language created for high-performance scientific

computing and machine learning applications. This gave us

access to some of the fastest algorithms available today (4, 5).

First, we provide an overview of FlowAtlas’s design and

performance, followed by a step-by-step instruction guide for a

typical analysis workflow. Using a novel, human flow cytometry

dataset, consisting of immune cells extracted from tissues of five

deceased organ donors and immunophenotyped using three

different antibody panels, we then showcase how FlowAtlas can

be used to rapidly and intuitively explore complex data. Then, using

publicly available datasets, we demonstrate its ability detect rare cell

subsets, and to process data obtained on different cytometry

platforms. Finally, we discuss the technical prerequisites needed

for robust data analysis in FlowAtlas.
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2 Results

2.1 FlowAtlas design and performance

2.1.1 FlowAtlas integrates with FlowJo: overview
A major barrier to complex cytometry data exploration for

many biologists is the need for coding and bioinformatics expertise.

We designed FlowAtlas to be an open source, fully graphical,

interactive high-dimensional data exploration tool that does not

rely on command-line input or coding literacy. FlowAtlas links the

familiar FlowJo workflow with a high-performance machine

learning framework enabling rapid computation of millions of

high-dimensional events without the need for down-sampling

(Figure 1).

FlowAtlas reads user-defined settings from FlowJo, including

channel names, gate names, sample group names, and the scaling of

each individual fluorescence parameter, which is important in

discerning positive and negative populations, and therefore in

performing DR and clustering analysis. The resultant DR

embedding is highly interactive. Users can zoom in to examine

deeper cluster structures, apply coloring and filtering to embedded

events based on custom conditions, generate frequency statistics,

and draw regions of interest (ROIs) to perform comparative

analyses of marker expression using violin plots. As individual

files are not merged (concatenated), they remain identifiable in the

embedding, ensuring that users can see the relative contribution of

each sample to trends in their data.

Data exploration happens in an iterative, user-guided discovery

loop with FlowJo: traditional FlowJo gating strategies provide the

initial annotation of main cell populations, experimental

conditions, and sample groupings. The user then switches to

FlowAtlas to discover new subpopulations in the interactive

embedding, periodically returning to FlowJo to add the new

population annotations as they are discovered in FlowAtlas.

Analysis does not require any command-line input and is

intuitive, similar to zooming in on a geographical map and

gradually filling in its features as they come into view.

2.1.2 Compared to other tools, FlowAtlas enables
rapid dimensionality reduction without data
down-sampling

Existing DR and clustering tools handle large datasets by

randomly selecting a subset of the data to reduce computation

time (known as down-sampling). This may result in the loss of rare

cell populations. We eliminated the need for down-sampling and

enabled visual exploration of many millions of cells by utilizing

methods within the GigaSOM.jl library in Julia programming

language (6). Specifically, the EmbedSOM algorithm from the

GigaSOM.jl library performs DR and clustering more efficiently

compared to other tools. The developers of EmbedSOM have

demonstrated in their benchmarking paper (7) a 10-30-fold

reduction in the computational time requirements compared to

other popular DR algorithms including UMAP and tSNE.
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Additionally, EmbedSOM improves clustering performance over

the FlowSOM R package (8), utilized by most open-source analysis

workflows and commercial software platforms including FlowJo

and Cytobank (9). This efficiency was a key reason for using the

EmbedSOM algorithm as a building block for FlowAtlas. To handle

the challenge of displaying a large number of events on a 2D map

without overcrowding, we used tools from the interactive web

libraries OpenLayers (10) and D3.js (11), which enable zooming,

tiling, and panning of the DR data.

We compared the computational performance of FlowAtlas to

two alternative tools for DR that also do not require command-line

input under real-life conditions on a laboratory laptop with the

following configuration: 64-bit Windows OS, 32GB RAM, 8th

generation core i7-8750H processor, 2.20 GHz. Example graphical

outputs from DR with each tool are shown in Supplementary Figure

S1. For this testing, we used a novel tissue-derived immune cell

conventional flow cytometry dataset. It consists of 3.88 million total

live single cell events (32 FCS files, 19 fluorescence parameters), and

samples are stained with 3 different panels (A, B and C). Donor

characteristics, panels and antibodies used are shown in

Supplementary Tables S1–S3.

DR of samples stained with panel C (2.32 million events) in

FlowJo (v10.8.1) using the inbuilt tSNE function took 49 min. In

FCS Express (v7.18.0025), the same samples were processed in
Frontiers in Immunology 03
125 min. The full dataset could not be subjected to DR on these

platforms because samples stained with different panels cannot be

combined. When analyzed as individual files or groups of files

(combined by panel), FlowJo tSNE processed the full dataset of 3.88

million events in 6 hours. We did not attempt the same procedure

in FCS Express, but it was expected to exceed 125 min required for

DR of panel C samples. By contrast, our full dataset (3.88 million

events) was processed in FlowAtlas in 18 min (Table 1).

As mentioned above, FlowAtlas uses the highly efficient

EmbedSOM algorithm, which performs both DR and clustering.

