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The role of B7-H4 in ovarian
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and perspectives
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University, Chengdu, China, 2Key Laboratory of Birth Defects and Related Diseases of Women and
Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan
University, Chengdu, China
Immunotherapy stands as a critical and auspicious therapeutic approach in the fight

against cancer nowadays. Immune checkpoint inhibitors, in particular, have garnered

widespread employment and delivered groundbreaking therapeutic outcomes

across various malignancies. However, the efficacy is unsatisfactory in the ovarian

cancer. The pressing concerns of the substantial non-response rate require

immediate attention. The pursuit of novel targets and the formulation of

synergistic combination therapy approaches are imperative for addressing this

challenge. B7-H4, a member of the B7 family of co-inhibitory molecules, exhibits

high expression levels in ovarian cancer, correlating closely with tumor progression,

drug resistance, and unfavorable prognosis. B7-H4 has the potential to serve as a

valuable biomarker for evaluating the immune response of patients. Recent

investigations and preclinical trials focusing on B7-H4 in the context of ovarian

cancer immunotherapy highlight its emergence as a promising immunotherapeutic

target. This review aims to discuss these findings and anticipate the future prospects

of leveraging B7-H4 in ovarian cancer immunotherapy and targeted therapy.
KEYWORDS

B7-H4, ovarian cancer, tumor microenvironment, immunotherapy, immune
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1 Introduction

According to the latest global cancer statistics for 2022, it is estimated that there will be over

320,000 new cases of ovarian cancer (OC) worldwide, with approximately 200,000 associated

deaths (1). Both the incidence and mortality rates of ovarian cancer (OC) are increasing, with a

trend towards affecting younger individuals (2–4). Early symptoms in OC patients often

manifest subtly, leading to a low diagnosis rate, and consequently, a prevalence of advanced and

metastatic cases. This scenario imposes a significant healthcare burden on women.
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In the current treatment approach for OC, an initial evaluation is

essential. For patients without contraindications for surgery and

where satisfactory Primary cytoreductive surgery (PCS) can be

achieved, comprehensive staging surgery should be performed. For

patients unable to undergo satisfactory debulking surgery,

neoadjuvant chemotherapy followed by interval cytoreductive

surgery (ICS) is recommended. The majority of patients require

adjuvant chemotherapy postoperatively, with paclitaxel and

carboplatin being the standard first-line chemotherapy regimen for

advanced ovarian cancer. Depending on the stage and pathological

subtype, the addition of bevacizumab to the TC regimen may be

considered. Maintenance therapy with PARP inhibitors and/or

bevacizumab should be selected based on BRCA and homologous

recombination deficiency (HRD) gene test results. Nevertheless, a

considerable proportion of women experience relapse, develop drug

resistance and ultimately die of the disease.

Over the past two decades, immunotherapy has undergone

rapid advancement and reshaped the management landscape of

numerous cancers. The most extensively studied and commonly

employed immunotherapy for solid tumor is immune checkpoint

inhibitor (ICI) therapy, including anti-programmed death-1 (PD-

1), anti-PD-L1, and anti-cytotoxic T lymphocyte-associated

antigen-4 (CTLA-4), which has demonstrated efficacy in

multiple clinical settings. Mounting evidence suggests that OC

possesses the capacity to elicit endogenous anti-tumor immune

responses, thereby indicating the potential benefits of

immunotherapy for patients. Clinical trials reports indicated

that the objective response rates to ICI in patients with

recurrent or refractory ovarian cancer range from 6% to 15%,

with some studies reporting rates as high as 45% (5–8), suggesting

an already encouraging outcome. Currently, immunotherapy is

recommended by the NCCN guidelines for the treatment of

recurrent epithelial ovarian cancer, fallopian tube cancer, and

primary peritoneal cancer with MSI-H/dMMR or TMB-H status,

including patients sensitive or resistant to platinum-based

therapy. Moreover, some combination therapy with ICI exhibits

higher response rates compared to monotherapy (5). However,

challenges such as low response rates and recurrence persist.

Therefore, further investigation into the mechanisms underlying

non-response, identification of precise and appropriate targets,

and exploration of safer and more effective combination therapy

regimens is imperative.

