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Early lymphocyte levels and low
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Introduction: Radiation induced lymphopenia (RIL) deteriorate survival and

diminishes the benefit of immune checkpoint inhibitors in combined treatment

of lung cancer. Given the inconsistent data across various studies on the

predictors of RIL, we aim to methodically elucidate these predictors and

formulate a practical guide for clinicians.

Methods: We conducted observational cohort study in four tertiary cancer

centers. Patients with non-small cell lung cancer and small cell lung cancer,

without lymphopenia grade >1, who underwent standalone radiotherapy (RT) in

minimum 15 fractions were eligible. Dose-volume parameters of structures and

clinical factors were comprehensively analyzed using various predictors

selection methods and statistical models (Linear Regressors, Elastic Net,

Bayesian Regressors, Huber Regression, regression based on k-nearest

neighbors, Gaussian Process Regressor, Decision Tree Regressor, Random

Forest Regressor, eXtreme Gradient Boosting, Automated Machine Learning)

and were ranked to predict lymphocytes count nadir (alc_nadir).

Results: Two hundred thirty eight patients (stage I-3.4%, II-17.6%, III-75.2%, IV-

3.8%) who underwent RT to median dose of 60 Gy were analyzed. Median

alc_nadir was 0.68K/mm3. The 60 feature sets were evaluated in 600 models

(RMSE 0.27-0.41K/mm³). The most important features were baseline lymphocyte

count (alc_1), mean lung_dose, lung v05, lung v10, heart v05 and effective dose

to immune cells (edic). In patients with alc_1 ≤ 2.005K/mm3, median alc_nadir
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predictions were 0.54K/mm3 for lung_v05p > 51.8% and 0.76K/mm3 for

lung_v05p ≤ 51.8%. Lymphopenia was rare in patients with alc_1 > 2.005K/mm3.

Discussion: RIL was most severe in patients with low early lymphocyte counts,

primarily triggered by low RT doses in the heart and lungs.
KEYWORDS

lymphopenia, radiotherapy, immunotherapy, immune checkpoint inhibitors, radiation
induced lymphopenia, effective dose to immune cells, lung cancer
1 Introduction

Landscape of treatment of lung cancer is evolving in recent

years with increasing role of immunotherapy in treatment of all

stages of non-small cell lung cancer (NSCLC) and small cell lung

cancer (SCLC) (1–3). Immune checkpoint inhibitors (programmed

cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)

and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)) have

become standard components in both the first line and subsequent

lines of systemic therapy for metastatic NSCLC and SCLC (1, 3).

Building on successes in metastatic cancer, those discoveries have

been integrated into concurrent chemo-radiotherapy of advanced

NSCLC, with results for SCLC anticipated in the coming years (4,

5). For patients ineligible for concurrent chemo-radiotherapy due to

performance status, comorbidities, or loco-regional tumor burden,

radiation therapy alone (RT) and sequential chemo-radiotherapy

remain the alternatives, with ongoing trials also exploring the

incorporation of immunotherapy in these scenarios (6, 7).

The incorporation of immune checkpoint inhibitors into the

management of unresectable lung cancer has shifted the focus

towards the immune system, especially highlighting the

significance of lymphocytes. In the context of combined CRT and

immune checkpoint inhibitors for treating unresectable, loco-

regionally advanced lung cancer, the concern of lymphopenia

becomes even more critical (8). RT is the primary culprit of

lymphopenia due to the high radiosensitivity of lymphocytes,

which are the most radiosensitive among all peripheral blood

cells; this leads to radiation-induced lymphopenia (RIL) that

impairs the effectiveness of consolidative immunotherapy (9–11).

Additionally, treatment-related lymphopenia was found to reduce

OS in lung cancer patients receiving immune checkpoint

inhibitors (12).

Despite the compelling nature of the aforementioned data,

unified guidelines for lymphocyte-sparing radiotherapy have yet

to be established (13). Various studies present inconsistent data on

how different dose-volume indicators influence treatment-related

lymphopenia (11, 13). Two primary theories explain RIL: the first

connects it to dose to immune cells in “blood rich” critical organs

(heart, lungs, vessels) and the second associates it with bone marrow

doses (14–19). Importantly, these theories, though separate, do not
02
contradict each other in elucidating RIL. In numerous scientific

publications, a variety of statistical models have been employed,

complicating the comparison and evaluation of methods, and

hindering their clinical implementation (13).

