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Hypoxia reconstructed
colorectal tumor
microenvironment weakening
anti-tumor immunity:
construction of a new prognosis
predicting model through
transcriptome analysis
Ruizhi Zhang1†, Yisong Gao1†, Chong Li1, Ruikang Tao2,
Gan Mao1, Tianyu Song1, Wenxiang Nie1, Suao Liu1,
Kaixiong Tao1* and Wei Li1*

1Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China, 2Center for Biomolecular Science and Engineering,
University of California Santa Cruz, Santa Cruz, CA, United States
Background: Hypoxia in the tumor microenvironment (TME) plays a pivotal role

in the progression and prognosis of colorectal cancer (CRC). However, effective

methods for assessing TME hypoxia remain lacking. This study aims to develop a

novel hypoxia-related prognostic score (HPS) based on hypoxia-associated

genes to improve CRC prognostication and inform treatment strategies.

Methods: Transcriptomic data from CRC patients were analyzed using Lasso

regression to identify hypoxia-associated genes with the strongest prognostic

significance. The identified genes were validated in vitro by assessing their

expression under normoxic and hypoxic conditions in normal intestinal

epithelial cells and CRC tumor cell lines. Functional relevance was explored

through differential gene expression analysis, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and protein-

protein interaction (PPI) network construction. The association of HPS with

extracellular matrix (ECM) composition, immune cell infiltration, and immune

suppression was also investigated.

Results: Seven hypoxia-associated signature genes were identified, each

demonstrating a strong correlation with CRC prognosis. The hypoxia-

related prognostic score (HPS), derived from these genes, was significantly

linked to changes in the TME. Specifically, HPS values were associated with

alterations in ECM composition and distinct immune cell infiltration patterns.

Higher HPS values corresponded to increased infiltration of immune-

suppressive cells and reduced presence of anti-tumor immune cells. This

imbalance promoted an immune-suppressive TME, facilitating tumor

progression and immune evasion.
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Conclusions: The hypoxia-related prognostic score (HPS) captures the

regulatory influence of TME hypoxia on immune responses, offering valuable

insights into its role in tumor progression. HPS holds promise as a prognostic tool

and a guide for developing personalized treatment strategies in CRC.
KEYWORDS

hypoxia, colorectal cancer, tumor microenvironment immunity, extracellular
matrix, WGCNA
1 Introduction

Hypoxia, a critical component of the tumor microenvironment,

is a result of imbalance between increased oxygen usage and

insufficient oxygen supply drove by rapid and unlimited growth of

tumor cells and lack of blood supply (1). This reciprocal interplay

affects patient outcomes across various tumor types, significantly

influencing tumor prognosis (2). Microenvironmental hypoxia is a

factor that affects the prognosis of patients with various malignancies,

including colorectal cancer (CRC) (3–5).

Hypoxia plays a pivotal role in driving tumor progression,

orchestrating the growth and differentiation of tumor cells

through various molecular mechanisms. Proliferation, invasion,

and epithelial-mesenchymal transition of cancer cell are all

associated with hypoxia and are closely linked to local tumor

progression and distant metastasis (6–8). Moreover, hypoxia is

involved in regulating different forms of tumor cell death,

including apoptosis (9). Hypoxic cancer cells exhibit decreased

levels of apoptosis and ferroptosis while autophagy levels increase,

promoting their adaptation to the hypoxic TME (10–12).

Beyond its influence on cancer cells, hypoxia exerts significant

effects on various other cells within the TME, including interstitial

and immune cells. Hypoxia suppresses both the infiltration and

functionality of immune cells, thereby critically influencing the

tumor immune within the tumor microenvironment (13, 14).

Furthermore, hypoxia can alter the matrix composition within the

TME, leading to its remodeling (3).