Research increasingly highlights the role of immunosuppression

in the development and prognosis of OC. The tumor

microenvironment (TME), a complex structure around tumor cells,

includes blood vessels, immune cells, fibroblasts, adipocytes, and the

extracellular matrix (9, 10). Tumors employ various suppressive

mechanisms within the TME to evade host immune surveillance

actively (11). Most solid tumors, including OC, harbor infiltrates of

immune cells from myeloid and lymphoid lineages, orchestrating the

construction of the TME during tumor progression, a phenomenon

referred to as Tumor Infiltrating Lymphocytes (TILs) (12). TILs

encompass a spectrum of immune cell types, including CD4+ and

CD8+ T cells, B lymphocytes, Natural Killer (NK) cells, macrophages,

and dendritic cells (DCs) (12, 13). While some TILs eliminate tumor
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cells, others, like regulatory T cells (Tregs), suppress immune

responses, aiding tumor evasion. TILs enhance the expression of

interferon-gamma(IFN), interleukin-2(IL-2), and lymphocyte-

attracting chemokines in OC, associating with a good prognosis in

patients with OC (14–18).

B7-H4, a transmembrane glycoprotein belonging to the B7 family

of co-inhibitory molecules, exhibits widespread expression in various

malignancies, particularly OC (19, 20). It is implicated in multiple

processes including tumor development, immune evasion, and

immune resistance (21–23). Several monoclonal antibodies, bispecific

antibodies, and antibody-drug conjugates (ADCs) targeting B7-H4

have progressed to preclinical or clinical trials, demonstrating

promising initial results. This review consolidates the research

advancements concerning B7-H4 in OC immunotherapy and

presents future perspectives.
2 B7 family and B7-H4

B7-H4, also called B7x、B7h.5、B7-Homolog 4 (B7-H4、v-

set domain containing T cell activation inhibitor 1 (VTCN1), or

B7 superfamily member 1 (B7S1), was first identified in 2003 (24,

25). It belongs to the type I transmembrane glycoprotein class and

is a constituent of the B7/CD28 superfamily, situated on

chromosome 1p12/13.1. Encoded by the VTCN1 gene, B7-H4

negatively regulates T-cell function (26–29). The B7 family plays a

pivotal role in modulating the immune response, preventing

excessive activation. The B7 family, which includes co-

stimulatory and co-inhibitory molecules, is one of the most

crucial second-signaling pathways in T-signaling activation. B7-

H4 emerges as a novel member of the B7 family of co-inhibitory

molecules, functioning as an immune checkpoint modulator

involved in regulating anti-inflammatory and immune

responses. Structurally, B7-H4 comprises two immunoglobulin

(Ig)-like domains and a large hydrophobic trans-membrane

domain followed by two intracellular amino acids. It shares

variable levels of amino acid sequence identity with other B7

family members: B7-1 (12%), B7-2 (13%), PD-L1 (18%), PD-L2

(18%), and B7-H3 (24%) (30). B7-H4 generally expresses on

antigen-presenting cells (APCs) and is induced by local cytokine

production such as Il-6, IL-10, and hypoxia (31, 32). The receptor

for B7-H4, distinct from other members of the CD28 receptor

family, is expressed on activated T cells (30), suggesting a potential

role for B7-H4 in the regulation of T-cell activation

and exhaustion.

B7-H4 exhibits widespread expression across various

malignancies and is inversely associated with patient prognosis and

T cell infiltration within tumors. Moreover, it is implicated in

potential associations with drug resistance (31, 33–35). Currently,

the role of B7-H4 in tumor immunity has been partially elucidated in

solid tumors such as liver cancer, breast cancer and OC, yet further

research is needed to fully uncover its complete and potential

mechanisms. Additionally, there may be more than one receptor

for B7-H4 on the surface of T cells, and the precise molecular

structures of these receptors remain undetermined.
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3 Expression and clinical significance
of B7-H4 in OC

B7-H4 expression is notably minimal, if not entirely absent, in

normal ovarian tissue as well as other healthy tissues such as lung, liver,

pancreas, spleen, thymus, and kidney (36). Nonetheless, elevated levels

of B7-H4 mRNA have been detected in these tissues, indicating

potential translational or post-transcriptional regulatory mechanisms

governing its expression. Of note, B7-H4 exhibits significant

upregulation in tumor tissues of OC patients (19–21, 37–40), a trend

widely associated with advanced cancer stage and heightened

aggressiveness according to the majority of studies. This suggests that

B7-H4 exhibits a distinct expression pattern compared to PD-L1 in

human cancers, characterized by heightened sensitivity and specificity.

