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Yu Zhou1, HaoDong Sun1, HaiXia Zhu3*, BeiChen Ding1*

and MingHua Ren1*

1Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China,
2Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich,
Munich, Germany, 3Clinical Laboratory, Tumor Hospital Affiliated to Nantong University,
Nantong, China
Background: Monocytes play a critical role in tumor initiation and progression,

with their impact on prostate adenocarcinoma (PRAD) not yet fully understood.

This study aimed to identify key monocyte-related genes and elucidate their

mechanisms in PRAD.

Method: Utilizing the TCGA-PRAD dataset, immune cell infiltration levels were

assessed using CIBERSORT, and their correlation with patient prognosis was

analyzed. The WGCNAmethod pinpointed 14 crucial monocyte-related genes. A

diagnostic model focused on monocytes was developed using a combination of

machine learning algorithms, while a prognostic model was created using the

LASSO algorithm, both of which were validated. Random forest and gradient

boosting machine singled out CCNA2 as the most significant gene related to

prognosis in monocytes, with its function further investigated through gene

enrichment analysis. Mendelian randomization analysis of the association of

HLA-DR high-expressing monocytes with PRAD. Molecular docking was

employed to assess the binding affinity of CCNA2 with targeted drugs for

PRAD, and experimental validation confirmed the expression and prognostic

value of CCNA2 in PRAD.

Result: Based on the identification of 14monocyte-related genes byWGCNA, we

developed a diagnostic model for PRAD using a combination ofmultiple machine

learning algorithms. Additionally, we constructed a prognostic model using the

LASSO algorithm, both of which demonstrated excellent predictive capabilities.

Analysis with random forest and gradient boosting machine algorithms further

supported the potential prognostic value of CCNA2 in PRAD. Gene enrichment

analysis revealed the association of CCNA2 with the regulation of cell cycle and

cellular senescence in PRAD. Mendelian randomization analysis confirmed that

monocytes expressing high levels of HLA-DR may promote PRAD. Molecular

docking results suggested a strong affinity of CCNA2 for drugs targeting PRAD.

Furthermore, immunohistochemistry experiments validated the upregulation of

CCNA2 expression in PRAD and its correlation with patient prognosis.
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Conclusion:Our findings offer new insights into monocyte heterogeneity and its

role in PRAD. Furthermore, CCNA2 holds potential as a novel targeted drug

for PRAD.
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1 Introduction

Based on 2024 U.S. cancer statistics, prostate adenocarcinoma

(PRAD) now surpasses lung cancer as the most common cancer

among men (1). In China, recent data from the China National

Cancer Center in 2022 revealed that PRAD incidence rates have

exceeded those of kidney and bladder tumors based on 2016 data

from 487 tumor registries nationwide (2). The incidence of PRAD

has been on the rise in recent years due to economic and social

development and increased life expectancy. Options for treating

PRAD currently consist of radical radiotherapy, radical

prostatectomy, chemotherapy, and androgen deprivation

therapy, customized based on the progression of the individual

patient’s illness (3). Despite advancements in PRAD treatment,

the 5-year survival rate for patients remains relatively low (4).

Therefore, it is crucial to identify potential prognostic markers

and assess therapeutic targets to improve the prognosis of

PRAD patients.

Monocytes are vital components of the innate immune system

and are indispensable for defending against foreign invaders (5).

There are three primary subpopulations of monocytes: classical,

nonclassical, and intermediate monocytes (6). Monocytes first

mature into classical monocytes in the bone marrow, followed by

differentiation into nonclassical monocytes in the bloodstream,

with an intermediate monocyte phase in between. Numerous

studies have shown that monocytes play a direct role in immune

responses by initiating cell death and phagocytosis (7).

Additionally, monocytes can engage with T cells and natural

killer cells, impacting tumor progression by producing

chemokines (8). Moreover, monocytes have the capability to

transform into various immune cells such as tumor-associated

macrophages and dendritic cells, critical components of the

immune system that actively promote tumor growth and spread

(9). Tumor-infiltrating immune cells play a crucial role in the

pathogenesis of PRAD. Recent research indicates that prognostic

markers linked to M2 macrophages can forecast biochemical

recurrence in patients with PRAD (10). Furthermore, elevated

levels of macrophages in prostate biopsies have been correlated

with disease progression following hormone therapy (11).

Moreover, there is evidence to suggest that circulating monocyte

levels could serve as a biomarker for metastatic PRAD, indicating

a notably unfavorable prognosis (12). Integrated multi-omics,
02
machine learning, and artificial intelligence are being more

frequently utilized in the field of medicine (13–17). It is

essential to conduct further analysis on levels of tumor-

infiltrating immune cells and identify genes related to immune

cell infiltration using multi-omics and machine learning

techniques to enhance the accuracy of diagnosis and treatment

for PRAD. The objective of our study is to enhance researchers’

comprehension of the mechanisms underlying tumor immune

infiltration, progress in immunotherapy for PRAD patients, and

offer novel insights for clinical immunotherapy.

The significance of immune cell infiltration in tumors and the

exploration of its potential regulatory genes have been

acknowledged based on existing research. The CIBERSORT

algorithm provides a convenient method for evaluating immune

cell infiltration levels in PRAD. By utilizing this algorithm, we

calculated the infiltration levels of immune cells in TCGA-PRAD

samples and grouped the samples accordingly. Our analysis

revealed that only the infiltration level of monocytes significantly

correlated with the prognosis of PRAD patients. Using the weighted

correlation network analysis (WGCNA) method, we have

discovered prognostic differential genes associated with

monocytes in the PRAD dataset samples from the cancer genome

atlas (TCGA) database. These genes exhibit correlations with

patient stage, Gleason score, and PSA score. Subsequently, we

developed diagnostic and prognostic models using various

machine learning techniques, yielding positive results. By

analyzing the TCGA-PRAD and GSE16560 datasets, CCNA2

emerged as the most promising prognostic gene related to

monocytes in PRAD. Furthermore, we delved into the function of

CCNA2 and its potential interactions with therapeutic drugs for

PRAD. In conclusion, our study lays the groundwork for

understanding the impact of monocytes on the prognosis of

PRAD patients and identifies a novel drug target for

PRAD treatment.
2 Materials and methods

2.1 Data acquisition

The TCGA database provided data on 52 normal prostate

samples and 498 PRAD samples. The monocyte-related gene
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diagnostic model was validated using the GSE62872 and GSE32571

datasets, while the GSE16560 dataset was used for the prognostic

model of monocyte-related genes. In addition, 60 cases of prostate

cancer tissue and paired para-cancerous tissue were obtained from

Shanghai Outdo Biotech Company. The patients included in the

tissue chip study underwent surgery between January 2011 and

December 2014, with a follow-up period extending from November

2021, covering a span of 6 to 10 years.
2.2 Constructing diagnostic and
prognostic models