Therefore, we also compared the performance of FlowAtlas against

two other non-command line clustering tools: the FlowSOM

algorithm implemented in the popular subscription-based cloud

analysis platform Cytobank; and the EmbedSOM algorithm (v2.1.7)

implemented as a FlowJo plugin. For this test, we utilized a spectral

cytometry dataset of whole human blood, which is publicly available

as a demonstration experiment in Cytobank repository (12). This

dataset contains whole peripheral blood samples in 3 FCS files (23

fluorescence parameters, 512,000 events). The published data were

already fully unmixed and compensated. Prior to analysis, we

excluded debris based on scatter parameters, leaving 449,488

events. In FlowJo (v10.8.1), we recreated the basic gating strategy

from the demonstration analysis in Cytobank to identify major cell

populations including granulocytes, B-cells, T-cells, and NK cells
FIGURE 1

Overview of FlowAtlas workflow with FlowJo. Step 1: Removal of anomalous events using FlowJo plugins. Step 2: Compensation and export of new
clean FCS files. Step 3: Batch correction (if required). Steps 4-6: Workspace preparation in FlowJo including resolution of channel naming
discrepancies, bi-exponential transformation of all parameters and gating user-defined populations, and sample grouping. Step 7: Importing the
workspace into FlowAtlas triggers automatic panel merge, embedding calculation and launches the interactive web interface. Embedded events can
be re-coloured and filtered by conditions and groups defined in Step 6. ROIs can be drawn in the embedding, generating violin plots of marker
expression. Box plots can be generated to show frequencies of selected populations and conditions. Novel populations identified in FlowAtlas can
be validated and annotated in FlowJo. The updated workspace file can then be re-opened in FlowAtlas to import the new annotations. FJ, FlowJo.
FA, FlowAtlas.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1425488
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Coppard et al. 10.3389/fimmu.2024.1425488
(Supplementary Figure S2). We then subjected the total live single

cell events to DR and clustering in FlowAtlas, according to the

procedure described in the next section (“Recommended FlowAtlas

workflow”). In parallel, we replicated the demonstrated DR analysis

in Cytobank, which recommended down-sampling to 420,000

events by equal random sampling (actual number of sampled

events= 421,669). Clustering in Cytobank was executed in 12

minutes excluding the time required for prior dimensionality

reduction. Finally, we subjected the same cleaned FCS files to

EmbedSOM clustering in FlowJo (v10.8.1, EmbedSOM v2.1.7).

Computation took 5min 30s and, as expected, it created three

maps with different geometry (one per file, since files were not

concatenated prior to analysis). The resulting maps had limited

interactivity, e.g. drawing gates directly on the map and then

examining them by traditional scatter plots. Computation in

FlowAtlas took only 2.5min, including embedding time, and as

shown later, it enabled us to interact with the data and discover rare

cell populations rapidly (see “Demonstrating the utility of

FlowAtlas”).

Finally, we stress tested FlowAtlas to confirm that it can

perform rapid embedding of very large datasets on a personal

computer. We incrementally tested different dataset sizes up to 46

million events and 25 parameters, which embedded in 113 min

(Supplementary Figure S3). In our hands, the largest dataset

committed 41 GB (of 64GB available) RAM, and it could not be

processed on an older machine (16 GB RAM). Therefore, higher

RAM capability was essential for processing complex datasets, but it

still fell well within the capabilities of currently available personal

computers. To our knowledge, no other platform is currently

equipped to handle cytometry data of this size and complexity

without down-sampling. Details and a video demonstration of
Frontiers in Immunology 04
exploring this large dataset in real time are provided in Methods

Section 4.7.

To summarize, we have demonstrated that FlowAtlas rapidly

processes large datasets without down-sampling and without the

need for specialized computing equipment. Next, we outline the

step-by-step procedure we would recommend for analysis

in FlowAtlas.
2.2 Recommended FlowAtlas workflow:
iterative interactive cell population
discovery concurrently with FlowJo

A typical analysis workflow using FlowAtlas concurrently with

FlowJo is described in Figure 1.

STEP 1: As a first step in any analysis, we recommend to quality

control raw FCS files and remove anomalous events using dedicated

data cleanup tools such as FlowAI (13), FlowCut (14), FlowClean

(15), or PeacoQC (16), all of which are now available as FlowJo

plugins. For our dataset, we used FlowAI since this was the only

data cleanup tool implemented as a FlowJo plugin at the time of our

data analysis.

STEP 2: The compensation accuracy for each file is verified and

a population of clean live, single cells is gated and exported as new

FCS files. Different files may require different compensation

matrices. Therefore, when exporting, only compensated

fluorescence channels should be selected. This step ensures that

the compensation matrix becomes hard-coded in the new FCS files

and is accessible to FlowAtlas.

STEP 3: If merging datasets from different experiments or

instruments is required, the user will most likely observe batch
TABLE 1 CPU usage and time required by FlowAtlas, FlowJo, and FCS Express to perform dimensionality reduction and/or clustering on a laptop with
Windows OS, 32GB RAM, i7-8750H CPU 2.20GHz processor.