B7-H4 predominantly localizes on the membrane surface of antigen-

presenting cells (APCs) and both intracellular and membrane surfaces

of OC cells. Notably, tumor-associated macrophages (TAMs)

expressing membrane-bound B7-H4 rather than tumor cells, exert

an inhibitory influence on T cell immunity (27, 31, 41, 42), suggesting

the importance of elucidating the mechanism and functional

implications of B7-H4’s subcellular localization in OC. In OC cells,

TAMs induce regulatory T cells (Tregs) to secrete IL-6 and IL-10,

thereby promoting B7-H4 expression on APCs. B7-H4 overexpression

has been documented in 48%, 55%, and 67% of patients at stages I, II,

and advanced stages of OC, respectively (37). Additionally, B7-H4 is

highly expressed in primary and metastatic serous, endometrioid, clear

cell, and epithelial ovarian cancers, while its expression is lower in

mucinous and non-epithelial ovarian cancers (37, 43–45). Zang et al.

collected tumor tissue samples from 103 patients with epithelial ovarian

cancer and constructed a tissue microarray, demonstrated 100%

expression of B7-H4 in ovarian junction tumors and OC. While the

intensity of B7-H4 expression varied among different pathological

subtypes, these differences did not reach statistical significance

(21, 46). Further studies incorporating a larger sample size are

needed for more comprehensive investigation. Recent studies have

consistently demonstrated that B7-H4 is upregulated in 92% of high-

grade serous ovarian carcinoma (HGSOC) cases at diagnosis (n = 12)

and maintains stable or increased expression following standard-of-

care chemotherapy. Moreover, B7-H4 remains consistently

overexpressed or more highly expressed across metastatic sites even

after the development of multidrug resistance (47).

A soluble form of B7-H4 exists, and soluble B7-H4(sB7-H4)

protein can be detected in the serum or plasma of OC patients.

Simon et al. showed that the sensitivity of OC detection increases

from 52% for CA-125 alone to 65% with 97% specificity when used in

combination with B7-H4. Simon et al. also demonstrated that serum

B7-H4 levels are more stable compared to CA-125 and do not fluctuate

in patients with inflammatory diseases or during pregnancy (45, 48).

Gyllensten et al. employed high-precision proteomics to identify 1,463

plasma proteins and validated their findings using two cohorts of

previously untreated patients with benign or malignant ovarian tumors

(n=111 and n=37, respectively). They found that the positivity rate of

sB7-H4 was significantly higher in patients with malignant OC

compared to those with benign ovarian lesions, suggesting that B7-

H4 may serve as a potential adjunctive plasma biomarker (49). The
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meta-analysis conducted by Zhu et al. indicated that overall diagnostic

sensitivity and specificity of serum B7-H4 in OC were 0.782 (95%

confidence interval [CI]: 0.732–0.825) and 0.870 (95% CI: 0.804–

0.916), respectively. The Summary Receiver Operating Characteristic

Curve(SROC) analysis revealed that the combined detection of B7-H4

and CA-125 for OC had a higher Area Under Curve(AUC) than B7-

H4 alone (0.94 vs. 0.86) (50). The combination of B7-H4 and CA-125

may enhance the early and effective screening of OC. However, further

validation through additional multicenter and randomized controlled

trials is needed to more precisely determine the clinical utility of B7-H4

(19, 44, 45, 51, 52). Mach et al. detected soluble B7-H4 (sB7-H4) in 12

out of 85 patients with advanced epithelial ovarian cancer (EOC) and

also collected circulating tumor cells (CTCs). They indicated that

positivity for sB7-H4 in EOC patients is associated with poorer

overall survival (OS) and platinum resistance (53).

The majority of studies have linked B7-H4 with unfavorable

prognostic outcomes and a heightened recurrence rate in OC (22,

23, 54). However, Liang et al. demonstrated that heightened B7-H4

expression in tumor tissue of patients with ovarian plasmacytoid

carcinoma does not correlate with OS or disease-free survival, but it

is associated with advanced tumor stage (43). Overall, confounding

factors such as different B7-H4 assays and sample sizes may contribute

to different results. Further investigations are warranted to elucidate the

expression profiles of B7-H4 across various pathological subtypes of

OC and its correlation with tumor grading, staging, and prognosis.

In summary, B7-H4 emerges as a promising biomarker for early

cancer detection, prediction of immunotherapy response, and

evaluation of patient prognosis in OC (21, 23, 36–38, 53, 55).

Further exploration is warranted into the regulatory mechanisms

driving B7-H4 overexpression in ovarian carcinogenesis, along with

delineating the specific impacts of its various subcellular localizations

within tumor cells, particularly the role of intracellularly expressed

B7-H4, which necessitates deeper investigation.
4 The role of B7-H4 in tumor
immunity of OC

4.1 Immune regulation by B7-H4 in the
TME of OC

Tolerance in the TME is a dynamic and intricate process

characterized by a network of interactions among diverse cell types

(56). The immunosuppressive TME of OC predominantly comprises

T and B lymphocytes, T regs, NK cells, tumor-associated macrophages

(TAMs), and myeloid-derived suppressor cells (MDSCs). Antigen-

presenting cells (APCs) play a pivotal role in initiating and sustaining

tumor-associated antigen (TAA)-specific T-cell immunity, which

significantly impacts survival and recurrence rates in OC (31, 57).