Use multiple machine learning algorithms to combine into

more than one hundred algorithm combinations to develop the

best PRAD diagnostic model (18). The training set comprised the

TCGA-PRAD data set, with validation sets GSE62872 and

GSE32571. Area under curve (AUC) values were calculated for

each algorithm combination, and the combination with the

highest average AUC was selected as the best. The prognostic

model was based on the least absolute shrinkage and selection

operator (LASSO) regression algorithm and evaluated using 10-

fold cross-validation in R software with the glmnet package

(19, 20).
2.3 Functional analysis of candidate genes

The gene set cancer analysis (GSCA) and CancerSEA

databases were used to analyze the functions of monocyte-

related genes (21, 22). To better understand the oncogenic role

of target genes, the ClusterProfiler package in R was used to

analyze the potential functions of CCNA2 and enrich the Kyoto

encyclopedia of genes and genomes (KEGG) pathway. The R

packages “clusterProfiler” was utilized for the GSEA enrichment

analysis of genes (23).
2.4 Analysis of the correlation between
CCNA2 and immune cell infiltration

The GSCA database was utilized to examine the relationship

between CCNA2 and monocytes. Furthermore, we investigated the

correlation between CCNA2 and markers of monocytes using the

TCGA-PRAD dataset. Additionally, the TISCH2 database was

employed to analyze the association between CCNA2 and

immune cell infiltration (24).
2.5 Immunohistochemical staining analysis
of CCNA2 expression in PRAD tissues

The prostate cancer tissue chip was initially placed in an 85°

C oven for 20 minutes, followed by soaking in xylene solution for

20 minutes for dewaxing. Subsequently, the tissue chips
Frontiers in Immunology 03
underwent a series of hydration steps involving immersion in

100%, 95%, 80%, and 70% ethanol for 2 minutes each. The tissue

chip was then treated with citric acid solution and subjected to

boiling in a pressure cooker for antigen retrieval, followed by

cooling in ice water to reach room temperature. The chip was

then rinsed with PBS, circled with a histochemistry pen, sealed

with hydrogen peroxide solution, and cleaned with PBS. Next,

CCNA2 antibody (BOSTER, PB9424) was applied dropwise to

cover the tissue chip, which was left at room temperature for 2

hours. Post-reaction, the chip was rinsed with PBS and the

immunohistochemistry secondary antibody was added

dropwise, left for 20 minutes, and then cleaned with PBS.

Finally, the tissue chip underwent DAB color development,

dehydration in a series of ethanol solutions, sealing, and

microscopic examination to conclude the experiment. The

immunostaining intensity score ranges from 0 to 3, where 0, 1,

2, and 3 represent no reaction, weak reaction, moderate reaction,

and strong reaction, respectively. Following this, a scale based on

the proportion of positive staining is applied, with scores of 1, 2,

3, and 4 corresponding to 0%-25%, 26%-50%, 51%-75%, and

76%-100%, respectively. The final expression score is determined

by multiplying the staining intensity score and the staining

proportion score. This calculation results in a score ranging

from 0 to 5, indicating low expression, and a score from 6 to 12,

indicating high expression.
2.6 Mendelian randomization analysis

The Mendelian randomization analysis in this study

investigated the impact of monocytes on prostate cancer patients

using the MRBASE website (25). The exposure factor selected was

HLA DR++ monocyte %monocyte (ebi-a-GCST90001475) from

the MR Base GWAS catalog, with prostate cancer (EBI-A-

GCST006085) as the outcome. The analysis criteria included a

minimum LD Rsq value of 0.8, a MAF threshold of 0.01, and the

exclusion of palindromic SNPs. Various methods such as MR Egger,

Weighted median, Weighted mode, Simple mode, and Inverse

variance weighted were employed for the analysis.
2.7 Statistical analyses

The level of immune cell infiltration and prognosis of TCGA-

PRAD patients, along with the prognostic analysis of CCNA2 in

prostate cancer tissue chips used in our experiments, were

statistically analyzed using the Log-rank test. The prognostic

analysis of ACSM3 and CCNA2 in TCGA-PRAD and GSE16560

datasets was conducted through COX regression. All correlation

analyses in this study were performed using the Spearman

method. Furthermore, the expression of monocyte-related genes

at different stages, Gleason scores, and PSA scores in the TCGA-

PRAD dataset, as well as the expression differences of CCNA2 in

prostate cancer tissue chips, were analyzed using the Wilcoxon

rank sum test.
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3 Results

3.1 Analysis of the correlation between the
level of immune cell infiltration and the
prognosis of PRAD patients

The tumor immune microenvironment consists of tumor cells,

immune cells, signaling molecules, extracellular matrix, and unique

physical and chemical characteristics (26). This microenvironment

significantly impacts tumor diagnosis, survival rates, and treatment

responses. Immune cell infiltration in tumors is crucial as it can either

help eliminate tumor cells or be manipulated by tumors to promote

growth and metastasis (27, 28). The role of immune cells in cancer

treatment and prevention, as well as their regulatorymechanisms, has

garnered significant attention. An accurate understanding of the

distribution and function of immune cells in tumor tissues is

essential for effective treatment and prognosis assessment (29, 30).

The CIBERSORT algorithm was used to calculate the proportion of

22 immune cells for each sample in the TCGA-PRAD dataset (31,

32). While the infiltration level of 8 types of immune cells in most

samples was 0, our study focused on analyzing the relationship

between the infiltration levels of the remaining 14 types of immune
Frontiers in Immunology 04
cells and the prognosis of PRAD patients. Our findings suggest that

the infiltration level of monocytes is a significant factor in

determining the prognosis of patients with PRAD. Specifically, a

higher infiltration level of monocytes is associated with a poorer

prognosis for PRAD patients (Figures 1A–N). Furthermore, based on

monocyte infiltration levels, PRAD patient samples were classified

into high and low monocyte groups. We then examined the

percentage abundance of tumor-infiltrating immune cells in each

sample (Figure 1O).
3.2 Screening of monocyte-associated
differential genes based on the
WGCNA method

WGCNA is an algorithm utilized for extracting module

information from high-throughput expression data. Our objective

was to identify genes highly correlated with monocytes in the

TCGA-PRAD dataset using this algorithm. To achieve a scale-free

network distribution, we carefully selected the value of the

adjacency matrix weight parameter power. In our analysis, we

determined the power value to be 20 (Figures 2A–D).
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FIGURE 1