Despite the critical role of TME hypoxia in tumor progression,

detection techniques remain relatively inadequate (4). Surgical

specimens are evaluated for hypoxia using immunohistochemistry or

immunofluorescence to detect HIF1a expression (15). Although

pimonidazole staining is utilized in animal experiments for hypoxia

assessment, its clinical application remains limited (16). In our study, to

enhance the assessment of hypoxia within the TME, obtain more

precise tumor molecular classifications, and subsequently optimize the

treatment of CRC patients, LASSO regression was employed. This

method allowed us to screen for prognosis-associated genes, integrating

clinicopathological characteristics to predict patient outcomes.

Furthermore, we explored the mechanistic underpinnings of these

genes through functional analysis.
02
2 Materials and methods

2.1 Data collection and preprocessing

Expression profiles of the GSE17536 and GSE14333 datasets were

downloaded from the Gene Expression Omnibus database (GEO).

The GEO dataset GSE17536 included 177 CRC samples, and the

other GEO dataset GSE14333 included 290 CRC samples. TCGA-

COAD and GTEx transcriptome cohort data were downloaded from

the UCSC Xena website (https://xenabrowser.net/datapages/). The

TCGA dataset included 616 CRC samples, and the GTEx dataset

included 686 non-diseased colon tissue samples. All raw data were

normalized and standardized using the R software packages

including “limma” and “DESeq2”.
2.2 Single sample gene set
enrichment analysis

The R package “GSVA” facilitated single-sample gene set

enrichment analysis (ssGSEA) to investigate tumor-related

pathway enrichment and immune cell infiltration within the

GSE17536 dataset. We sourced tumor-related datasets from the

hallmark gene sets in the MSigDB database [https://www.gsea-

msigdb.org/gsea/msigdb].
2.3 Weighted gene co-expression
networks analysis

The weighted gene co-expression network analysis (WGCNA)

was constructed using the GSE17536 dataset. Among all the

soft threshold values, we selected the b value with the highest

mean connectivity (b = 13). The minimum number of genes was

set at 30 to ensure the high reliability of the results. All genes

were then divided into modules, each named by a different color.

For further quantification of hypoxia-related genes and modules,

only genes with a p-value of less than 0.001 were retained for

subsequent analysis.
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2.4 Establishment and validation of a
colorectal cancer prognostic
predictive signature

Univariate Cox regression analysis identified cancer hallmarks

related to disease-specific survival (DSS) and overall survival (OS).

We applied Lasso penalized Cox regression analysis to select hypoxia-

related genes associated with prognosis. Subsequently, we used the

LASSO Cox regression model to identify genes highly correlated with

hypoxia and to construct the hypoxia-related prognosis score (HPS).

We calculated the HPS score for each patient using the formula: HPS

score =∑(coefficient × mRNA expression).
2.5 Construction of nomogram for
colorectal cancer prognosis prediction

Hypoxia score and relevant clinical parameters were used to

construct a nomogram, using the “survival” and the “rms” package

of R. The nomogram was constructed to estimate 1-, 3-, and 5-year

survival probabilities. Themodel’s performance was evaluated by using

the calibration curve and C-index to assess the survival probabilities.
2.6 Gene set enrichment analysis

The function of hypoxia-related genes was explored using gene set

enrichment analysis (GSEA). Differential gene expression profiles in

the training and validation cohorts were analyzed using the R software

package “clusterProfiler” (17). P-values < 0.05 and FDR p-values <

0.25 were considered significant. Permission must be obtained for use

of copyrighted material from other sources (including the web). Please

note that it is compulsory to follow figure instructions.
2.7 Differential expression of genes and
protein-protein interaction analyses

We performed DEG analysis using the “limma” R package on

the GSE17536, GSE14333, TCGA-COAD, and GTEx cohorts.

Genes with an adjusted P-value < 0.05 and an absolute log2 fold

change (FC) > 0.5 were identified as DEGs.

Protein-coding genes in the DEG were used to construct a PPI

network using common transcripts, employing STRING with all

parameters set to their default values (https://cn.string-db.org/).

Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses were also performed through

STRING using the DEGs.
2.8 Stromal and immune cells infiltration

The ESTIMATE algorithm was employed to identify the tumor

microenvironment, and the ESTIMATE, immune, and stroma

scores were calculated using the R software package “estimate”

(18). The cellular composition of stromal and immune cells in the

tumor within the GSE17536 dataset was estimated using the R
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software package “xCell” (19). Scores for immune and stromal cells

were calculated for each sample. Additionally, the CIBERSORTx

online platform (https://cibersortx.stanford.edu/) was utilized to

assess the infiltration of 22 immune cell types in each sample (20).
2.9 Cell lines, antibodies, and chemicals

All cell lines were obtained from the Cell Bank of Shanghai,

Institutes for Biological Sciences, China, and tested negative for

mycoplasma infection. These cells were cultured in DMEM medium

or RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA,

USA), supplemented with 10% fetal bovine serum (Thermo Fisher

Scientific, Waltham, MA, USA), at 37°C in a humidified atmosphere

containing 5% CO2. 5% O2 hypoxic cell culture was performed by

incubating cells in a sealed container with a Mitsubishi AnaeroPack™

anaerobic gas generator (Mitsubishi Gas Chemical Co., Tokyo, Japan).

Hypoxic conditions were verified with the use of a Mitsubishi RT

Anaero-Indicator (Mitsubishi Gas Chemical Co., Tokyo, Japan).

Antibodies against HIF1a and b-actin were purchased from

Cell Signaling Technology (Danvers, MA, USA). Antibodies

against ACTA2, ACTN1, CAVIN3, CEP170, LTBP1 and

POSTN were purchased from Proteintech Group (Rosemont, IL,

USA), Antibody against PCSK5 was purchased from CUSABIO

(Wuhan, Hubei, China). Antibodies were diluted according to

manufacture instructions.
2.10 Protein extraction and
western blotting

The cells were washed with PBS and trypsinized, neutralization

with serum-supplemented media, washed with PBS, and resuspended

in RIPA buffer (Sigma-Aldrich, St. Louis, MO, USA). A 1% protease

inhibitor cocktail (Halt™ Protease Inhibitor Cocktail, EDTA-Free,

Thermo Fisher Scientific) was added to the mixture. The lysate was

collected by centrifugation at 12,000 rpm at 4°C for 15minutes. The

supernatant was transferred to a new tube, and its concentration was

determined using the BCA protein quantification assay. The

supernatant was mixed with loading buffer (Sigma-Aldrich, St.

Louis, MO, USA) and denatured by boiling at 95 °C.

Samples were subjected to SDS-PAGE gel electrophoresis, and

proteins were subsequently transferred to PVDF membranes. The

membranes were blocked with 5% non-fat milk in TBST and then

incubated with specific antibodies overnight at 4°C with gentle

agitation. Following washing, the membranes were incubated with

HRP-conjugated secondary antibodies. Protein bands were

visualized using chemiluminescent substrates.
2.11 Total RNA extraction and quantitative
real-time PCR

Total RNA was extracted from cells using TRIzol Reagent (Takara,

Kusatsu, Japan) following the manufacturer’s instructions. After

assessing quality and quantity, samples were then stored at –80°C.
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The extracted RNA was reverse-transcribed into cDNA using

PrimeScript™ RT Master Mix (Takara, Kusatsu, Japan). The

resulting cDNA was stored at –20°C for further analysis.

Gene expression levels were quantified using qRT-PCR with

gene-specific primers and the One Step SYBR PrimeScript RT-PCR

Kit II (Takara, Kusatsu, Japan). The qRT-PCR reaction conditions

followed the manufacturer’s instructions. Expression levels were

normalized to b-actin, and relative quantification was performed

using the 2^-DDCt method.
2.12 siRNA-mediated RNA interference

Two siRNAs for each targeting human PCSK5 and POSTN

(designated as si-PCSK5_1, si-PCSK5_2, si-POSTN_1, and si-

POSTN_2) and a nontargeting control siRNA were purchased

from RiboBio (Guangzhou, Guangdong, China). The siRNA

target sequences were as follows: si-PCSK5_1: GCAAGTACG

GATTCATCAA, si-PCSK5_2: CGGGACATTTGAACGCTAA, si-

POSTN_1: GCACTTGTAAGAACTGGTA, and si-POSTN_2:

GCTCAGAGTCTTCGTATAT. For transfection, Lipofectamine

3000 (Invitrogen, Carlsbad, CA, USA) was used according to the

manufacturer’s instructions. After 48 hours, some of the cells were

harvested for Western blot analysis to assess the effects of

siRNA inhibition.
2.13 In vitro migration assay

Cell migration was assessed using Transwell chambers (Corning,

NY, USA). Suspensions of 10 × 10^4 cells in 200 µL of serum-free

medium were added to the upper chamber, while the lower chamber

contained medium with 10% FBS. After 16–24 hours, the cells were
Frontiers in Immunology 04
washed with PBS and fixed in 4% paraformaldehyde. The cells on the

upper polycarbonate membranes were gently wiped with cotton

swabs. The migrating cells were stained with crystal violet and then

counted in four random fields under a light microscope.
2.14 Statistical analysis

Statistical analysis was conducted using R software. Forest plots

were generated using univariate or multivariate Cox proportional

hazard regression to calculate the hazard ratio (HR). The Kaplan-

Meier method was employed for survival analysis. The Wilcoxon

test was used to assess differences between groups. Statistically

significant differences were indicated as follows: *p < 0.05; **p

<0.01; ***p < 0.001; NS indicates not significant.
3 Results

3.1 Hypoxia is an important prognostic
factor in patients with colorectal cancer

RNA-seq data from the GSE17536 dataset were utilized to calculate

the ssGSEA scores for cancer hallmark pathways. Significant

associations with prognosis were observed for hypoxia (HR: 6.14,

95% CI: 2.13–17.67, p = 0.001), TGF-b pathway (HR: 3.98, 95% CI:

1.32–12.01, p = 0.014), KRAS upregulation pathway (HR: 3.73, 95% CI:

1.26–11.03, p = 0.017), and PI3K-AKTmTOR pathway (HR: 0.25, 95%

CI: 0.08–0.76, p = 0.014) (Figure 1A). Patients were categorized into

two groups based on their prognosis. Those with a worse prognosis

exhibited higher hypoxia scores (p < 0.001) (Figure 1B). Subsequently,

patients were stratified into high-risk and low-risk groups using the

median hypoxia score as the threshold. The high-risk group

demonstrated significantly poorer survival (p = 0.011) (Figure 1C).
FIGURE 1

Hypoxia as a major prognostic factor in CRC patients. (A) Forest plot showing hazard ratios (HR) from univariate Cox regression for 20 cancer
hallmark pathways in CRC patients. HRs and 95% confidence intervals (CIs) were calculated, with statistical significance assessed by the Wald test (p-
value). Pathways with p > 0.05 are labeled “N.S.” (not significant), HR > 1 as “Risky,” and HR < 1 as “Protective.” Error bars represent 95% CIs. (B) The
boxplot shows the distribution of risk scores across DSS groups in CRC patients, including median values and interquartile ranges (IQR). Statistical
significance was assessed using the Wilcoxon test (p < 0.01), with higher hypoxia scores associated with worse survival outcomes. (C) Kaplan-Meier
survival curves for high-risk and low-risk CRC patients, stratified by risk score. Statistical significance was assessed by the log-rank test (p < 0.05),
with higher hypoxia scores associated with poorer prognosis.
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FIGURE 2