TAMs, the most abundant APCs within the OC TME, prominently

express B7-H4, with levels surpassing 70% (52). The intensity of B7-H4

expression with TAM in OC positively correlates with the intratumoral

Treg population. Moreover, the presence of more Tregs further releases

more IL-6 and IL-10, which continue to induce B7-H4 expression on

APCs, including TAM and M2 macrophages (27, 31, 34, 52, 58, 59).
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This cascade establishes a positive feedback loop that fosters an

immunosuppressive TME. The interaction between B7-H4 and its

receptor on T cells leads to diminished T cell proliferation by limiting

the entry of CD4+ and CD8+ T cells into the cell cycle and decreasing

their division rate. Furthermore, it inhibits the secretion of cytokines by

T cells, such as IL-2, and IFN-g (24, 25, 30, 60). Additionally, B7-H4
overexpression can protect tumor cell from apoptosis and facilitates

their growth in OC (19). Cai et al. found that B7-H4 expression on

APC negatively correlates with infiltration and cytolytic function of

CD8+ TILs, but no significant correlation was found between B7-H4

expression and tumor grade or stage (40). These observations may

partly stem from incongruent findings attributable to variances in B7-

H4 assay methodologies and the limited scale of sampled populations.

Some studies have presented alternative perspectives. An

investigation focusing on ovarian serous carcinoma indicated a

positive correlation between B7-H4 expression and TILs, while

noting that B7-H4 expression was not inducible by interleukin-4

(IL-4), IL-6, or IL-10. This suggests that B7-H4 might not actively

participate in immune evasion mechanisms, although it does affirm

that heightened B7-H4 expression correlates with higher tumor

grade and lower overall survival (61). Pagnotti G M et al. found no

association between B7-H4 protein level and the infiltration degree

of CD3+, CD4+, CD8+, and CD14+ lymphocytes in serous or

endometrioid OC, but observed an inverse correlation in clear cell

OC (62). MacGregor et al. reported no discernible relationship

between B7-H4 expression levels and the abundance or phenotype

of T and B cells, nor any interaction between B7-H4 and other

inhibitory ligands such as PD-1, Tim-3, or LAG3 (26).

It has been reported in other tumors that B7-H4 participates in

modulating intracellular oncogenic signaling pathways, with
Frontiers in Immunology 04
intracellular localization of B7-H4 facilitating signals conducive to

tumor cell proliferation. As mentioned before, a high intracellular

B7-H4 expression state has been found in OC tumor cells. Difference in

subcellular localization of B7-H4 suggests potential differential roles in

tumor development, a facet yet to be comprehensively elucidated in the

context of OC. In conclusion, B7-H4 in OC TME inhibits the

activation and function of effector T cells, promotes the suppression

of immune responses by immunosuppressive cells, and protects tumor

cells from apoptosis. These contributes to tumor immune evasion and

tumor progression (Figure 1).
4.2 B7-H4 is involved in the antitumor
immunity of OC and interacts
synergistically with other
immune checkpoints

In recent years, it has emerged that heightened expression of

B7-H4 within tumor-infiltrating antigen-presenting cells in the

microenvironment of hepatocellular carcinoma suppresses the

proliferation and cytotoxicity of CD8+ TIL cells by inducing up-

regulation of the transcription factor eomesodermin. This

phenomenon promotes TIL depletion, thereby facilitating

tumor progression and inhibiting antitumor immune responses

(27). They also revealed that an intricate interplay exists between

B7-H4 signaling and other pivotal pathways, such as

immunomodulatory signaling. B7-H4 knockout notably

impacts cell cycle and NF-kB pathways, resulting in up-

regulation of co-stimulatory ligands or receptors (e.g., ICOSL,

CD27, CD28), while concurrently down-regulating certain co-
FIGURE 1

The role of B7-H4 in microenvironmental immunosuppression in ovarian cancer. OC is a cold tumor. The immunosuppressive TME of OC
predominantly comprises T and B lymphocytes, T regs, NK cells, TAMs, and MDSCs. B7-H4 is highly expressed in OC cells and APCs. Its elevated
expression in OC cells inhibits apoptosis. Upon binding to unidentified receptors on T cells, B7-H4 inhibits T cell proliferation and cytokine secretion.
The expression intensity of B7-H4 on APCs positively correlates with the number of Tregs, leading to increased release of IL-6 and IL-10. This
further induces overexpression of B7-H4 on APCs, fostering an immunosuppressive TME in OC. TME, tumor microenvironment; NK cell, natural killer
cell; TAMs, tumor-associated macrophages; MDSCs, myeloid-derived suppressor cells; APC, antigen-presenting cell. Created with BioRender.com.
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inhibitory receptors (e.g., LAG3, CTLA4) and up-regulating

others (e.g., LILRB4, PDCD1).