Our objective is to methodically evaluate the aforementioned

hypotheses using diverse statistical modeling techniques across four

distinct patient cohorts who underwent RT or sequential chemo-

radiotherapy in tertiary cancer centers to find features which predict

and potentially prevent RIL most accurate and create physician

friendly algorithm.
2 Materials and methods

2.1 Study design and participants

In this retrospective multicenter observational cohort study, we

included adult patients diagnosed with histopathological confirmed

SCLC or NSCLC. Patients were eligible if they were qualified for

standalone radical RT or sequential chemo-radiotherapybetween

September 2019 and December 2022 by multidisciplinary board in

four tertiary cancer centers in Poland. The RT was administered

with curative intent with at least 15 fractions. Patients were

excluded from the study if they presented with an absolute

lymphocyte count (alc_1) of Common Terminology Criteria for

Adverse Events (CTCAE) v5.0 grade >1 (less than 800 cells/cm3) at

the initiation of RT or if they experienced a break in radiotherapy

exceeding seven days for reasons not related to treatment

complications. Data for this study were collected retrospectively

from medical records and RT planning systems, while contours for

the accessed target volume of total vertebral body bone marrow (vb)

and the bone marrow volume (bm) were created prospectively for

the purposes of the current study according to provided protocol.

The vb area is defined as the volume of vertebrae body Th1-Th10.

The bm volume encompasses all bones in the cranial-caudal

dimension of Th1-Th10, including the vb area. All RT plans were

recalculated after delineation of above structures.

Potential clinical and dosimetry predictors of RIL were derived

based on the review of literature from the PubMed, Scopus, Web of

Science, databases performed by ŁK and supervised by JF. Those
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factors were all in line with recently published LymphoTEC

recommendations and metanalysis (8, 11). The data collected in

accordance with the protocol included:Age in Years (age), Sex

(female/male), Disease Stage (Stage; stages 1–4), Eastern Cooperative

Oncology Group Performance Status (ECOG) (ecog_ps; 0–4),

Prophilactic cranial irradiation before Lung RT (pci; No/Yes),

absolute Lymphocyte Count from 1 Week of Radiotherapy (alc-1; in

thousand/mm³), Nadir Absolute Lymphocyte Count during and up to

Two Weeks Post-RT (alc_nadir; in thousand/mm³), Total Dose of

Radiotherapy (rt_total_dose; in Gy), Fractional Dose of RT

(rt_fraction_dose; in Gy), Duration of Radiotherapy (rt_duration; in

days), Prior Chemotherapy (cht_before_rt; 0-No, 1-≤4 weeks, 2->4

weeks), Vertebral Body Volume (vb_v; in cm³), Mean Vertebral Body

Dose Th1-Th10 (vb_md; in Gy), Percent Volume of Vertebral Body

receiving 5, 10, 20, 30, and 40 Gy (vb_v05p, vb_v10p, vb_v20p,

vb_v30p, vb_v40p), Volume of Bones (Bone Marrow) Th1-Th10

including Vertebral Body (bm_v; in cm³), Mean Dose in Bones Th1-

Th10 including Vertebral Body (vb_md; in Gy), Percent Volume of

Bone Marrow receiving 5, 10, 20, 30, and 40 Gy (bm_v05p, bm_v10p,

bm_v20p, bm_v30p, bm_v40p), Volume of Planning Target Volume

(ptv_v; in cm³), Heart Volume (heart_v; in cm³), Medium Heart Dose

(heart_mhd; in Gy), Percent Volume of Heart receiving 5 and 10 Gy

(heart_v05p, heart_v10p), Lung Volume (lung_v; in cm³), Medium

Lung Dose (lung_mld; in Gy), Percent Volume of Lung receiving 5 and

10 Gy (lung_v05p, lung_v10p), Medium Body Dose Th1-Th10 (mbd;

in Gy). The features calculated based on the collected data were:

Absolute Lymphocyte Count Classification per CTCAE v5.0 (ctcae),

Effective Dose to Immune Cells (edic) (15), RT-induced lymphopenia

≥G3, which was defined as Nadir Absolute Lymphocyte Count less

than 0.5 (thousand/mm³). Full statistical description is provided in the

Supplementary Material. Lymphocytes are extremely radiosensitive

and as proposed in previous papers linear model (not linear-

quadratic) was used for assessment dose-volume effect for primary

endpoint (lymphocytes counts) (20–22). Additionally, this approach

facilitates comparison of different dose-levels used for modeling.