Construction of CRC prognosis prediction model using LASSO regression. (A) Determination of the correlation between modules and prognostic
cancer hallmarks, including hypoxia, using module-trait correlation analysis. Correlations between module eigengenes (MEs) and cancer hallmarks
were visualized using a heatmap. Pearson correlation coefficients were calculated between MEs and cancer hallmarks, and the corresponding p-
values were obtained using the Student’s t-test. (B) Correlations between genes in the blue module and hypoxia, with gene module membership
(GMM) and gene trait significance (GTS) calculated for hypoxia-related traits. (C) LASSO coefficient profiles for hypoxia-related prognostic differential
expressed genes. The coefficient values for the selected genes were plotted against the penalty parameter (lambda). (D) Cross-validation curve for
the LASSO regression model, used to determine the optimal penalty parameter (lambda) for prognostic gene selection. (E, F) Distribution of the
Hypoxia-related Prognostic Score (HPS) which was calculated based on the expression of seven hypoxia-related signature genes across CRC
patients, along with their survival status and survival time showing worse prognosis following higher HPS. (G) Expression profiles of the seven
signature genes in high- and low-risk patient groups, stratified by their HPS and visualized using a heatmap. (H) Kaplan-Meier survival curve for CRC
patients stratified into high-risk and low-risk groups based on their HPS. Statistical significance was assessed by the log-rank test (p < 0.01). (I) Time-
dependent ROC curves for the HPS at 1-, 3-, and 5-year time points in the training dataset (GSE17536). The area under the curve (AUC) values
indicated the prognostic performance of the HPS.
Frontiers in Immunology frontiersin.org05

https://doi.org/10.3389/fimmu.2024.1425687
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1425687
3.2 Construction of a hypoxia-related
score using WGCNA clustering and LASSO
regression model to predict the prognosis
of colorectal cancer patients

Using WGCNA, genes were categorized into 16 modules based

on their correlation, with the blue module exhibiting the

strongest association with hypoxia (Figures 2A, B; Supplementary

Figures 1A, B). Univariate Cox analysis identified genes linked to

patient prognosis, and LASSO regression analysis subsequently

pinpointed 7 genes of interest (ACTA2, ACTN1, CAVIN3,
Frontiers in Immunology 06
CEP170, LTBP1, PCSK5, and POSTN). Based on the expression

levels of these genes, we developed a novel hypoxia-related

prognostic score (HPS) (Figures 2C, D). Patients were stratified

into two groups using the median HPS, revealing significant

differences in prognosis (p < 0.001), with the high-risk group

faring worse. The distribution of HPS also varied significantly

among patients with different prognoses (p < 0.001) (Figures 2E–

H; Supplementary Figure 1C). Analysis of the 7 HPS signature gene

expressions in colorectal cancer tumors versus normal tissues, using

TCGA and GTEx databases, showed a marked difference

(Supplementary Figure 1D). The ROC curves for 1-, 3-, and 5-
FIGURE 3

Prediction of CRC prognosis by combining clinicopathological features with HPS. (A) Distribution of Hypoxia-related Prognostic Score (HPS) across
AJCC stages I-IV. Statistical analysis (Wilcoxon test, p < 0.05) revealed significantly higher HPS in advanced stages. (B) Distribution of HPS across
different differentiation grades (well-differentiated, moderately differentiated, and poorly differentiated) in CRC patients. Data are presented as dot
plots, with statistical significance assessed by the Wilcoxon test. (C) Alluvial diagram showing the relationships between AJCC stage, differentiation
grade, and HPS risk group. (D) Nomogram integrating clinicopathological features and HPS for predicting 1-, 3-, and 5-year overall survival (OS) in
CRC patients, based on a multivariate Cox regression model. (E) Time-dependent ROC curves of the nomogram at 1-, 3-, and 5-year time points in
the GSE17536 training dataset, with AUC values indicating prognostic performance. (F) Boxplot of HPS distribution in different prognosis groups in
the GSE14333 validation dataset. Wilcoxon test (p < 0.01) showed higher HPS in poor prognosis groups. (G) Time-dependent ROC curves of HPS at
1-, 3-, and 5-year time points in the GSE14333 dataset, with AUC values assessing HPS’s prognostic accuracy. (H) Kaplan-Meier survival curves for
high-risk and low-risk groups based on HPS in GSE14333. Log-rank test (p < 0.01) showed significantly worse survival in the high-risk group.
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year overall survival (OS) based on HPS yielded areas under the

curve of 0.6768, 0.6697, and 0.6842, respectively (Figure 2I).
3.3 Combining clinicopathological features
with HPS to construct a nomogram
predicting the prognosis of CRC patients

The distribution of HPS in CRC patients varied across different

AJCC clinical stages, with later stages showing higher HPS

(Figures 3A, B). The distribution of HPS in CRC patients with

various clinicopathological characteristics is depicted in alluvium

plots (Figure 3C). The study created a nomogram that integrates

HPS with clinicopathological characteristics to predict prognosis

(Figure 3D). The areas under the ROC curves for 1-, 3-, and 5-year

OS of nomogram in CRC were 0.882, 0.860, and 0.855, respectively

(Figure 3E). The nomogram predicted outcomes were largely

consistent with the actual outcomes (Supplementary Figure 1E).