Samples
Events

(millions)

Dimensionality reduction performance comparison

FlowAtlas EmbedSOM
FlowJo
tSNE

FCS Express
tSNE

Time % CPU Time % CPU Time % CPU

1 FCS file 0.38 2 min 8.3 7min15s 90 9min30s 100

3 FCS files 2.32 9 min30s 8.5 49 min 90 125 mina 100

Full dataset 3.88 18 min 8.5 Up to 6h† 100 NRa b NR

Samples

Clustering performance comparison

FlowAtlas EmbedSOM FlowJo EmbedSOM Cytobank FlowSOM

Events
(millions)

Time
Events

(millions)
Time

Events
(millions)

Time

3 FCS
spectral files

0.449 2min30s 0.449 5min30s 0.421c 12 min

Down-sampling no no yes
FlowJo version 10.8.1 using its native tSNE tool; FCS Express version 7.18.0025. opt-tSNE settings in both platforms: all fluorescence channels, perplexity 30, iterations 1000, learning rate (eta):
automatic; KNN algorithm: ANNOY, with Barnes-hut approximation (=0.5). Times represent best results from 2-3 independent attempts. NR= not run. aSoftware became unresponsive on 2 of 3
trials. bDifferent panels cannot be merged so multiple embeddings are produced. cDownsampling required. Computation time for clustering of the indicated number of events from a publicly
available spectral dataset in FlowAtlas, FlowJo, and Cytobank. The dataset is from Cytobank experiment number 191382. FlowSOM settings: FlowSOM-on-viSNE, consensus clustering, 23
clustering parameters, without normalization, 20 metaclusters and 100 clusters, seed 770593711. Time in Cytobank excludes the DR step.
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effects unless measures such as instrument cross-calibration,

longitudinal instrument performance normalization and inter-

experiment controls were put in place. Removal of batch effects in

the absence of inter-run controls that can clearly reveal technical

variability is challenging. Before proceeding to FlowAtlas, we

recommend batch-correcting the data using dedicated tools such

as cyCombine (17) or CytoNorm (18). Both are available as FlowJo

plugins. Save batch-corrected files as new FCS files.

STEP 4: Following pre-processing steps 1-3, the new files are

annotated in FlowJo. The dataset is opened in a new FlowJo

workspace and antibody labels are assigned to fluorescence

channels. In our example dataset, the PE channel was used either

for FOXP3 or IgM, and CD4 was assigned to either BUV661 or
Frontiers in Immunology 05
BUV805 (see Supplementary Table S2). Therefore, we labelled the

PE channel in all panels as FOXP3-IgM and labelled both BUV661

and BUV805 as CD4. Resolving naming discrepancies between

channels of non-identical panels is critical because, to perform

panel merging, FlowAtlas uses these user-specified channel labels.

FlowAtlas defaults to native fluorescence detector names when

labels are not provided, which will prevent the panel merge.

STEP 5: Next, panel-specific gating hierarchy is created in FlowJo

to define known populations of interest across all datasets (e.g. Figure 2

for our example dataset). This is a user-supervised population-defining

step and initial annotations typically represent high-level populations,

such as naïve/memory B-cells, or CD4/CD8 memory T cells.

Biexponential transformations should be applied to each channel in
FIGURE 2

Panel-specific gating strategies created in FlowJo. For downstream DR analysis in FlowAtlas, we exported only live single T-cell events from each
panel, indicated with a dashed line gate (A) Live CD3+ CD45+; (B) Live CD3+; (C) Live CD19- CD3+ events. Compensated parameters were
exported, excluding CD45, CD19, Viability stain, FSC and SSC. Downstream gating for main population identification in FlowAtlas is shown. All
channels have been biexponentially transformed. Note that FlowAtlas is compatible with biexponential transformation as implemented in FlowJo
v10.8.1; other FlowJo transformations (e.g. logarithmic, ArcSinh) are not compatible with FlowAtlas.
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FlowJo, visually selecting the most appropriate width basis (co-factor)

for each parameter in the dataset. FlowAtlas reads the biexponential

transformations directly from FlowJo, enabling the user to set optimal

population separation. This, in turn, has been shown to dictate the

quality of dimensionality reduction and clustering (19). Matching

populations, irrespective of panel, should be assigned the same

annotation to enable cross-dataset pooling in FlowAtlas and analysis.

Cells that fall outside of FlowJo-defined gates are auto-annotated as

“Unlabelled” by FlowAtlas and can still be explored.

STEP 6: Finally, to facilitate data exploration, samples are

grouped by conditions in FlowJo enabling FlowAtlas to filter and

color-code embedded events. For our analysis, samples were

grouped by donors and tissues (see Section 2.3).

STEP 7: The FlowJo workspace file is then imported into

FlowAtlas (see instructions in Methods 4.6), which triggers

dataset merging, DR, calculation of the embedding and launches

an interactive browser interface (elements of FlowAtlas interface are

shown in Figure 1, right panel).

The user interface displays the embedding map, which can be

zoomed and panned to reveal fine cluster substructure. The FlowAtlas
Frontiers in Immunology 06
menu has four tabs: “Annotations”, “Expression”, “Frequency” and

“Settings”. The “Annotations” tab enables cell filtering and re-coloring

by sample groupings created in FlowJo, by cell population, or by heat-

map of any marker expression. The filters can also be renamed or re-

ordered here by dragging-and-dropping. The “Expression” tab has a

polygon tool that enables drawing of multiple ROIs directly in the

embedding to produce overlaid violin plots (Figure 1, right bottom

inset) that reveal differences in marker expression thus enabling rapid

identification of clusters with unique signatures. In the “Frequency” tab

frequency box plots can be generated with a few clicks (e.g. Figure 3A

and Supplementary Figure S6 for our example dataset) showing

frequencies of selected populations relative to their sum or any other

population. Box plot marker colors and categories displayed on the x-

axis are defined by filter selections in the “Annotations’’ tab. These

features enable “on-the-fly”, intuitive exploration and analysis of

complex datasets. All figures can be exported as publication-quality

scalable vector graphics (SVG).