Monocyte infiltration correlates with prognosis in PRAD patients. (A–N) Analyzing the correlation between different immune cell infiltrations and
prognosis in PRAD patients. (O) Percentage frequency of different tumor infiltrating immune cells in PRAD samples.
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Subsequently, a weighted co-expression network model was

constructed based on this power value, leading to the division of

the gene set into 5 modules. Notably, the gray module represents

genes that do not align with any specific module and lack reference

significance (Figure 2E). Using the Pearson correlation algorithm,

we found that the turquoise module has the strongest correlation

with monocytes (Figure 2F). We conducted differential analysis on

TCGA-PRAD samples with a significance level of P < 0.05 and Log2

(Fold Change) >1.3 or Log2 (Fold Change) < -1.3 as the selection
Frontiers in Immunology 05
criteria. Subsequently, we generated a volcano plot to visualize the

analysis outcomes (Figure 2G). Our findings indicated a link

between high levels of mononuclear cell infiltration and poor

prognosis in PRAD patients. Through the intersection of genes in

the turquoise module with prognostic risk factors in the TCGA-

PRAD dataset and genes highly expressed in PRAD, we identified a

total of 14 monocyte-related prognostic differential genes

(Figure 2H). Importantly, these 14 genes were found to be

positively correlated with each other (Figure 2I).
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FIGURE 2

Fourteen monocyte-associated differential prognostic genes were identified. (A–D) WGCNA Network Construction Parameters. (E) Weighted co-
expression network modeling based on selected power values. (F) Heatmap of trait module associations. (G) Analysis of differences in TCGA-PRAD
dataset. (H) Venn diagram based on the intersection of TCGA-PRAD differential genes, prognostic genes and monocyte-associated genes. (I)
Correlation network diagram of monocyte-associated prognostic differential genes.
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3.3 Functional analysis of monocyte-
related prognostic differential genes

The study initially examined the relationship between 14 genes and

clinicopathological characteristics of PRAD patients, illustrating this

correlation through a heatmap (Figure 3A). Additionally, expression

heatmaps were generated for the 14 genes in TCGA-PRAD samples

and normal prostate tissue (Figure 3B). Friends analysis aimed to

develop a gene interaction network, leveraging network topology to

assess gene importance and identify key genes. Notably, TACC3

emerged as the central gene within this network (Figure 3C). A co-

expression network diagram was constructed with TACC3 at its core,

revealing that ACSM3 exhibited no correlation with TACC3, while the

remaining 13 genes showed significant correlations with TACC3

(Figure 3D). The expression levels of CCNA2, CDK1, CKS2, EZH2,

HMGB3, KHDC4, KIF2C, PKMYT1, and PLK1 were found to vary
Frontiers in Immunology 06
significantly across different T stages, N stages, Gleason scores, and

PSA scores in TCGA-PRAD samples (Figures 3E–H). Utilizing the

CancerSEA database, which is tailored to decode the diverse functional

states of cancer cells at a single-cell level, we investigated the functions

of these 14 genes in PRAD. Our analysis revealed that these genes play

roles in DNA repair, cell cycle regulation, proliferation, inflammation,

and stemness (Figure 3I). Furthermore, through enrichment analysis,

we discovered that these genes are primarily associated with cell cycle

processes (Figure 3J).
3.4 Multiple machine learning
combinations to build PRAD
diagnostic models

In order to develop a PRAD-related diagnosis model, we utilized

three PRAD datasets: the TCGA-PRAD dataset for training, and the
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A

FIGURE 3

Monocyte-associated prognostic differential genes play an important role in PRAD. (A) Heatmap of monocyte-associated prognostic differential
gene expression in different pathologic parameters. (B) Heatmap of monocyte-associated prognostic differential gene expression in PRAD and
normal tissues. (C) Friends analysis explores key genes in monocyte-associated genes. (D) Heatmap of co-expression in monocyte-associated
genes. (E–H) Histogram of monocyte-related gene expression in different clinicopathologic parameters. (I, J) Functional analysis of monocyte-
related genes. *p< 0.05, **p< 0.01, ***p< 0.001.
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GSE62872 and GSE32571 datasets for validation. Out of 94 algorithm

combinations, the Enet[alpha=0.4] algorithm was identified as the

most effective for constructing the diagnostic model (Figure 4A). The

AUC value for the TCGA-PRAD training set was 0.9, while the AUC
Frontiers in Immunology 07
values for the validation sets GSE62872 and GSE32571 were 0.674

and 0.945. The diagnostic model built by the Enet[alpha=0.4]

algorithm featured six genes: ACSM3, EZH2, HMGB3, KHDC4,

MAZ, and TK1 (Figure 4B). Additionally, ROC curves for these six
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FIGURE 4

The model constructed by Enet [alpha=0.4] algorithm is the best PRAD diagnostic model. (A) AUC values of diagnostic models constructed with
different combinations of algorithms. (B) Number of genes incorporated in diagnostic models constructed with different combinations of algorithms.
(C–H) Diagnostic value of genes in diagnostic models in different datasets.
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genes in the TCGA-PRAD, GSE62872, and GSE32571 datasets were

presented (Figures 4C–H). The AUC values of ACSM3, EZH2,

HMGB3, KHDC4, MAZ, and TK1 in the TCGA-PRAD dataset are

0.606, 0.894, 0.787, 0.734, 0.805, and 0.815, respectively. Similarly, in

the GSE62872 dataset, these values are 0.618, 0.621, 0.570, 0.624,

0.624, and 0.475. While the diagnostic potential of these genes for

PRAD in the initial dataset is significant, it lacks precision. To address

this, we conducted further analysis using the GSE32571 dataset as a

validation set, where the AUC values for the six genes were 0.791,

0.863, 0.777, 0.580, 0.824, and 0.834.
3.5 Constructing prognostic model

To enhance the prediction accuracy of PRAD patient prognosis,

we developed a prognostic model utilizing monocyte-related genes

through the LASSO algorithm. This model incorporated 9 genes,

with corresponding risk scores calculated as follows: ACSM3*

(-0.17156) +CCNA2*(0.11148) +CDK1*(0.05883) +CKS2*

(0.09723) +EZH2*(0.20259) +KHDC4*(0.10915) +PLK1*

(0.02555) +TACC3*(0.14386) +TK1*(0.08982) (Figures 5A, B).