To confirm the predictive capability of this score, the study applied

HPS to forecast the prognosis of CRC patients in the validation set

GSE14333. The distribution of HPS among patients with different

prognoses was distinct (p < 0.001), and a statistically significant

difference in prognosis was noted between the high- and low-risk

HPS groups (p = 0.0015) (Figures 3F, H). The areas under the ROC

for 1-, 3-, and 5-year OS of HPS were 0.6037, 0.6841, and 0.6746,

respectively (Figure 3G).
3.4 Hypoxia changes HPS signature gene
expression in normal intestinal epithelial
cells and CRC cells in different patterns

To further investigate the molecular mechanisms of hypoxia

regulation in the CRC TME, we treated human normal intestinal

epithelial cells (FHC) and five human CRC epithelial cell lines

(HCT116, HT-29, LOVO, SW480, and SW620) with hypoxia in

vitro. We analyzed HIF1a protein expression via western blot to

confirm the successful construction of the hypoxia model

(Supplementary Figure 2A). Subsequently, we conducted qRT-PCR

on the hypoxic cell lines to assess the expression of sevenHPS signature

genes (ACTA2, ACTN1, CAVIN3, CEP170, LTBP1, PCSK5 and

POSTN). We observed that ACTN1 and CAVIN3 were slightly

upregulated in FHC cells post-hypoxia, while the CRC cell lines

exhibited varying degrees of upregulation, which was more

pronounced than in FHC cells (Figure 4A). The marked disparity in

gene expression changes between FHC and CRC cell lines following

hypoxia indicates that the responses of normal intestinal epithelial cells

and CRC cell lines to TME hypoxia are distinct (Supplementary

Figure 2B). Further analysis of gene expression in both normal

intestinal epithelial cell lines and tumor cell lines under normoxic

conditions revealed significant differences in signature gene expression

patterns between FHC and CRC cell lines (Figure 4B).

We conducted Western blot analysis to further explore the

differences in protein expression between FHC and CRC cell lines

under hypoxic conditions. The results indicated that the protein

levels of all signature genes were altered following hypoxia, showing
Frontiers in Immunology 07
a high degree of consistency with our qRT-PCR findings

(Figure 4C). Additionally, after knocking down POSTN and

PCSK5 in CRC cell lines (HCT116 and LOVO) using siRNAs,

our in vitro cell migration assays demonstrated that both genes are

involved in the migration of CRC cells (Supplementary

Figures 2C–E).
3.5 Functional enrichment analysis of
differentially expressed genes identified by
HPS risk model

After differential gene expression analysis between high- and

low-risk groups and a GSEA enrichment analysis revealed that, in

addition to the hypoxia pathway (p < 0.001), immune-related

pathways such as inflammatory response (p < 0.001), interferon-g
response (p < 0.001), complement pathway (p < 0.001), and NF-kB-
mediated TNF-a pathway (p < 0.001) were significantly enriched in

the high-risk group (Figures 5A, B; Supplementary Figure 3A).