Once unique subpopulations and their signatures have been

identified, they can be validated in FlowJo with targeted two-

parameter plots and new population gates created to be read by
B C

D E

F

A

FIGURE 3

Treg subpopulation discovery in FlowAtlas. (A) Relative abundance of Tregs by donor and tissue calculated as % of total CD4+ T-cells. (B) Self-
organized map embedding of Tregs from all tissues, all donors and all panels, colored by HELIOS expression. (C) Violin plots of 4 ROIs in the
composite Treg embedding of all tissues stained with panel C; inset shows Tregs from all tissues stained with panel C, colored by CCR4 expression.
(D) Treg ROI population distributions filtered by individual tissue. (E) Validation and creation of new Treg sub-gates for the four ROIs in FlowJo.
Gates should be created in all samples that contain the markers of interest, regardless of panel, at equivalent levels in the gating tree hierarchy (e.g.
the parent gate here is total Tregs). The new gates can then be opened and explored in FlowAtlas, as shown- Treg embedding re-colored by the
newly annotated Treg populations. (F) Frequencies of the newly identified Treg subpopulations across tissues and donors. BM, bone marrow; mLN,
mesenteric lymph nodes; tLN, thoracic lymph nodes; ROI, region of interest; FJ, FlowJo; FA, FlowAtlas.
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FlowAtlas at rerun. This “iterative discovery loop” substantially

simplifies and accelerates discovery.

Hereafter, we demonstrate the capabilities of FlowAtlas using our

novel conventional cytometry dataset of multi-donor multi-tissue

derived immune cells or, where specified, other published datasets.

Utilization of FlowAtlas for analysis of spectral and CyTOF data is

shown in Figure 4 and Supplementary Figure S7 respectively.
Frontiers in Immunology 07
2.3 Demonstrating the utility of FlowAtlas
using example data

2.3.1 Example cell population exploration
Our dataset consists of 32 files of tissue-derived immune cells

obtained from 5 deceased transplant organ donors (Supplementary

Table S1), stained with 3 different panels (Supplementary Table S2).
B

A

FIGURE 4

Comparison of workflow for the detection of rare cell subsets in FlowAtlas and Cytobank using a published spectral cytometry 23-colour dataset of
whole human blood. (A) In FlowAtlas, embedding the data is quick. Basic populations are gated in FlowJo (Step 1A). Clusters in heterogeneous
populations easily stand out on visual inspection, e.g. NK cells (Step 2A). A small cluster of NK cells (magenta ROI and violins) expresses HLA-DR,
CD11c and CD1c (Step 3A). Validating its existence in FlowJo (Step 4A) is easy. The FlowAtlas embedding is re-opened with the new NK cell
population. The larger NK subsets (CD56bright, CD57+ CD56dim and CD57- CD56dim) are zoomable. (B) Equivalent workflow in Cytobank:
embedding is fast (step 1B). The user then annotates 20 metacluster populations by examining heatmaps and violin plots of marker expression (step
2B, process not shown). Rare populations, e.g. HLADR+ NK cells and CD56hi NK cells, may not have segregated. They can be discovered by
examining the MST, colored by channel and cluster number (Step 3B and 4B), e.g. metacluster 4 contains cluster 15, expressing HLA-DR and CD56.
To separate these events into a metacluster, the user should either re-run the analysis, or use Boolean commands to combine cluster numbers into
a new population (Step 5B). Equivalent major cell populations are colored identically in the two embeddings and the minimum-spanning trees in
Step 4B; ROI color in FlowAtlas matches the corresponding violin plots.
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The data were pre-processed in FlowJo as described in the

“Recommended workflow” section to remove anomalous events,

debris and aggregates; compensation was checked; and live, single

T-cells were exported as new FCS files for downstream analysis.

These files were imported into a new FlowJo workspace, and each

channel was biexponentially transformed, basic populations were

gated (Figure 2), and samples were grouped by donor ID and source

tissue. Next, DR and clustering were performed in FlowAtlas. After

generating relative abundance boxplots of the major lymphocyte

populations in our dataset (Supplementary Figure S6), we elected to

zoom into the CD4 regulatory T-cell (Treg) compartment, defined

as CD3+CD4+CD127-/loFOXP3+ cells, as an exemplar.

As a proportion of all CD4+ T-cells, Tregs were demonstrated to

be enriched in lymph nodes, particularly mesenteric lymph nodes

where they accounted for more than 20% of CD4 T-cells in all

studied donors (Figure 3A).

The embedding of Tregs for Panel C donors, recolored by the

expression of the transcription factor HELIOS (Figure 3B), revealed

the presence of HELIOS+ and HELIOS- subpopulations as expected

(20, 21), with additional subcluster structures. Next, we filtered the

embedding by panel C samples and used it to explore Treg

subcluster characteristics further. We colored embedded events by

tissue of origin and drew ROIs around four main subclusters seen in

the embedding (Figure 3C). Auto-generated violin plots quickly

allowed us to observe differences in expression of CD45RA, CCR7,

CCR4 and CD69 between these subclusters, with the red ROI

having a naive phenotype (CD45RA+CCR7+) and lacking CCR4

and CD69 expression, while yellow, grey and violet ROIs showed

characteristics of memory subsets (CD45RA-/loCCR7-) with and

without CD69 and CCR4 expression. Filtering the embedding by

tissue with the above ROIs superimposed (Figure 3D), revealed

tissue-specific enrichment patterns; for example, CD69+ subsets

were largely absent from blood, consistent with the role of CD69 in

promoting tissue retention (22–24), whereas liver, lung, and

thoracic lymph nodes contained a high proportion of Tregs

expressing the chemokine receptor CCR4+ (with or without CD69

co-expression).