Initial validation in the GSE16560 dataset indicated a notably

poorer prognosis for patients classified in the high-risk group

compared to those in the low-risk group. Additionally, our

prognostic model exhibited predictive abilities for 1-year, 5-year,

and 7-year prognoses of PRAD patients, with corresponding AUC

values of 0.667, 0.650, and 0.668, respectively (Figures 5C–E).

Subsequent validation in the TCGA-PRAD dataset confirmed the

accuracy of our prognostic model in predicting patient outcomes,

particularly for 1-year and 7-year prognoses. However, the

predictive ability for the 5-year prognosis of PRAD patients was

found to be moderate (Figures 5F–H).
3.6 Multiple machine learning approaches
to identify monocyte-associated
prognostic genes

The key genes incorporated into the prognostic model were

further analyzed. These genes were primarily associated with the

cell cycle and activation of the hormone AR (Figure 6A). Validation

from the CancerSEA database confirmed that these prognostic

genes were linked to DNA repair, cell cycle, proliferation,

angiogenesis, and inflammation (Figure 6B). Utilizing the GBM

and Random Forest algorithms, we identified the top 5 genes most

relevant to the prognosis of PRAD for display. CCNA2 and ACSM3

were found to have significant prognostic value in both the TCGA-

PRAD and GSE16560 datasets (Figures 6C–F). Subsequently,

prognostic KM curves for CCNA2 and ACSM3 were presented,

revealing an opposite prognostic difference for ACSM3 in the two

datasets, possibly due to insufficient sample size. However, the

prognostic difference for CCNA2 in the two datasets remained

consistent (Figures 6G–J). Thus, among monocyte-related genes,

CCNA2 was identified as the gene with the highest prognostic

correlation with PRAD.
Frontiers in Immunology 08
3.7 CCNA2 is associated with monocyte
infiltration in PRAD

In order to further investigate the relationship between the

genes screened in PRAD and immune cell infiltration, we

conducted an analysis on the correlation between CCNA2

expression in PRAD and monocytes using the GSCA database.

Our results revealed a positive correlation between CCNA2

expression and the level of monocyte infiltration, with a

correlation coefficient of 0.23 (Figure 7A). Furthermore, we

conducted a correlation analysis on the TCGA-PRAD dataset to

explore the relationship between CCNA2 expression and monocyte

markers. Our findings indicated a significant association between

CCNA2 and the monocyte markers CD14 and HLA-DRA

(Figures 7B, C). In light of our research, we observed a strong

correlation between CCNA2 and the monocyte marker HLA-DRA.

Subsequently, we conducted further analysis to investigate the

connection between monocytes expressing high levels of HLA-DR

and prostate cancer using Mendelian randomization. Our results

indicate that monocytes with elevated HLA-DR expression

contribute to the progression of prostate cancer (Figure 7D). The

correlation between CCNA2 and immune cell infiltration in PRAD

was investigated using single cell analysis from the TISCH2

database. Our findings revealed that CCNA2 was linked to the

levels of monocytes and macrophages infiltration in the

GSE137829, GSE141445, GSE172301, and GSE176031 datasets

(Figures 7E–I).
3.8 Gene enrichment analysis of CCNA2

KEGG analysis revealed that CCNA2 is associated with various

pathways in PRAD, including the cell cycle, Human T-cell leukemia

virus 1 infection, Proteoglycans in cancer, and Regulation of actin

cytoskeleton. Additionally, it is linked to pathways like p53

signaling, TGF-beta signaling, and AGE-RAGE signaling in

diabetic complications (Figure 8A). GSEA analysis further

highlighted the role of CCNA2 in the immune microenvironment

of PRAD, potentially influencing immunotherapy through the PD1

signaling pathway. The association of CCNA2 with transcription

factors such as P53, HSF1, and MYC was noted, although

experimental validation is needed. Furthermore, CCNA2 was

found to regulate PRAD cell senescence, apoptosis, and

ferroptosis (Figures 8B–J).
3.9 Analysis of CCNA2 and drug affinity in
metastatic PRAD

In order to assess the binding affinity of the key gene CCNA2

with PRAD-targeted drugs, we utilized molecular docking methods

for analysis. The CB-Dock2 website, known for its molecular docking

analysis capabilities, facilitated our research. The Vina score was

employed to measure the binding affinity between genes and drugs. A

Vina score below -5 indicates strong binding activity, with lower
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scores indicating higher binding activity. The results of our GSEA

analysis revealed a close relationship between CCNA2 and the PD1

signaling pathway. We further investigated the molecular binding

affinity of CCNA2 with PD1 inhibitors and found a strong affinity in

their molecular structures. With a vina score of -8.7, indicating high

binding ability (Figure 9A). Additionally, we examined the binding
Frontiers in Immunology 09
ability of targeted drugs for metastatic PRAD - Bicalutamide,

enzalutamide, and abiraterone - to CCNA2. Our findings

demonstrated a strong binding ability of CCNA2 to these drugs at

a molecular level (Figures 9B–D). These results not only suggest that

CCNA2 may enhance the anti-cancer effects of these drugs but also

support the potential of CCNA2 as a drug target.
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FIGURE 5

Prognostic model constructed based on monocyte-related genes has strong predictive value for the prognosis of PRAD patients. (A, B) Prognostic
modeling based on the LASSO algorithm. (C) Heatmap of expression of prognostic model genes included in the GSE16560 dataset. (D) Prognostic
differences between patients in the high- and low-risk groups in the GSE16560 dataset. (E) Predictive value of the GSE16560 dataset risk score for
prognosis in patients with PRAD. (F) Heatmap of expression of prognostic model genes included in TCGA-PRAD dataset. (G) Prognostic differences
between patients in the high- and low-risk groups in TCGA-PRAD dataset. (H) Predictive value of the TCGA-PRAD dataset risk score for prognosis in
patients with PRAD.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1426474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1426474
3.10 Expression and prognostic value of
CCNA2 in PRAD

In this study, we investigated the role of CCNA2 as a monocyte-

related gene in PRAD. A total of 60 paired PRAD samples and

corresponding paracancerous samples were collected for analysis of

CCNA2 expression differences using immunohistochemical
Frontiers in Immunology 10
staining. Our results showed a significantly higher expression of

CCNA2 in PRAD compared to normal tissues (Figure 10A). Violin

plots were also utilized to visually represent the expression

variances of CCNA2 in PRAD and normal tissues (Figure 10B).