However, in OC, the co-expression of B7-H4 with other immune

checkpoints and the specific mechanisms of their interactions have

not yet been fully elucidated. Cai et al. collected fresh tumor tissue

from 32 chemotherapy-naive patients with newly diagnosed OC and

found a notable positive correlation between the expression of B7-H4

and several immune co-inhibitory checkpoints, including CTLA4,

HAVR2, LAG3, TIGIT, and C10orf54 (40).

Previous researches have indicated a negative or non-

correlation between B7-H4 and PD-L1 in various tumors,

characterized by low rates of double-positive expression (63–67).

The same expression profile has been observed in OC. However,

elevated levels of co-expression of B7-H4 and PD-L1 have been

found in ovarian clear cell carcinoma, suggesting a potential

suitability for combinatorial therapeutic approaches (62, 68),

although further validation through trials is needed.

Cai et al. also demonstrated that B7-H4 was mainly involved in

diverse OC anti-tumor immune responses and signaling pathways,

including but not limited to IL-2/signal transducer and activator

of transcription (STAT)5 signaling, the p53 pathway, mammalian

target of rapamycin complex 1 (mTORC1) signaling, and apoptosis

(40). Although the specific mechanisms remain incompletely

understood, the important role of B7-H4 in antitumor immunity in

OC has been emphasized, suggesting that it is a potential target for

immunotherapy and combinatorial immunotherapy.
5 Preclinical or clinical trials of B7-H4
in immunotherapy of OC

Currently, the focus of immunotherapies targeting B7-H4 in OC

revolves around ICI, adoptive cell therapy(ACT), and antibody-drug

conjugates (ADC) (69). However, the efficacy of ICI monotherapy

in OC is suboptimal, necessitating further investigation into novel

immune targets and combination therapeutic modalities, which are

still in the exploratory and clinical trial phases and require additional

validation through rigorous research. B7-H4 presents an attractive

target for cancer immunotherapy, with potential blockade via various

mechanisms, including monoclonal antibodies (mAbs), single chain

fragment variables(scFv), antibody-drug conjugates (ADCs), CD3

bispecific antibodies (BiTEs), and chimeric antigen receptor T cells

(CAR-Ts) in OC (70–73). We provide a comprehensive summary

of both preclinical and clinical trials investigating B7-H4 in the

context of OC immunotherapy in recent years (Tables 1, 2).
5.1 Preclinical studies of B7-H4 in OC

5.1.1 B7-H4 and ICI
Enhancing the tumor-killing capability of immune cells by

reinstating T cell functionality through the blockade of B7-H4

inhibitory immune checkpoint signaling is a very competitive option.

Miao et al, developed a neutralizing antibody against B7-H4 named

CH17, can enhance antigen specific T cell responses in OC cell line
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(SKOV3). Notably, the B7-H4 antibody(CH17) exhibited robust in

vivo anti-tumor efficacy in a human T-cell transplantation xenograft

model and synergistic effects when combined with anti-PD-1 antibody

(74). Monoclonal antibody directed against B7-H4 have shown

promising outcomes in inhibits tumor progression by blocking T-cell

immunosuppression and augmenting antibody-dependent cellular

cytotoxicity(ADCC) effects in OC, concurrently reducing the

concentrations of VEGF and TGF-b within the TME (42, 70).

On the other hand, development of drugs featuring dual

inhibitory action represents a particularly promising avenue. In

recent research, ABL103, a novel T-cell engaging bispecific

antibody designed to target both B7-H4 and 4-1BB, was developed.

ABL103 operates through a dual mechanism, enhancing T cell

functionality by inhibiting B7-H4 while simultaneously activating

4-1BB. This novel approach has yielded robust in vitro and vivo anti-

tumor activity, coupled with a favorable safety profile, achieved

through B7-H4-dependent 4-1BB activation in the TME of OC.

Moreover, long-term anti-tumor response memory can be

established in OC model mice (75). Chang et al, engineered a novel

anti-B7-H4/IL15 fusion antibody, which enhances the

immunogenicity of the TME by fostering the proliferation of CD8+

T cell and facilitating the elimination of B7H4-expressing tumor cells

by activated immune cells, including ADCC dependent cellular

cytotoxicity (76).These studies strongly suggest bispecific antibodies

targeting B7-H4 is a promising therapeutic agent.