CCR4 has been implicated in T-cell trafficking to the lung (25),

and in the infiltration of Tregs into tumors (26). Next, we validated

the presence of these four Treg subsets in FlowJo (Figure 3E) and

created new gates using CCR4 and CD69- now in all samples

stained with these markers, irrespective of panel- for further

exploration in FlowAtlas. Returning to FlowAtlas, we re-colored

the Treg embedding by these newly annotated subsets and

generated frequency box plots (Figure 3F), which further

highlighted tissue-specific expression patterns.

FlowAtlas allowed us to obtain deep insights into the Treg

population rapidly and intuitively. Therefore, we applied a similar

analysis strategy to CD4+ Th1 and CD8+ memory cells, producing

further data in a matter of minutes (Supplementary Figures S4, S5).

This contrasts with analysis solely performed within FlowJo, where

the computation of our full dataset embedding of 3.88 million

events using tSNE would have been prohibitively slow (6 hours, see

Table 1 for comparison of performance) and assessing all possible

combinations of markers using two-dimensional plots would have

been a laborious process.
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Thus, FlowAtlas offers two key advantages that considerably

speed up data exploration: i) the embedding geometry is shared

across all samples, even if they were stained with slightly different

panels; ii) the eye is quickly drawn to patterns in the color or

geometry of the 2D map that stand out- and the user can directly

interact with these ROIs and assign their identities with relative

ease, since the parent population is already known (set by the user

in FlowJo).

2.3.2 Detection of rare cell subsets
using FlowAtlas

As explained above, current DR computational pipelines reduce

computation time by down-sampling large datasets, which may not

optimally reflect the distribution of the original data (27). Rare cell

subsets may be missed by down-sampling and underfitting in

existing unsupervised clustering approaches. Since FlowAtlas does

not down-sample, it potentially circumvents this problem.

Accordingly, we next tested the ability of FlowAtlas to discover

novel rare cell populations in the above-mentioned 23-parameter

spectral cytometry dataset of whole human blood (12). As

described, we performed the analysis in FlowAtlas and then

replicated the example FlowSOM analysis demonstrated in

Cytobank from curated experiment number 191382. The gating

strategy for this dataset is shown in Supplementary Figure S2. Using

FlowAtlas, we identified a subset of HLA-DR+ NK cells, comprising

only 0.69% of total NK cells in under 30 min (Figure 4, steps 1A-

4A). The same population was not resolved as a separate in

Cytobank FlowSOM-on-viSNE analysis at the implemented

settings (Figure 4, steps 1B and 2B). Furthermore, CD56bright NK

cells, which are well known to be phenotypically and functionally

distinct (28), also did not segregate at these analysis settings.

In order to find the missing HLA-DR+ CD56+ subpopulation in

Cytobank, it was necessary to review the 10 individual clusters

comprising CD56+ events, which we colored by each parameter

median fluorescence intensity (MFI) on the minimum spanning

tree (MST, the tree-like graphical representation of the phenotypic

similarities between cell populations). This was a time-consuming

process. In FlowSOM analysis, related clusters of cells are organized

into bigger groups called metaclusters. We noted that cluster 15 (a

part of metacluster 4) was located away from the main metacluster 4

nodes and that it contained a small subset of HLA-DR+ CD56+ NK

cells (Figure 4, step 3B and 4B). These may be the equivalent

population to the cells discovered in FlowAtlas. We verified that the

other 9 neighboring NK-cell clusters did not contain this

population, by examining scatter plots of their key identifying

markers (HLA-DR, CD11c) versus cluster number (not shown).

Finally, we isolated the subpopulation manually based on its cluster

number. This process took several hours and was informed by our

prior identification of this population in FlowAtlas.

Resolution of other rare populations would potentially require

each of the 100 clusters to be individually examined, as above. Once

discovered, a rare subpopulation would either need to be manually

separated (by combining clusters with Boolean commands), or the

analysis needs to be repeated from the beginning with different

settings or starting with smaller more homogenous cell population

(e.g. only NK cells). By contrast, FlowAtlas allows the user to simply
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zoom in on the existing embedding to study the substructure of

clusters without needing to re-embed the data.

2.3.3 FlowAtlas can integrate multiple flow
cytometry panels, but protocol-driven
experiment harmonization remains critical
2.3.3.1 Integration of datasets stained with
different panels

During this project, our panel design evolved, so that our final

tissue-derived immune cell dataset consisted of 3 different panels.

Most existing computational tools require the files to be combined

(concatenated) prior to analysis, which is impossible when different

markers have been assigned to the same fluorochrome (i.e.

cytometer detector channel). This would typically cause

researchers to exclude precious data that they cannot integrate.

Therefore, it was essential that we engineered FlowAtlas with the

capability to handle datasets stained with slightly discrepant panels.

We will now discuss how this was achieved, as well as the

limitations within which this feature operates.

FlowAtlas enables data re-use and concomitant analysis of

datasets acquired with non-identical antibody panels by imputing

missing values using random sampling with replacement before

DR. Algorithmic bias (i.e. synthetic data that result purely from the

imputation and are not physically present in the biological sample)

is prevented by excluding imputed values from the embedding

visualization or any downstream analyses.
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To demonstrate the capability to merge panels, we acquired 2

healthy control blood samples and stained them with the 3 panels

previously used in our main tissue-derived dataset. The use of the

same two donors with all 3 panels eliminated any biological

variation, enabling us to isolate the effect of panel differences

within the healthy control group. We integrated the 6 new FCS

files (1.28 million live single T-cell events) into the existing

embedding of tissue-derived immune cells.