The study adhered to ethical standards and received approval

from the relevant institutional review boards/director of

participating hospitals. According to the local regulation, the

consent of the Bioethics Committee was not required due to the

retrospective nature and anonymization of the data.
2.2 Primary endpoint

The primary endpoint of the study was to methodically

determine the dose-volume parameter(s) in radiotherapy

treatment plans and clinical factors that most accurately predict

alc_nadir, across four independent lung cancer patient’s cohorts

undergoing standalone RT or sequential chemo-radiotherapy.
2.3 Statistical analysis

The study design is summarized in Figure 1. Briefly data was

compiled from four tertial cancer centers, where rules based on

boxplot procedures were used to remove outliers (the maximum
Frontiers in Immunology 03
alc_nadir value was set at 1.65 thousand/mm³, the maximum alc_1

value was set at 3.57 thousand/mm³). Of 258 patients, 238 were

included to further analysis.

Firstly, we generated models for prediction of ≥3 CTCAE using

commonly used algorithms (Random Forest, ADABost, XGBoost

and Logistic Regression) to compare the dataset to the data in the

existing literature. The Receiver Operating Characteristic (ROC)

was used for analysis. Second step aimed to find dose-volume

metrics and clinical feature which predicts alc-nadir with best

accuracy. The continuous variable (alc_nadir) was chosen for

evaluation as a more sensitive measure compared to categorical

metrics (ctcae).

Subsequently, feature selection methods were applied,

recognizing the significant impact of variable selection on model

efficiency (23) Given the lack of the universal feature selection

method, multiple diverse methods were utilized to identify key

features (24, 25). The filter-based methods (Variance Threshold,

Chi squared, ANOVA, Information gain, Correlation Coefficient,

Fisher score, Information Value (IV)), embedded methods (Lasso

Regularization, Random Forest Importance), wrapper methods

(Forward Feature Selection, Backward Feature Elimination,

Exhaustive Feature Selection, Recursive Feature Elimination,

Recursive Feature Elimination with Cross Validation) and other

methods (Shapley Values, hybrid methods, arbitrary features

selection) as shown in Figure 1. Filter-based methods identify

features by their statistical properties, such as Variance Threshold

for low variance. Embedded methods like Lasso Regularization and

Random Forest Importance select features during model training by

shrinking coefficients or measuring feature impact on accuracy.

Wrapper methods like Forward Feature Selection, Backward

Feature Elimination, Exhaustive Feature Selection, Recursive

Feature Elimination iteratively build and assess models to

evaluate feature importance, using cross-validation for optimal

feature selection. Other methods, such as Shapley Values, explain

each feature’s contribution to predictions, while hybrid and

arbitrary selection methods leverage multiple techniques and

domain knowledge.

After the above-described selection, obtained feature sets were

evaluated using ten different regression models, including classical

Linear Regressors, Linear Regressor with variable selection (Elastic

Net), Bayesian Regressors (Automatic Relevance Determination –

ARD and Bayesian Ridge), Outlier-robust Regressor (Huber

Regression), regression based on k-nearest neighbors (KNN),

Gaussian Process Regressor (GPR), Decision Tree Regressor,

ensemble methods (Random Forest Regressor and eXtreme

Gradient Boosting - Xgboost). Five-group cross-validation was

used to prevent overfitting and provide a stable and more reliable

assessment. Obtained models were ranked based on Root Mean

Square Error (RMSE). Parallel to the feature selection process, we

optimized machine learning models using automated machine

learning (AutoML) tools. In the model verification process for

machine learning, the dataset was divided into three groups:

training and validation data (collectively 75%) using five-fold

cross-validation, and test data (25%). The training data were

utilized for constructing and optimizing the model, the validation

data facilitated the tuning of hyperparameters and prevention of
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overfitting through the selection of the optimal model

configuration, while the test data enabled the assessment of the

model’s final performance. After selection of features (max

depth=2) decision tree was generated.

Calculations were performed using Python, scikit-learn

(sklearn) machine learning (ML) library, dtreeviz library to

visualized and interpreted decision trees, XGBoost Python

package and statistical analysis package - statsmodels. An

automatic machine learning library, AutoGluon, was used to

optimize machine learning models. A Jupyter notebook was used

as the integrated development environment (IDE).
3 Results

The 238 patients with NSCLC and SCLC (stage I-3.4%, II-

17.6%, III-75.2%, IV-3.8%) in ECOG 0–3 performance status were

enrolled. Patients were treated with hypo-fractionated RT in 62

cases and normo-fractionation in 176 cases to median RT dose of 60

Gy. Fraction doses ranged from1.8 to 3.0 Gy. Total duration of

treatment was 19–76 days (median 40). Lymphopenia G1, G2, G3

and G4 occurred in 31.5%, 35.3%, 26.9%, 1.3% of patients,

respectively. The median alc_nadir was 0.68K/mm3. Clinical data

are summarized in Table 1. The description statistics of all collected

dose-volume and clinical data are summarized in Supplementary

Table S1 in Supplementary Material.
FIGURE 1

The study design. The figure shows workflow of study.
Frontiers in Immunology 04
TABLE 1 Patient characteristics.