Of note, it is possible that the combination of PD-1 and B7-H4

blockade may offer enhanced efficacy and safety compared to the

combination of PD-1 and CTLA-4 blockade. There exists the potential

for synergistic blockade by concurrently targeting B7-H4 and PD-1 in

OC, though this necessitates further validation. In addition, the safety

and clinical efficacy of B7-H4 in combination with other ICIs in OC

need to be further explored. In conclusion, given OC’s potential for

mediating immunosuppression through multiple immunosuppressive

checkpoints, and the likelihood of complementary effects among

different inhibitory checkpoints, monotherapy with a single immune

checkpoint inhibitor is expected to be insufficient. Therefore,

combination therapy with ICIs is imperative in the future, especially

in the treatment of advanced or recurrent OC, emphasizing the

importance of combination drug regimens.

5.1.2 B7-H4 and chimeric antigen receptor T cells
Chimeric antigen receptors (CARs) are synthetic receptors

engineered to endow T cells with the capability to recognize

tumor-associated antigens (TAAs) in a manner independent of

major histocompatibility complex (MHC) presentation (77–80).

CAR-T therapy stands as the pioneering genetically modified cell-

based therapeutic endorsed by the US Food andDrug Administration

(81–84). However, obstacles to the use of CAR-T in solid tumors such

as OC, primarily attributed to the heterogeneity of TAA, limited

transport and infiltration within solid tumors owing to their

substantial dimensions, and the ubiquitous expression of target

antigens across vital healthy tissues.

The expression of B7-H4 on tumor cells surfaces provides an

avenue for targeted therapy utilizing T cells expressing CARs. Notably,

in a mouse ovarian tumor xenograft model, a CAR targeting both
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TABLE 2 Clinical trial of immunotherapy targeting B7-H4 in ovarian cancer (NA = not applicable).

Cancer Type Intervention Phase Dates Clinical trial identified/Ref

Ovarian Cancer
Fallopian Tube Cancer
Primary Peritoneal Cancer
Endometrial Cancer

Drug: HS-20089
Type: ADC

II
Study Start: 2023-12-31
Study Completion: 2027-12-31

NCT06014190

Ovarian Neoplasms
Fallopian Tube Neoplasms
Peritoneal Neoplasms
Other solid tumors

Drug: SGN-B7H4V
Type: ADC

I
Study Start: 2022-01-12
Study Completion: 2027-01-31

NCT05194072

Ovarian Cancer
Other solid tumors

Drug: AZD8205
Type: ADC

I
II

Study Start:2021-10-18
Study Completion: 2025-06-30

NCT05123482

Ovarian Cancer
Other solid tumors

Drug: XMT-1660
Type: ADC

I
Study Start: 2022-08-15
Study Completion: 2027-05

NCT05377996

Ovarian Cancer
Other solid tumors

Drug: GEN1047
Type: Bispecific antibody

I
II

Study Start: 2021-12-13, 2021
Study Completion: 2026-06-30

NCT05180474

Ovarian Cancer
Other advanced or metastatic solid tumors

Drug: ABL103
Type: Bispecific antibody

I
Study Start: 2023-11-07
Study Completion: 2027-11-15

NCT06126666

Ovarian Cancer
Other advanced or metastatic solid tumors

Drug: NC762
Type: Monoclonal antibody

I
II

Study Start: 2021-06-30
Study Completion: 2024-10

NCT04875806

Ovarian Cancer
Other advanced solid tumors

Drug: FPA150
Type: Monoclonal antibody

I
Study Start: 2018-03-27
Study Completion: 2021-05-10
Results Submitted: 2024-03-14, yet NA

NCT03514121
F
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TABLE 1 Preclinical trials of B7-H4 in immunotherapy for ovarian cancer (PDX, patient-derived xenograft; CDX: cell line-derived xenograft; ADCC,
antibody-dependent cellular cytotoxicity; ADCP, Antibody dependent cell-mediated phagocytosis).