Furthermore, we assessed the diagnostic potential of CCNA2 for

PRAD and found promising results, although further validation

with larger sample sizes and clinical experiments is necessary
B

C D

E F

G H I J

A

FIGURE 6

CCNA2 identified as the best prognostic gene among monocyte-associated genes. (A, B) Functional analysis of monocyte-related prognostic genes.
(C, D) GBM and RandomForest algorithms to screen key prognostic genes in the TCGA-PRAD dataset. (E, F) GBM and RandomForest algorithms to
screen key prognostic genes in the GSE16560 dataset. (G, H) KM curves of CCNA2 and ACSM3 in the TCGA-PRAD dataset. (I, J) KM curves of
CCNA2 and ACSM3 in the GSE16560 dataset.
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(Figure 10C). Additionally, our analysis revealed a correlation

between CCNA2 expression and the prognosis of PRAD patients,

indicating a poorer prognosis for those with high CCNA2

expression levels (Figure 10D). Notably, CCNA2 showed strong

predictive value for the prognosis of PRAD patients (Figure 10E). In

conclusion, our experimental findings confirm the differential

expression and prognostic implications of CCNA2 in PRAD.
Frontiers in Immunology 11
4 Discussion

PRAD is a highly aggressive tumor with a poor prognosis, often

being detected in advanced stages with metastasis (33). Biomarkers

are essential in evaluating the therapeutic efficacy and prognosis of

tumors and can be an essential component of precision medicine

(34). Identifying PRAD and exploring new immune-related
B C

D

E

F G

H I

A

FIGURE 7

CCNA2 positively correlates with monocyte infiltration levels. (A) Correlation analysis of CCNA2 and monocyte infiltration levels. (B, C) Analysis of
CCNA2 correlation with monocyte markers. (D) Mendelian randomization analysis of high HLA-DR expressing monocytes in relation to prostate
cancer. (E–I) Single-cell analysis of the correlation between CCNA2 and immune cell infiltration.
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FIGURE 8

Functional analysis of CCNA2 in PRAD. (A) KEGG analysis of CCNA2 in PRAD. (B–J) GSEA analysis of CCNA2 in PRAD.
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prognostic markers can significantly improve the efficacy of

immunotherapy for individuals with this condition. The

progression of tumors is closely connected to changes in the

tumor microenvironment, where tumor cells impact their

surroundings by releasing various chemokines and cytokines (35).

Delving into the PRAD tumor microenvironment and discovering

novel immune-related markers are essential for developing targeted

therapeutic drugs and enhancing patient prognosis.
Frontiers in Immunology 13
Research on monocytes in PRAD is increasing, with studies

demonstrating their ability to stimulate PRAD cell invasion through

pro-inflammatory cytokines (36). Circulating monocytes in metastatic

PRAD patients have been found to secrete CHI3L1, promoting tumor

growth (37). Our study revealed a correlation between higher levels of

monocyte immune infiltration and poorer patient prognosis, aligning

with previous findings on the carcinogenic role of monocytes. Through

WGCNA analysis, we identified 14 monocyte-related genes. Among
B

C

D

A

FIGURE 9

CCNA2 has a high binding capacity to PRAD-targeted drugs. (A) Analysis of the binding capacity of CCNA2 to PD1 inhibitors. (B) Analysis of the
binding capacity of CCNA2 to bicalutamide. (C) Analysis of the binding capacity of CCNA2 to enzalutamide. (D) Analysis of the binding capacity of
CCNA2 to abiraterone.
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these genes, CCNA2, CDK1, CKS2, EZH2, HMGB3, KHDC4, KIF2C,

PKMYT1, and PLK1 were found to be associated with various PRAD

stages, Gleason scores, and PSA scores, further highlighting their

significance in PRAD. Previous studies have also highlighted the

importance of CCNA2 in PRAD using WGCNA analysis, but its

prognostic value and correlation with monocytes have not been

confirmed with clinical samples (38). CDK1 has been identified as a

key player in promoting tumor metastasis in prostate cancer cells

through its influence on the epithelial-mesenchymal transition process.

This is achieved by regulating the phosphorylation of the ERK/GSK3b/
SNAIL pathway (39). Additionally, CDK1 has been found to modulate

the phosphorylation of the androgen receptor, with its inhibitors

demonstrating the ability to enhance the effectiveness of

enzalutamide in targeting prostate cancer cells (40, 41). Aberrant

expression of CKS2 promotes prostate tumorigenesis by promoting

proliferation and inhibiting programmed cell death (42). EZH2,

HMGB3, KIF2C, PKMYT1 and PLK1 have also been confirmed to

be related to PRAD progression (43–47). Subsequently, we developed a

diagnostic model for monocyte-related genes using machine learning
Frontiers in Immunology 14
techniques. The Enet[alpha=0.4] method was the most recent

approach employed to construct a diagnostic model for PRAD. Our

analysis revealed that the diagnostic models built on the training set

TCGA-PRAD and validation set GSE32571 demonstrated strong

predictive value. However, in the validation set GSE62872, the AUC

value was only 0.674, potentially influenced by the expression of TK1.

Due to the imbalanced distribution of samples in the TCGA-PRAD

data set, with only 10 patients deceased out of 498 samples, we opted to

develop a prognostic model using the GSE16560 data set and validate it

with the TCGA-PRAD data set. Our findings indicate that the

prognostic model we created demonstrated robust predictive

capabilities for the prognosis of PRAD patients, particularly at the 1-

year and 7-year. GBM and RF algorithms were utilized to identify the

genes most pertinent to PRAD prognosis within the monocyte-related

genes. CCNA2 and ACSM3 were initially identified as the most

relevant genes, but due to inconsistencies with prognostic correlation

results in the TCGA-PRAD and GSE16560 datasets, ACSM3 was

subsequently excluded. Ultimately, CCNA2 was identified as the gene

most relevant to PRAD prognosis among the monocyte-related genes.
B C D E

A

FIGURE 10

CCNA2 is highly expressed in PRAD and is associated with poor patient prognosis. (A, B) Differential expression of CCNA2 in PRAD. (C) Diagnostic
predictive value of CCNA2 in PRAD. (D) KM curve of overall survival of CCNA2 in PRAD. (E) Prognostic predictive value of CCNA2 in PRAD.
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Single-cell genomics offers anovel approach to investigate the tumor

immune microenvironment by conducting genomic analysis at the

single-cell level. An increasing number of studies are utilizing this

method to gain valuable insights (48–50). The correlation between

CCNA2 and monocytes was examined using data from the TISCH2

websites. Our analysis showed a positive relationship between CCNA2

andmonocyte infiltration levels. Additionally, CCNA2 was found to be

positively associatedwith the expressionofmonocytemarkers inPRAD.