Feature Total CEN 1 CEN 2 CEN 3 CEN 4

Patients 238 141 25 34 38

Sex

female 93 57 8 15 13

male 145 84 17 19 25

Age

min 39 50 39 54 45

max 85 85 84 85 76

median 67 67 70 67 67

Disease stage (I-IV)

I 8 4 1 3 0

II 42 19 5 6 12

III 179 115 18 20 26

IV 9 3 1 5 0

ALC from 1 week RT (thousand/mm³)

min 0.81 0.81 0.94 1.10 0.81

max 3.43 3.43 3.00 3.38 3.24

median 1.76 1.63 1.97 1.97 1.72

(Continued)
fron
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As anticipated, we identified significant positive correlations

among dose-volume parameters across distinct categories,

specifically within regions including the heart (heart_mhd,

heart_v05, heart_v10), lungs (lung_mld, lung_v05, lung_v10), bone

marrow (bm_md, bm_v05, bm_v10, bm_v20, bm_v30, bm_v40), and

vertebral bodies (vb_md, vb_v05, vb_v10, vb_v20, vb_v30, vb_v40),

as delineated in the correlation matrix presented in Figure 2. The

variables within these groups exhibited strong collinearity.

According to the calculations performed using four classifiers

(AdaBoost, XGBoost, Random Forest, Logistic Regression), shown

on Figure 3, models yield good performance in prediction of ctcae

with area under curve (AUC) ranging from 0.71 to 0.76, with best

performance for Random Forest and Logistic Regression. The base

details of model were as follows: 5 features (alc_1, lung_mld,

lung_v05p, heart_v05p, sex) and 5 fold cross validation.
Frontiers in Immunology 05
The variance in the ROC metric incorporating individual results

from cross-validation analyzes of best model was depicted in

Supplementary Figure S1 in Supplementary Material. Our models

had comparable performance in prediction of ctcae toxicity to those

described in the literature thus we moved further to the next step

described in Figure 1 (26–29).

Feature selection revealed 60 feature sets which were evaluated

using ten different regression models and yield 600 models of

alc_nadir prediction. Models consisting of a larger number of

features did not demonstrate greater efficacy as shown in Figure 4.

The detailed comparison of individual and grouped feature selection

methods, as well as the performance of the corresponding models, is

presented in Supplementary Figure S2. The Table 2 displays the

efficacy of the five leading types of models (best one from each type)

according to Root Mean Squared Error (RMSE), best 30 models are

shown in Supplementary Table S2 in Supplementary Material. The

RMSE and accuracy ranged 0.27–0.41 thousand/mm³ and 47–62%

respectively. Leading models presented similar efficacy (best three

were Random Forest Regressor as shown in Supplementary Table

S2). The scatter plots and histograms of themodels from Table 2 are

shown in Figures 5A–J and represents a comparison between actual

and predicted values. The clustering of points along the dashed line

suggests a good model fit, especially for AutoML model. The most

important features consistently observed across the models were:

alc_1, lung_mld, lung_v05p, lung_v10p, heart_v05p and edic

(calculated from lung_mld, heart_mld, mbd, number of fractions).