Experimental Materials Intervention Mechanisms References

OC cell line: SKOV3
Drug: CH17
Type:
neutralizing antibody

(1) Enhances the activation and proliferation of CD8+ T cells
(2) Induces ADCC and dose-dependent cytotoxicity
(3) Exhibits synergistic effects when used in combination with PD-
1 antibodies

(74)

Fresh primary OC cells
Mice bearing OC PDX models

Drug and type:
monoclonal antibody

(1) Restores tumor antigen-specific T-cell activation and inhibits tumor
progression by reversing T-cell immunosuppression
(2) Enhances ADCC effects
(3) Reduces the concentrations of VEGF and TGF-b within the
tumor microenvironment

(42, 70)

Mice bearing OC PDX models
Drug: ABL 103
Type:
bispecific antibody

(1) Blocks B7-H4-mediated T cell inhibition
(2) Effectively inhibits tumor progression in a dose-dependent manner.
(3) Establishes long-term antitumor memory responses

(75)

OC cell line: OVCAR3
Mice bearing OC PDX models

Drug and type: CAR
T cell therapy

(1) Induces dose-dependent secretion of IFN-g, IL-2, TNF-a, and MIP-
1a
(2) Enhances the cytolytic activity against OVCAR3 cells.
(3) Long-term engraftment of B7-H4 CAR T cells mediates lethal, off-
tumor toxicity

(71)

Thirteen ovarian cancer cell lines, including
OAW28, PEO1, PEO2, and others
Mice bearing OC PDX models

Drug and type: ADC

(1) Exhibits target-specific growth inhibition of OC cell lines
(2) significantly decreases cell viability and colony formation
(3) Induces concentration-dependent cell-cycle arrest and DNA damage,
ultimately leading to apoptosis
(4) A single dose of B7-H4-ADC results in sustained tumor regression
and increased survival
(5) Mediates ADCC

(47)

Mice bearing OC PDX models
Drug: XMT-1660
Type: ADC

Demonstrates potent antitumor activity, leading to complete
tumor regression

(92)

Mice bearing OC PDX models
Drug: SGN-B7H4V
Type: ADC

(1) Eliminates tumor cells through direct cytotoxicity
(2) Mediates ADCC and ADCP

(93)
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human and mouse B7-H4 exhibited efficacy in inducing tumor

regression, marking the inaugural instance of CAR T cell therapy

targeting B7-H4. However, this therapeutic approach precipitated

delayed and ultimately fatal lung tumor toxicity after 6-8 weeks,

thereby constraining further applications of CAR-T (71). Analysis of

post-mortem mice revealed that multi-organ lymphocytic infiltration

was predominantly associated with membranous B7-H4-positive tissue

expression, with extensive histological lesions observed in associated

with B7-H4(+) expression. Notably, lesions were also evident in tissues

lacking B7-H4 expression. Furthermore, while robust expression of B7-

H4 protein was observed in ovarian cancer tissues, varying degrees of

expression, ranging from weak to strong, were also detected in human

mammary glands, kidneys, pancreatic islet cells, esophagus, salivary

glands, and liver, thus updating prior assumptions regarding the

spectrum of B7-H4 expression in healthy human tissues.

Consequently, the clinical application of CAR-T targeting B7-H4 in

OC warrants careful consideration, particularly concerning the

potential for fatal non-tumor toxicity associated with prolonged use.

Efforts to enhance the efficacy of B7-H4 CAR-T therapy include

strategies for reducing dosing duration, such as utilizing transient

CAR expression through inducible suicide genes (85) or RNA

electroporation (77, 86), as well as investigating combination

therapies to augment anti-tumor efficacy. Additionally, exploring

the withdrawal of B7-H4 CAR-T prior to onset of lethal toxicity

represents a prospective approach. Despite the potential for a broad

spectrum of toxic effects, the excellent targeting effect and precise

anti-tumor efficacy of B7-H4 CAR-T still underscore its status as a

promising therapeutic avenue in OC, deserving more research in

the future.
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5.1.3 B7-H4 and ADCs
B7-H4 presents a viable target for cytotoxic therapy or immune-

mediated killing (87). Monoclonal antibodies against B7-H4 can

induce cell killing through ADCC, as previously mentioned (42).

However, a more direct cytotoxic strategy involves the use of

antibody-drug conjugates (ADCs) (88), a well-established class of

targeted therapies across various cancers, including OC (89).

Following recent FDA approvals of mirvetuximab soravtansinegynx

(Elahere) for OC, ADCs, often regarded as “smart chemotherapy”,

deserve more investment and greater application prospects (90, 91).

ADCs comprise an antibody, a cytotoxic payload, and a linker

connecting them. The tumor-specific antigenic properties of the

B7-H4 protein, characterized by its heightened expression in

malignant tumors while low or no expression in normal tissues,

make it one of the promising targets for ADCs.