ThroughKEGGandGSEAanalysis, weuncovered the significant role of

CCNA2 in PRAD, potentially regulating cell senescence, apoptosis, and

ferroptosis. Investigation into the correlation between CCNA2 and

therapeutic drugs for PRAD revealed a strong binding affinity between

CCNA2 and three specific drugs targeting PRAD. Moreover, CCNA2

exhibited strong binding capabilities with PD1 inhibitors, suggesting its

potential as a drug targeting PRAD. However, our study is limited by a

small sample size, which may have impacted our findings. It is essential

to expand the sample size and validate these conclusions through

further experimentation.
5 Conclusion

Our study highlighted the significant roles of monocyte-related

genes in PRAD. Furthermore, we created and tested models utilizing

different machine learning techniques to forecast the diagnosis and

prognosis of PRAD patients. These results enhance our comprehension

of monocyte infiltration patterns and underscore the significance of the

monocyte-related gene CCNA2 as a valuable prognostic and diagnostic

indicator for PRAD. These insights pave the way for personalized

treatment strategies for patients with PRAD.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Ethics

Committee of Shanghai Outdo Biotech Company. The studies

were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study. Written informed
Frontiers in Immunology 15
consent was obtained from the individual(s) for the publication of

any potentially identifiable images or data included in this article.
Author contributions

YW: Conceptualization, Data curation, Formal analysis,

Validation, Writing – original draft. CL: Conceptualization, Data

curation, Writing – original draft. JH: Data curation, Methodology,

Writing – original draft. QZ: Software, Writing – original draft. YZ:

Software, Writing – original draft. HS: Software, Writing – original

draft. HZ: Validation, Writing – review & editing. BD: Funding

acquisition, Writing – review & editing. MR: Funding acquisition,

Project administration, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The research

received funding from the Heilongjiang Province Natural Science

Foundation (LH2019H030) and the National Natural Science

Foundation of China (82002680).
Acknowledgments

We would also like to thank the Shengxin Bean Sprout Platform

(http://www.sxdyc.com/index) for its help in data statistical analysis.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin.
(2024) 74:12–49. doi: 10.3322/caac.21820

2. Liu J, Dong L, Zhu Y, Dong B, Sha J, Zhu HH, et al. Prostate cancer treatment -
China’s perspective. Cancer Lett. (2022) 550:215927. doi: 10.1016/j.canlet.2022.215927

3. Sun Z, Wang J, Zhang Q, Meng X, Ma Z, Niu J, et al. Coordinating single-cell and
bulk RNA-seq in deciphering the intratumoral immune landscape and prognostic
stratification of prostate cancer patients. Environ Toxicol. (2024) 39:657–68.
doi: 10.1002/tox.23928
4. Ananias HJ, van den Heuvel MC, Helfrich W, de Jong IJ. Expression of the
gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-
specific membrane antigen in lymph node and bone metastases of prostate cancer.
Prostate. (2009) 69:1101–8. doi: 10.1002/pros.20957

5. Ji Y, Sun K, Yang Y, Wu Z. Dihydroartemisinin ameliorates innate inflammatory
response induced by Streptococcussuis-derived muramidase-released protein via
inactivation of TLR4-dependent NF-kB signaling. J Pharm Anal. (2023) 13:1183–94.
doi: 10.1016/j.jpha.2023.05.013
frontiersin.org

http://www.sxdyc.com/index
https://doi.org/10.3322/caac.21820
https://doi.org/10.1016/j.canlet.2022.215927
https://doi.org/10.1002/tox.23928
https://doi.org/10.1002/pros.20957
https://doi.org/10.1016/j.jpha.2023.05.013
https://doi.org/10.3389/fimmu.2024.1426474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1426474
6. Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical
monocytes in health and disease. Annu Rev Immunol. (2019) 37:439–56.
doi: 10.1146/annurev-immunol-042617–053119

7. Yin J, Albers AJ, Smith TS, Riddell GT, Richards JO. Differential regulation of
human monocytes and NK cells by antibody-opsonized tumors. Cancer Immunol
Immunother. (2018) 67:1239–50. doi: 10.1007/s00262-018-2179-z

8. Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, et al. Patrolling
monocytes control tumor metastasis to the lung. Science. (2015) 350:985–90.
doi: 10.1126/science.aac9407

9. Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in
cancer. J Leukoc Biol. (2019) 106:309–22. doi: 10.1002/JLB.4RI0818-311R

10. Feng D, Shi X, Li D, Wu R, Wang J, Wei W, et al. M2 macrophage-related
molecular subtypes and prognostic index for prostate cancer patients through
integrating single-cell and bulk RNA sequencing analysis. Genes Dis. (2023)
11:101086. doi: 10.1016/j.gendis.2023.101086

11. Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M,
et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is
predictive of disease progression after hormonal therapy for prostate cancer. BJU Int.
(2011) 107:1918–22. doi: 10.1111/j.1464-410X.2010.09804.x

12. Åberg AM, Bergström SH, Thysell E, Tjon-Kon-Fat LA, Nilsson JA, Widmark A,
et al. High monocyte count and expression of S100A9 and S100A12 in peripheral blood
mononuclear cells are associated with poor outcome in patients with metastatic
prostate cancer. Cancers (Basel). (2021) 13:2424. doi: 10.3390/cancers13102424

13. Zhang B, Liu J, Li H, Huang B, Zhang B, Song B, et al. Integrated multi-omics
identified the novel intratumor microbiome-derived subtypes and signature to predict
the outcome, tumor microenvironment heterogeneity, and immunotherapy response
for pancreatic cancer patients. Front Pharmacol. (2023) 14:1244752. doi: 10.3389/
fphar.2023.1244752

14. Wang J, Zheng T, Liao Y, Geng S, Li J, Zhang Z, et al. Machine learning
prediction model for post- hepatectomy liver failure in hepatocellular carcinoma: A
multicenter study. Front Oncol. (2022) 12:986867. doi: 10.3389/fonc.2022.986867

15. Pan C, Deng D, Wei T, Wu Z, Zhang B, Yuan Q, et al. Metabolomics study
identified bile acids as potential biomarkers for gastric cancer: A case control study.
Front Endocrinol (Lausanne). (2022) 13:1039786. doi: 10.3389/fendo.2022.1039786

16. Hamet P, Tremblay J. Artificial intelligence in medicine.Metabolism. (2017) 69S:
S36–40. doi: 10.1016/j.metabol.2017.01.011

17. Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart
failure in the clinics: new perspectives in the era of precision medicine and artificial
intelligence. Front Physiol. (2024) 14:1344885. doi: 10.3389/fphys.2023.1344885

18. Liu J, Shi Y, Zhang Y. Multi-omics identification of an immunogenic cell death-
related signature for clear cell renal cell carcinoma in the context of 3P medicine and
based on a 101-combination machine learning computational framework. EPMA J.
(2023) 14:275–305. doi: 10.1007/s13167–023-00327–3