Significant differences were observed in the expression patterns of

genes related to immunotherapy among DEGs, although no

significant differences were detected in the expression of the

immune checkpoint inhibitor (ICI) genes CD274, PDCD1, and

CTLA-4 (Figure 5C; Supplementary Figure 3B).Furthermore, the

protein-protein interaction (PPI) analysis and GO enrichment

analysis of protein-coding genes with the most significant changes

in DEGs indicated that pathways were primarily enriched in the

migration and chemotaxis of immune cells and the composition

and structure of extracellular matrix (Figures 5D, E; Supplementary

Figure 3C), suggesting that hypoxia has an influence on immune

cell migration, thereby affecting the TME.
3.6 HPS risk is negatively related with
immune response in TME

To discover how HPS risk is correlated with tumor immune, we

performed xCell analysis to assess the infiltration of non-cancer

cells in the TME, and its correlation with HPS was examined. In the

analysis of different cell subsets, HPS showed a positive correlation

with myeloid-derived immune cells (Supplementary Figure 4A) and

a negative correlation with lymphoid-derived immune cells

(Figure 6A). HPS was also positively correlated with most stromal

cells and associated with other stem cells and some other cell types

(Supplementary Figures 4B, C, D). The distribution of myeloid-

derived immune cells, lymphoid-derived immune cells, and stromal

cells between the high- and low-risk groups were further analyzed,

revealing fewer myeloid-derived immune cells and stromal cells in

the low-risk group, while lymphoid-derived immune cells were

more abundant (Figure 6B, Supplementary Figures 4E, F).

Additional analysis of immune cell infiltration using CIBERSORT

indicated that macrophage infiltration predominated in the

microenvironment (Supplementary Figures 5A, B). Notably,

infiltration by undifferentiated macrophages and M2 macrophages

significantly decreased in the low-risk group (Figure 6C,

Supplementary Figure 5C). The linear correlation analysis
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FIGURE 4

Different impacts of hypoxia on the expression of HPS signature genes in normal intestinal epithelial and CRC cells. (A) RT-PCR analysis of mRNA
expression changes in HPS signature genes under hypoxic conditions in FHC normal intestinal epithelial cells and five colorectal cancer (CRC) cell
lines (HCT116, HT29, LOVO, SW480, SW620). Total RNA was extracted from cells exposed to hypoxia. Data are presented as mean with error bars
representing standard deviation (SD) from three biological replicates. Statistical significance was assessed using ANOVA, with *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns, not significant. (B) Expression profiles of HPS signature genes in FHC and CRC cell lines (HCT116, HT29, LOVO,
SW480, SW620) following hypoxia. Data are presented as mean with error bars representing SD from three biological replicates. Statistical
significance was assessed using ANOVA, with *p < 0.05; **p < 0.01; ***p < 0.001 indicating significant differences between groups. (C) Western blot
analysis of protein expression changes in HPS signature genes following hypoxia in FHC and CRC cell lines. Cells were exposed to hypoxia, and
protein lysates were analyzed by western blotting.
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between HPS and immune cell infiltration demonstrated that the

hypoxia score was significantly positively correlated with

undifferentiated macrophages but negatively correlated with the

infiltration of cytotoxic CD8 + T cells and plasma cells (Figure 6D).
4 Discussion

Tumors require significant amounts of oxygen and nutrients to

support their rapid proliferation. However, due to insufficient

tumor blood vessel density and dysfunctional vascular structure,

tumor cells are often in a hypoxia state. To progress, tumor cells

evolve various mechanisms to adapt to hypoxic environments,

involving alterations in metabolic pathways, regulation of gene

expression, as well as interactions with other cells or tissues (2,

21–24). In this study, through a series of bioinformatics analyses, we

found seven hypoxia-associated signature genes with the most

significant prognostic impact on colorectal cancer patients and
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established a hypoxia-related prognosis score (HPS) for CRC

based on this signature gene set. In vitro, we observed significant

differences in the signature gene expression among normal and

cancer cell lines under hypoxia condition, which confirmed the

malignant predictive value of this HPS model.