We filtered the embedded data by “healthy control” so that only

the healthy samples are displayed. Then, we colored the embedding

by panel and inspected differences in cluster position, geometry and

marker mean fluorescence intensity (MFI). We noted: i) very slight

variation in cluster position that results from the use of different

fluorochromes for CD4 (see Supplementary Tables S2, S3); ii) some

differences in violin plots, particularly wider negative populations

(due to differences in data spread in the two panels, a phenomenon

explained in Figure 5 legend). Nevertheless, the overall embedding

geometry was highly conserved across the three panels (Figure 5A).

We also tested whether extremely different panels can be

combined (for details, see Supplementary Figure S7). Panels with

very few shared markers and/or fluorochromes could be processed

by FlowAtlas. However, equivalent cell populations failed to co-

localize adequately, due to a lack of common landmarks between

the datasets (Supplementary Figure S8).

In summary, FlowAtlas is relatively robust at handling samples

with mildly to moderately different panels, but optimum
BA

FIGURE 5

Merging of panels and detection of batch variance. (A) Two healthy control donors were stained with our 3 panels as one batch, and data were
processed in FlowAtlas as recommended. Events are colored by panel and show minimum differences in population geometry, driven by our choice
of CD4 fluorochrome (BUV661 on panel A, BUV805 on panels B and C). The BUV661 fluorochrome spreads signal into CD25-APC and CXCR5-
APCR700. This is visible in the violin plots of panel A, where the CD25-negative population is wider (i.e. there is less separation between positive and
negative due to the design of this panel). The three panels in this example integrate well without computational batch correction because of
protocol-based steps taken to avoid major technical variability (B) Blood samples stained with panel C are shown as embedding and violin plots
(yellow= deceased organ donor blood, processed ex vivo, “batch 1”; cyan= healthy control blood, processed after cryopreservation, “batch 2”).
FlowAtlas has successfully merged the panels, but the resulting topography of the two batches is different, reflecting a mixture of biological
differences and technical differences in batch handling.
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co-localization of equivalent populations requires relatively

conservative panel discrepancies.

2.3.3.2 Integration of datasets with major technical
batch effects

As mentioned in Section 2.2, FlowAtlas was designed without a

built-in batch correction step, and users have to account for this

experimentally or computationally. Our tissue-derived dataset was

successfully integrated with minimal batch effects because of careful

staining protocol harmonization and day-to-day cytometer calibration.

To emphasize this point, we stained a set of healthy control

blood samples with the same three panels used in our deceased

organ donor tissue dataset. However, unlike the tissue-derived

dataset, healthy PBMCs had been cryopreserved and acquired on

a cytometer with a different optical configuration (See Methods and

Supplementary Table S4). These experimental discrepancies were

expected to produce an extreme example of batch effects.

To illustrate the batch differences, we embedded the healthy

control blood, and deceased donor tissue datasets on the same DR

map. All data preparation steps and gating strategy were otherwise

identical. In FlowAtlas, we displayed only blood-derived cells

stained with panel C. We colored the samples by group (healthy

controls vs deceased organ donors, Figure 5B). There were

significant qualitative differences in the embedding geometry for

these two sets of samples. The resulting violin plots showed

differences in several chemokine receptors, CD127, CD4 and

CD8. Although biological differences between healthy and

deceased donor blood may contribute to this observation, the

magnitude of the differences strongly suggested they were driven

by batch effects.

In summary, FlowAtlas does not perform batch correction, and,

though it can still compute a map for the combined data, the batch

differences render the resulting map geometry of the combined data

difficult or impossible to interpret. Therefore, it is essential that

users experimentally control for, or computationally correct, batch

effects in their dataset before using FlowAtlas (a computational

approach is demonstrated in Supplementary Figure S9).
3 Discussion

FlowAtlas is a novel open-source data exploration tool, which

combines the computational power of the GigaSOM library and

Julia programming language with the widely used software FlowJo,

expanding its capabilities in a completely graphical, fast, user-

friendly interface. This approach removes all entry barriers

imposed by command-line analysis pipelines that currently hold

many users back from taking advantage of powerful computational

tools. FlowAtlas brings a new iterative analysis concept to

biomedical scientists by linking the familiar FlowJo workflow with

a high-performance machine learning framework. FlowAtlas allows

rapid computation of millions of high-dimensional events

without the need for down-sampling. The highly interactive

embedding enables zooming and intuitive exploration of

population substructure, considerably speeding up population
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discovery. Missing-data handling methods enable concomitant

analysis of datasets with non-identical panel designs or markers.

Importantly, FlowAtlas does not incorporate batch correction, and,

to prevent algorithmic bias, does not display imputed values in the

embedding. Here, we briefly discuss the rationale behind our

design decision.

As emphasized throughout this work, data preparation is

crucial to successful analysis in FlowAtlas and this includes: i)

removal of irrelevant events such as debris, aggregates and dead

cells; ii) optimal compensation for each file; iii) correction of

technical (non-biological) variation between samples. Therefore, it

may appear surprising that we designed FlowAtlas without an

integrated batch correction step. This was a deliberate choice that

enables users to select the most appropriate method for their

specific experimental context.