19. Xu F, Huang X, Li Y, Chen Y, Lin L. m6A-related lncRNAs are potential
biomarkers for predicting prognoses and immune responses in patients with LUAD.
Mol Ther Nucleic Acids. (2021) 24:780–91. doi: 10.1016/j.omtn.2021.04.003

20. Guan H, Chen X, Liu J, Sun J, Guo H, Jiang Y, et al. Molecular characteristics and
therapeutic implications of Toll-like receptor signaling pathway in melanoma. Sci Rep.
(2023) 13:13788. doi: 10.1038/s41598-023-38850-y

21. Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y, et al. GSCA: an integrated
platform for gene set cancer analysis at genomic, pharmacogenomic and
immunogenomic levels. Brief Bioinform. (2023) 24:bbac558. doi: 10.1093/bib/bbac558

22. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. CancerSEA: a cancer
single-cell state atlas. Nucleic Acids Res. (2019) 47:D900–8. doi: 10.1093/nar/gky939

23. Zhang S, Jiang C, Jiang L, Chen H, Huang J, Gao X, et al. Construction of a
diagnostic model for hepatitis B-related hepatocellular carcinoma using machine
learning and artificial neural networks and revealing the correlation by
immunoassay. Tumour Virus Res. (2023) 16:200271. doi: 10.1016/j.tvr.2023.200271

24. Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets
and new tools for single-cell transcriptome analyses of the tumor microenvironment.
Nucleic Acids Res. (2023) 51:D1425–31. doi: 10.1093/nar/gkac959

25. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The
MR-Base platform supports systematic causal inference across the human phenome.
Elife. (2018) 7:e34408. doi: 10.7554/eLife.34408

26. Xiong J, Chi H, Yang G, Zhao S, Zhang J, Tran LJ, et al. Revolutionizing anti-
tumor therapy: unleashing the potential of B cell-derived exosomes. Front Immunol.
(2023) 14:1188760. doi: 10.3389/fimmu.2023.1188760

27. Zhang B, Sun J, Guan H, Guo H, Huang B, Chen X, et al. Integrated single-cell
and bulk RNA sequencing revealed the molecular characteristics and prognostic roles
of neutrophils in pancreatic cancer. Aging (Albany NY). (2023) 15:9718–42.
doi: 10.18632/aging.205044

28. Yang H, Li Z, Zhu S, Wang W, Zhang J, Zhao D, et al. Molecular mechanisms of
pancreatic cancer liver metastasis: the role of PAK2. Front Immunol. (2024)
15:1347683. doi: 10.3389/fimmu.2024.1347683
Frontiers in Immunology 16
29. Sun Y, Yang X, Ren S, Lu Z, Liu Z, Kong F, et al. Stratification of risk based on
immune signatures and prediction of the efficacy of immune checkpoint inhibitors in
prostate cancer. J Men’s Health. (2023) 19:16–33. doi: 10.22514/jomh.2023.113

30. Zhang B, Zhou YL, Chen X, Wang Z, Wang Q, Ju F, et al. Efficacy and safety of
CTLA-4 inhibitors combined with PD-1 inhibitors or chemotherapy in patients with
advanced melanoma. Int Immunopharmacol. (2019) 68:131–6. doi: 10.1016/
j.intimp.2018.12.034

31. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337

32. Zhang B, Chen X, Wang Z, Guo F, Zhang X, Huang B, et al. Identifying
endoplasmic reticulum stress-related molecular subtypes and prognostic model for
predicting the immune landscape and therapy response in pancreatic cancer. Aging
(Albany NY). (2023) 15:10549–79. doi: 10.18632/aging.205094

33. Yu Q, Gao Y, Dai W, Li D, Zhang L, Hameed MMA, et al. Cell membrane-
camouflaged chitosan-polypyrrole nanogels co-deliver drug and gene for targeted
chemotherapy and bone metastasis inhibition of prostate cancer. Adv Healthc Mater.
(2024) 6:e2400114. doi: 10.1002/adhm.202400114

34. Zhu C, Sun Z, Wang J, Meng X, Ma Z, Guo R, et al. Exploring oncogenes for
renal clear cell carcinoma based on G protein-coupled receptor-associated genes.
Discovery Oncol. (2023) 14:182. doi: 10.1007/s12672-023-00795-z

35. Liu Q, Liao L. Identification of macrophage-related molecular subgroups and
risk signature in colorectal cancer based on a bioinformatics analysis. Autoimmunity.
(2024) 57:2321908. doi: 10.1080/08916934.2024.2321908

36. Begley LA, Kasina S, Mehra R, Adsule S, Admon AJ, Lonigro RJ, et al. CXCL5
promotes prostate cancer progression. Neoplasia. (2008) 10(3):244–54. doi: 10.1593/
neo.07976

37. Cavassani KA, Meza RJ, Habiel DM, Chen JF, Montes A, Tripathi M, et al.
Circulating monocytes from prostate cancer patients promote invasion and motility of
epithelial cells. Cancer Med. (2018) 7:4639–49. doi: 10.1002/cam4.1695

38. Yang R, Du Y, Wang L, Chen Z, Liu X. Weighted gene co-expression network
analysis identifies CCNA2 as a treatment target of prostate cancer through inhibiting
cell cycle. J Cancer. (2020) 11:1203–11. doi: 10.7150/jca.38173

39. Zhang B, Zhang M, Li Q, Yang Y, Shang Z, Luo J. TPX2 mediates prostate cancer
epithelial-mesenchymal transition through CDK1 regulated phosphorylation of ERK/
GSK3b/SNAIL pathway. Biochem Biophys Res Commun. (2021) 546:1–6. doi: 10.1016/
j.bbrc.2021.01.106

40. Ji G, He S, Huang C, Gong Y, Li X, Zhou L. Upregulation of ATP Binding
Cassette Subfamily C Member 5 facilitates Prostate Cancer progression and
Enzalutamide resistance via the CDK1-mediated AR Ser81 Phosphorylation
Pathway. Int J Biol Sci. (2021) 17:1613–28. doi: 10.7150/ijbs.59559

41. Willder JM, Heng SJ, McCall P, Adams CE, Tannahill C, Fyffe G, et al. Androgen
receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in
prostate cancer patients. Br J Cancer. (2013) 108:139–48. doi: 10.1038/bjc.2012.480