TME hypoxia could mediate immune evasion of cancer cells via

multiple mechanisms. Hypoxia has been shown to modulate the

expression of cytokines and effector molecules of immune cells,

inhibiting their cytotoxic function (13, 14, 21, 25). In this study,

HPS was showed to be associated with immune cytokine pathways in

tumor microenvironment. However, the current study found no

significant difference in the expression of immunotherapy-related

molecules PD-1/PD-L1 or CTLA-4 between the low HPS and high

HPS group, which suggested that high HPS might not directly

promote immunosuppression by altering expression of ICI-related

molecules. Hypoxia may mediate the infiltration and distribution of

immune cells in the TME by affecting their migration and chemotaxis

and there is an inverse relationship between the degree of hypoxia
FIGURE 5

Effect of hypoxia on the expression of genes is related to tumor immune response and extracellular matrix construction. (A) Heatmap of differentially
expressed genes between high- and low-risk groups based on HPS. Genes were selected based on fold change and statistical significance. (B) Gene
Set Enrichment Analysis (GSEA) of immune-related pathways in high- and low-risk groups, showing significantly enriched pathways. (C) Differential
expression of immunotherapy-related genes between high- and low-risk groups. Statistical significance was assessed using the t-test with FDR
adjustment (**p < 0.01, ***, p < 0.001, ****, p < 0.0001). (D) The four most significantly altered protein-protein interaction (PPI) networks, identified
using STRING database (https://cn.string-db.org/), highlighting key interactions between differentially expressed genes. (E) Gene Ontology (GO)
functional enrichment analysis of the PPI network, showing the most enriched biological processes, molecular functions, and cellular components.
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and CD8+ T cell infiltration (16). In our study, HPS was found

positively correlated to MDSCs and negatively correlated to NK cells

and tumor killing T cells, suggesting that different HPS groups might

have different immune cell infiltration thereby leading to an immune

suppression environment. Further CIBERSORT infiltration analysis

showed that high HPS group exhibited higher overall immune cell
Frontiers in Immunology 10
infiltration and this increase was predominantly observed in

suppressive immune cell subsets such as Treg cells and MDSCs.

Meanwhile, the infiltration of tumor killing immune cells such as NK

cells and gdT cells was found decreased. All these findings emphase

our hypoxia-related prognosis score denoted an immunosuppressive

microenvironment for tumor.
FIGURE 6

HPS is correlated with TME components. (A) Correlation between HPS and the infiltration of lymphoid-derived immune cells, assessed using the
xCell algorithm. The correlation coefficients are shown, with statistical significance indicated by asterisks (*, p < 0.05, **, p < 0.01, ***, p < 0.001).
(B) Infiltration of lymphoid-derived immune cells in high- and low-risk groups, analyzed using the t-test. Statistical significance is indicated by
asterisks (*, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001). (C) Immune cell infiltration in high- and low-risk groups as determined by
CIBERSORT. Statistical significance was assessed using the Kruskal-Wallis test, with p-values indicated as: *p < 0.05; **p < 0.01; ***p < 0.001; ****p
< 0.0001; ns, not significant. Error bars represent the interquartile range (IQR). (D) Linear correlation between HPS and immune cell infiltration levels
in the tumor microenvironment as determined by CIBERSORT. Statistical significance was assessed using Pearson’s correlation test, with p-values
indicating the strength of the correlation.
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Hypoxia may also indirectly alter immune cell infiltration by

regulating the composition of the extracellular matrix (25, 26). Our

PPI data revealed significant differences in collagen gene expression

across different HPS groups, which supported the role of hypoxia in

matrix regulation. Previous studies have discovered that

macrophage infiltration contributes to the remodeling of the

extracellular matrix (27). Through CIBERSORT analysis, we

found increase macrophage infiltration in high HPS group

compared to low HPS group, suggesting the immunosuppressive

microenvironment in high HPS group might be related to

extracellular matrix modification. In addition, both our findings

and earlier researches support that alterations in the extracellular

matrix composition could affect T-cell entrapment and function

leading to immunosuppression (27).

Our study confirmed the significant impact of hypoxia on CRC

outcomes via transcriptomic analysis. Notably, it suggested that the

unique effects of hypoxia on the extracellular matrix and immune

cell infiltration might lead to varying patient prognoses. Revealing

the importance that hypoxia in the TME might contribute to a

potential targeted approach, such as hyperbaric oxygen, to reverse

tumor favoring TME. When combined with immunotherapy,

reversing hypoxia could enhance outcomes for CRC patients.
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