Best practice for minimization of batch-effects currently relies

on inter-laboratory protocol harmonization through the use of

standardized antibody cocktails, identical staining procedures,

calibration of cytometers using fluorescence standards or

Application Settings (29). Protocol-based approaches, such as

those we used to acquire our tissue-derived immune cell dataset,

would likely best suit biologists- the primary target user

demographic of FlowAtlas- as they circumvent the need for coding.

Alternatively, batch correction is possible using computational

methods, but this can often be more challenging. Tools such as

swiftReg in R (30), and CytoNorm (18) and CyCombine (17), which

are both available as plugins in FlowJo, are examples of batch

correction algorithms. CytoNorm requires biological “anchor”

controls stained with each batch of samples to correct the

fluorescence intensity of markers in each sample. Due to concerns

that this may eliminate some biologically relevant fluorescence

differences, this pipeline is suitable for analyzing population

frequency (not fluorescence intensity) as the main variable of interest.

In the absence of internal anchor controls, the currently available

computational methods of batch correction need considerable

command-line competence. For example, GaussNorm (in R) aligns

cellular landmarks (positive and negative population peaks) across

samples (31). Powerful batch correction tools rooted in single-cell

genomics packages are now finding application in flow and mass

cytometry, e.g. Seurat in R (32) and Pytometry in Python (33). The

stringency of batch effect removal versus biological effect preservation

varies widely between these methods (34), so the optimum batch

correction pipeline may vary between datasets. For this reason, we

chose not to integrate any particular computational batch correction

pipeline with FlowAtlas, allowing users to choose if they require this

step, and how best to approach it during experiment design and data

pre-processing.

With respect to panel merging, the missing-data handling

methods in FlowAtlas ensure it is relatively robust to moderate

panel differences, enabling dataset integration in selected

circumstances. We substituted some markers in our panels and

demonstrated that FlowAtlas can preserve the embedding geometry

under the tested conditions. Nevertheless, panels with little overlap

in markers or fluorochromes are unlikely to integrate successfully.

Where multiple markers differ, users are advised to test the
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effectiveness of panel integration by staining a single donor sample

with their panels of interest and assessing the resulting embedding

geometry. Tools have been developed, which aim to combine

panels through marker imputation, e.g. CyCombine (17),

CytoBackBone (35), CyTOFMerge (36) and Infinicyt (Cytognos,

BD). Nevertheless, we chose not to display imputed values in the

FlowAtlas embedding to protect against algorithmic bias. A critical

assessment of these methods has recently reported relatively poor

approximation of known expression values (37), justifying

our decision.

In conclusion, FlowAtlas is a novel data exploration tool,

which leverages advanced machine learning methods, rapid

computational speed, and a near-complete lack of a user learning

curve before data exploration can commence. The highly interactive

and intuitive workflow eliminates the need for command-line

coding and brings high-dimensional data exploration and

population discovery to the non-bioinformatician biologist.
4 Materials and methods

4.1 Ethical statement

All work was completed under ethically approved studies.

Healthy human PBMCs were isolated from volunteers having

given informed consent under CAMSAFE (REC- 11/33/0007). All

deceased organ donor tissue samples were collected via the

Cambridge Biorepository for Translational Medicine under

Research Ethics Committee approval 15/EE/0152. In addition,

two donor-matched blood samples were collected prior to

withdrawal of life support, under Ethics Committee approval

97/290.
4.2 Tissue acquisition and dissociation, and
preparation of healthy control PBMCs

Tissue was obtained from five deceased organ donors following

circulatory death. Donor metadata is given in Supplementary Table

S1, and a graphical summary of all samples and data sources is in

Supplementary Figure S10. Briefly, following cessation of

circulation, human donor organs were perfused in situ with cold

organ preservation solution and cooled with topical application of

ice. Samples for the study were obtained within 60 minutes of

cessation of circulation and placed in University of Wisconsin

organ preservation solution for transport at 4°C to the laboratory.

Lung and liver samples were obtained from the left lower lobe of the

lung and the right lobe of the liver. In addition, two donor-matched

blood samples were collected prior to withdrawal of life support

(under REC approval 97/290). To minimize the possibility of

processing-dependent differences in cell surface marker

expression, all samples, including blood, were processed using

enzymatic digestion protocol. Briefly, solid tissues were weighed,

transferred into 10cm tissue culture dishes, and cut into small
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pieces. Up to 5g of tissue was then transferred into a GentleMACS C

tube (Miltenyi Biotec) prefilled with 5mL of dissociation media

composed of X-VIVO15 with 0.13U/mL Liberase TL (Roche), 10U/

mL Benzonase nuclease (Millipore/Merck), 2% (v/v) heat-

inactivated fetal bovine serum (FBS, Gibco), penicillin (100 U/ml,

Sigma-Aldrich), streptomycin (0.1 mg/ml, Sigma-Aldrich), and

10mM HEPES (Sigma Aldrich). The samples were then

homogenised using a GentleMACS Octo dissociator (Miltenyi

Biotec) running a protocol that provided gradual ramping up of

homogenization speed and two 15-minute heating/mixing steps at

37°C. Digested tissue was passed through a 70mm MACS

Smartstrainer (Miltenyi Biotec) and the flow-through was first

washed with X-VIVO15 supplemented with 2 mM EDTA and

then with PBS. Mononuclear cells were enriched by Ficoll-Paque

(GE Healthcare) density centrifugation according to the

manufacturer’s instructions. Following density centrifugation,

mononuclear layer was collected, washed once with PBS and the

cell pellet was resuspended in FACS buffer (PBS, 2.5% FBS). Bone

marrow aspirates and peripheral blood samples were first subjected

to Ficoll-Paque density centrifugation, according to manufacturer’s

instructions, the mononuclear layer was then collected, washed with

PBS and cells were treated with the same dissociation media as solid

tissues for 30 min at 37°C prior to washing and resuspension in

FACS buffer.