A recent study has yielded promising outcomes regarding ADC

agents targeting B7-H4 in patient-derived xenograft (PDX) models

of OC. Notably, in PDX models of PARPi and platinum-resistant

HGSOC, scheduled administration of B7-H4-ADC demonstrated

sustained tumor regression and increased overall survival (OS)

(47). Moreover, this study elucidated that B7-H4-ADC induces

concentration-dependent cell-cycle arrest and DNA damage. In

addition, B7-H4-ADC has bystander killing activity, thereby

augmenting its efficacy and potentially targeting OC cases with

low or moderate B7-H4 expression levels. Toader et al, reported

XMT-1660, an ADC targeting B7-H4, showing potent anti-tumor

activity in a PDX model of OC. It revealed ADCs may be effective in

patients refractory or resistant to immune checkpoint inhibitors

(92). Gray et al, have pioneered a novel investigational vedotin ADC
FIGURE 2

Three current immunotherapy strategies for targeting B7-H4 in OC. ICI, immune checkpoint inhibitors: monoclonal antibodies and bispecific
antibodies (example illustration with bispecific antibodies targeting B7-H4 and 4-1BB); CAR-T, chimeric antigen receptor t-cell; ADC, antibody-drug
conjugates. Created with BioRender.com.
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named SGN-B7H4V. They validated its potent antitumor activity in

the OC PDX model and observed enhanced effectiveness when

combined with anti-PD-1 agents (93). Kinneer et al, developed

AZD8205, a B7-H4-directed ADC, and preliminary data indicate

that its combination with PARPi can sensitize triple negative breast

cancer(TNBC) PDX tumors expressing low levels of B7-H4 (39).

Overall, the current studies reinforce the notion of B7-H4 as an

attractive target for ADCs, indicating potential for enhanced

efficacy when utilized in combination with immunosuppressants

or PARP inhibitors (Figure 2).
5.2 Clinical trials of B7-H4 in OCA

Phase 1a/1b clinical trial evaluating the anti-B7-H4 antibody

(FPA150) commenced in patients with advanced solid tumors,

including OC, aiming to assess the safety, tolerability, and

preliminary efficacy of FPA150 either as monotherapy or in

combination with anti-PD1 therapy (38, 94). Initial findings

reported in 2019 showed a favorable safety profile for FPA150;

however, subsequent data regarding its efficacy as monotherapy in

OC patients have not been disclosed. The clinical Phase I and

Phase II trials of the monoclonal antibody NC762 and the bispecific

antibody GEN1047 are currently underway. Another Phase I

clinical trial of the bispecific antibody ABL-103 is also

currently underway.

Several B7-H4-ADCs are being explored in patients afflicted

with metastatic or recurrent OC. The clinical trials of SGN-B7H4V,

AZD8205 and XMT-1660 in Phase I or Phase II hold promise, and

we eagerly await forthcoming data to clarify their efficacy in OC.

Recently, initial results have been published from a Phase I

investigation of HS-20089, a novel B7-H4-targeted ADC. HS-

20089 showed great anti-tumor activity in OC, yielding an

objective response rate (ORR) of 66.7% and a disease control rate

(DCR) of 100% in platinum-resistant ovarian cancer(PROC) (95).

Subsequent research data are eagerly anticipated (Table 1).
6 Conclusion

We summarize the expression and clinical significance of B7-H4

in OC, discuss the current landscape of immunotherapy research in

OC, recent advancements, and delineate future research directions

aimed at deeper elucidation of B7-H4’s role in OC. The expression

pattern of B7-H4 distinguishes it from PD-1 and CTLA-4, with high

mRNA expression and low protein expression in normal tissues,

while demonstrating widespread expression in malignant tumors,

particularly in OC. This distinct expression pattern suggests that B7-

H4 holds greater tumor specificity and sensitivity compared to PD-1

and CTLA-4, rendering it a promising emerging target for tumor

therapy. Compared with the studies of B7-H4 in other types of

tumors, there are still a lot of mist unknown in OC, underscoring the

imperative for in-depth exploration of B7-H4 in the context of OC.
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Despite the fact that much remains unknown about B7-H4 in

OC, evidence has already substantiated its status as a highly

promising and emerging immunotherapeutic target for OC. In

summary, it is imperative to elucidate the immunoregulatory

pathways and expression patterns of B7-H4 in ovarian cancer,

identify its receptor(s), investigate downstream mechanisms of B7-

H4 with effector T cells and other APC surface receptors, examine its

role within the ovarian cancer microenvironment, including potential

variances across different histological subtypes. Explore predictive

biomarkers for B7-H4 immunotherapy specificity, mechanisms of

drug resistance, devise combination therapies with different immune

checkpoints, and develop multi-strategy immunotherapeutic drugs

targeting B7-H4. These endeavors hold the promise of expanding the

repertoire of immunotherapeutic options and improving the

prognosis of OC patients.
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