42. Lan Y, Zhang Y, Wang J, Lin C, Ittmann MM, Wang F. Aberrant expression of
Cks1 and Cks2 contributes to prostate tumorigenesis by promoting proliferation and
inhibiting programmed cell death. Int J Cancer. (2008) 123:543–51. doi: 10.1002/
ijc.23548

43. Zhang Z, Wang X, Kim M, He D, Wang C, Fong KW, et al. Downregulation of
EZH2 inhibits epithelial-mesenchymal transition in enzalutamide-resistant prostate
cancer. Prostate. (2023) 83:1458–69. doi: 10.1002/pros.24602

44. Xu Y, Xu M, Li X, Weng X, Su Z, Zhang M, et al. SOX9 and HMGB3 co-
operatively transactivate NANOG and promote prostate cancer progression. Prostate.
(2023) 83:440–53. doi: 10.1002/pros.24476

45. Zhang P, Gao H, Ye C, Yan R, Yu L, Xia C, et al. Large-scale transcriptome data
analysis identifies KIF2C as a potential therapeutic target associated with immune
infiltration in prostate cancer. Front Immunol. (2022) 13:905259. doi: 10.3389/
fimmu.2022.905259

46. Wang J, Wang L, Chen S, Peng H, Xiao L, Du E, et al. PKMYT1 is associated with
prostate cancer Malignancy and may serve as a therapeutic target. Gene. (2020)
744:144608. doi: 10.1016/j.gene.2020.144608

47. Liang H, Yang C, Zeng R, Song Y,Wang J, XiongW, et al. Targeting CBX3 with a
dual BET/PLK1 inhibitor enhances the antitumor efficacy of CDK4/6 inhibitors in
prostate cancer. Adv Sci (Weinh). (2023) 10:e2302368. doi: 10.1002/advs.202302368

48. Ma B, Qin L, Sun Z, Wang J, Tran LJ, Zhang J, et al. The single-cell evolution
trajectory presented different hypoxia heterogeneity to reveal the carcinogenesis of
genes in clear cell renal cell carcinoma: Based on multiple omics and real experimental
verification. Environ Toxicol. (2024) 39:869–81. doi: 10.1002/tox.24009

49. Wang J, Zuo Z, Yu Z, Chen Z, Meng X, Ma Z, et al. Single-cell transcriptome
analysis revealing the intratumoral heterogeneity of ccRCC and validation of MT2A in
pathogenesis. Funct Integr Genomics. (2023) 23:300. doi: 10.1007/s10142–023-01225–7

50. Jiang S, Yang X, Lin Y, Liu Y, Tran LJ, Zhang J, et al. Unveiling Anoikis-related
genes: A breakthrough in the prognosis of bladder cancer. J Gene Med. (2024) 26:e3651.
doi: 10.1002/jgm.3651
frontiersin.org

https://doi.org/10.1146/annurev-immunol-042617&ndash;053119
https://doi.org/10.1007/s00262-018-2179-z
https://doi.org/10.1126/science.aac9407
https://doi.org/10.1002/JLB.4RI0818-311R
https://doi.org/10.1016/j.gendis.2023.101086
https://doi.org/10.1111/j.1464-410X.2010.09804.x
https://doi.org/10.3390/cancers13102424
https://doi.org/10.3389/fphar.2023.1244752
https://doi.org/10.3389/fphar.2023.1244752
https://doi.org/10.3389/fonc.2022.986867
https://doi.org/10.3389/fendo.2022.1039786
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.3389/fphys.2023.1344885
https://doi.org/10.1007/s13167&ndash;023-00327&ndash;3
https://doi.org/10.1016/j.omtn.2021.04.003
https://doi.org/10.1038/s41598-023-38850-y
https://doi.org/10.1093/bib/bbac558
https://doi.org/10.1093/nar/gky939
https://doi.org/10.1016/j.tvr.2023.200271
https://doi.org/10.1093/nar/gkac959
https://doi.org/10.7554/eLife.34408
https://doi.org/10.3389/fimmu.2023.1188760
https://doi.org/10.18632/aging.205044
https://doi.org/10.3389/fimmu.2024.1347683
https://doi.org/10.22514/jomh.2023.113
https://doi.org/10.1016/j.intimp.2018.12.034
https://doi.org/10.1016/j.intimp.2018.12.034
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.18632/aging.205094
https://doi.org/10.1002/adhm.202400114
https://doi.org/10.1007/s12672-023-00795-z
https://doi.org/10.1080/08916934.2024.2321908
https://doi.org/10.1593/neo.07976
https://doi.org/10.1593/neo.07976
https://doi.org/10.1002/cam4.1695
https://doi.org/10.7150/jca.38173
https://doi.org/10.1016/j.bbrc.2021.01.106
https://doi.org/10.1016/j.bbrc.2021.01.106
https://doi.org/10.7150/ijbs.59559
https://doi.org/10.1038/bjc.2012.480
https://doi.org/10.1002/ijc.23548
https://doi.org/10.1002/ijc.23548
https://doi.org/10.1002/pros.24602
https://doi.org/10.1002/pros.24476
https://doi.org/10.3389/fimmu.2022.905259
https://doi.org/10.3389/fimmu.2022.905259
https://doi.org/10.1016/j.gene.2020.144608
https://doi.org/10.1002/advs.202302368
https://doi.org/10.1002/tox.24009
https://doi.org/10.1007/s10142&ndash;023-01225&ndash;7
https://doi.org/10.1002/jgm.3651
https://doi.org/10.3389/fimmu.2024.1426474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Multi-omics analysis and experimental validation of the value of monocyte-associated features in prostate cancer prognosis and immunotherapy
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition
	2.2 Constructing diagnostic and prognostic models
	2.3 Functional analysis of candidate genes
	2.4 Analysis of the correlation between CCNA2 and immune cell infiltration
	2.5 Immunohistochemical staining analysis of CCNA2 expression in PRAD tissues
	2.6 Mendelian randomization analysis
	2.7 Statistical analyses

	3 Results
	3.1 Analysis of the correlation between the level of immune cell infiltration and the prognosis of PRAD patients
	3.2 Screening of monocyte-associated differential genes based on the WGCNA method
	3.3 Functional analysis of monocyte-related prognostic differential genes
	3.4 Multiple machine learning combinations to build PRAD diagnostic models
	3.5 Constructing prognostic model
	3.6 Multiple machine learning approaches to identify monocyte-associated prognostic genes
	3.7 CCNA2 is associated with monocyte infiltration in PRAD
	3.8 Gene enrichment analysis of CCNA2
	3.9 Analysis of CCNA2 and drug affinity in metastatic PRAD
	3.10 Expression and prognostic value of CCNA2 in PRAD

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