Healthy control PBMCs were prepared by Ficoll-gradient

centrifugation and cryopreserved in cell freezing medium (Sigma)

containing 10% DMSO for future use.
4.3 Flow cytometry of tissue-derived
mononuclear cells

Depending on the cell yield, up to 1x106 mononuclear cells/

tissue were stained with antibodies shown in Supplementary Table

S2. Not all donors were stained with the same panel. To expand the

total number of markers, sentinel panel design was implemented

where CD3 and IgD were detected with antibodies conjugated to

BUV395 and FOXP3 and IgM were detected with antibodies

conjugated to PE in some donors. Refer to Supplementary Table

S2 for details. Single cell suspensions were washed once in PBS,

transferred into 96 v-bottom plate and stained with Zombie UV

viability dye for 30 min at 4°C followed by a wash with FACS buffer.

Cell pellets were resuspended in 50ml FACS buffer with Human FcR

block (BD Biosciences) and incubated for 10 min at 4°C. Next, cells

were pelleted, excess buffer removed and 100ml of antibody master

mix composed of cell-surface antibody cocktail (see Supplementary

Table S3), BV buffer (BD) and True-Stain Monocyte Blocker

(Biolegend) and incubated for 1h at 4°C. Following incubation,

cells were washed three times in PBS and prepared for intracellular

staining using transcription factor fixation/permeabilization kit

(eBioscience) according to the manufacturer’s instructions.

Following intracellular staining, cells were resuspended in PBS

and analyzed on BD FACSymphony A3 cell analyzer within

10 hours.
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4.4 Flow cytometry of healthy PBMCs

In contrast to tissue-derived samples, which were processed ex

vivo, healthy PBMC samples were thawed in X-VIVO15/10% FCS

at room temperature and stained according to the procedure above.

Analysis was performed on a BD FACSymphony A5 cell analyzer

within 10 hours. The optical configuration of the two cytometers

used in this study is shown in Supplementary Table S4.

The cytometers were not cross-calibrated for comparable

measurement of MFI, but each underwent individual CS&T bead

quality control before sample acquisition.
4.5 FlowAtlas code availability

The code for FlowAtlas is open-source and is available at our

GitHub repository: https://github.com/gszep/FlowAtlas.jl.git
4.6 Installation and loading of FlowAtlas

FlowAtlas is compatible with FlowJo version 10.8.1.

FlowAtlas requires Julia language, which is easily installed on

any operating system by downloading an installer available here:

https://julialang.org/downloads and following the on-screen

instructions. Tick the option to add Julia to PATH environment

when prompted.

Once Julia is installed, FlowAtlas can be installed and run in

three lines of code as follows:
Fron
1. Windows: open Run (Windows Key + R), type cmd and hit

enter. MacOS: open command prompt (Cmd Key + Space),

type terminal and hit enter. This will launch Windows/

MacOS command prompt.

2. In the prompt type Julia and hit enter. This will launch the

Julia environment.

3. Type] and the prompt will change to display that package

manager is now active.

4. Type add FlowAtlas and hit enter. This will download and

install FlowAtlas. Once installation is complete, you can

close the command prompt window.
To start using FlowAtlas, navigate to the folder containing your

pre-processed FCS files (make sure that the FlowJo workspace file is

there as well) and launch command prompt as follows: in Windows

by typing cmd in the File Explorer address bar (where file path is

usually displayed) and hitting enter or in MacOS launch terminal

and navigate to the folder by typing cd followed by the folder

path. In the prompt, type Julia and hit enter to start it, then

type using FlowAtlas and hit enter. Once FlowAtlas is loaded,

type FlowAtlas.run(“workspace.wsp”; files=“*/*.fcs”) where

workspace.wsp is the name of your FlowJo analysis file with.wsp

extension. Adding new files into the workspace after initial analysis

will force a recalculation of the embedding.
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Embedding is performed only once when the workspace file is first

imported and is stored in a cache file with a “.som” extension, allowing

users to return to their analysis quickly. The embedding can also be re-

calculated to change cluster geometry (by removing the.som file from the

working folder and initiating the programme again). Sharing the “.som”

file together with the FlowJo workspace and FCS files enables

collaboration, allowing colleagues to work on the same embedding map.

A short video demonstrating the use of FlowAtlas can be

watched here: https://www.youtube.com/watch?v=FeYrFKgP91s.
4.7 Processing large datasets
with FlowAtlas

Computation time in FlowAtlas increases as a function of total event

number in the entire dataset (the number of events per file is irrelevant),

and to a lesser extent, data complexity. Very large datasets can be processed

given sufficient RAM. As an approximate guide, on a laptop configured

with 64-bit Windows OS, 64GB RAM, 14-core i7-13700H processor, we

noted the following processing times: 500,000 events (32 parameters)=

4 min; 9 million events (10 parameters)= 23 min; 17.3 million events (32

parameters)= 25 minutes. 46 million events (25 parameters) = 113

minutes. A video of real-time exploration of the largest dataset is

available here: https://youtu.be/0soJw8PT2bU?feature=shared.
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