Final step aimed to generate clinically applicable algorithm to

guide physicians. Decision tree from variables from best performing

models included in Table 2 is shown on Figure 6. The alc_nadir was

predicted based on alc_1, lung_v05p, and lung_mld. The decision tree

model (RMSE = 0.29) identified alc_1 of 2.005K/mm3 as the threshold

in the first step of selection. For patients with alc_1 values less than or

equal to 2.005K/mm3 and lung_v05p ≤ 51.8%, a median alc_nadir of

0.76K/mm3 was estimated, while for those with lung_v05p > 51.8%, a

median alc_nadir of 0.54K/mm3 was predicted. For patients with

alc_1 greater than 2.005K/mm3, a lung_mld threshold of 10.67Gy

segregated patients into groups with predicted median alc_nadir

values of 1.11K/mm3and 0.87K/mm3.
4 Discussion

Lymphocytes are the most radiosensitive blood cells, and

although often underreported, lymphopenia is the most prevalent

hematologic toxicity, with grade ≥ 2 and ≥3 occurring in our cohort

in 63% and 28% of cases respectively (8). Lymphopenia is widely

recognized as an unfavorable prognostic factor for both progression-

free survival (PFS) and overall survival (OS) in patients with various

cancers including NSCLC and SCLC (30, 31). Similarly, RIL has been

shown to negatively impact OS and PFS in NSCLC and SCLC

patients (8, 11, 13, 31). It’s important to note that most studies

linking RIL with lower survival were done before immunotherapy

was used for lung cancer. The introduction immune checkpoint

inhibitors might further amplify this negative impact, especially given

that lymphopenia induced by treatment is a recognized as

unfavorable prognostic factor for both OS and PFS during immune
TABLE 1 Continued

Feature Total CEN 1 CEN 2 CEN 3 CEN 4

ALC nadir (thousand/mm³)

min 0.15 0.15 0.27 0.18 0.19

max 1.58 1.51 1.58 1.56 1.53

median 0.68 0.66 1.13 0.58 0.68

Total RT dose (Gy)

min 40 40 42 53 56

max 68 66 66 68 66

median 60 60 60 60 66

Hypofractionation (YES: RT_fraction_dose>2, NO:
RT_fraction_dose ≤ 2)

YES 62 34 12 12 4

NO 176 107 13 22 34

V PTV - Volume planning target (cm³)

min 55 55 70 66 105

max 1149 1058 860 1149 666

median 292 257 452 360 372

Lymphopenia CTCAE v5.0

G0 12 4 4 2 2

G1 75 40 15 11 9

G2 84 58 2 8 16

G3 64 38 4 12 10

G4 3 1 0 1 1

G5 0 0 0 0 0

Chemotherapy before RT?

No 73 46 6 8 13

CHT ≤

4 weeks
36 0 11 13 12

CHT>4 weeks 129 95 8 13 13
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checkpoint inhibitors therapy (12). Indeed, severe RIL diminishes the

survival advantages of durvalumab following concurrent chemo-

radiotherapy in NSCLC as shown recently (9). Additionally, the

Real World Evidence (RWE) studies confirm efficacy of consolidative

immune checkpoint inhibitors after CRT in population with more

elderly and poor performance status patients and may double overall

survival in that population (32, 33). Therefore, developing strategies

to minimize RIL could be crucial in improving the effectiveness of

comprehensive lung cancer treatment approaches as never before.

Our analysis showed that from non-modifiable factors lymphocyte

count at the beginning of treatment (alc_1) was predictive on

occurrence of lymphocyte nadir (alc_nadir) further during treatment

which stays in line with some of previously published papers (13, 34,

35). Moreover, in our analysis, alc_1 proved to be the main factor,

appearing in all top 30 models. Based on our analysis in patients with

an alc_1 > 2.005K/mm3, clinically significant lymphopenia should not

be anticipated. The value of our analysis is enhanced by excluding

patients with lymphopenia (often caused by previous treatment).

In terms of clinical application, controlling the RT dose to critical

structures like the lungs and a heart offer an opportunity to modify
Frontiers in Immunology 06
risk factors and reduce risk of RIL what is possible with use of

modern irradiation techniques(including protons) (8, 36). This

adjustment could lead to a reduction in RIL, especially valuable for

patients with non-modifiable risk factors for lymphopenia, such as

advanced age, lower pre-RT lymphocyte count, and larger tumor size

(12). Considering the immune system as an organ-at-risk (OAR) in

RT planning is complex, as it is not confined to a specific anatomical

area (37). Immune cells circulate throughout the body, often moving

in and out of the RT field, which challenges traditional RT planning

approaches. From clinical point of view, there are two prevailing

theories regarding the negative impact of RT on the count of immune

system cells. The first concept emphasizes the significant role of the

dose in the circulating pool of immune cells with mostly used edic

model in causing RIL, and it’s directly related to the dose in critical

organs such as the lungs, heart, and median body dose (14–17, 38).

The second theory focuses on the impact of the dose in bone marrow

on hematologic toxicity (18, 19). These two theories are not mutually

exclusive but are rarely accessed together in studies; high doses in the

lungs and heart strongly correlate with the dose in the chest bones, as

evidenced by our correlation matrix.
FIGURE 2

The correlation matrix. The correlation matrix heatmap for the values of the Spearman correlation coefficients (r) for analyzed features. For clarity of
the correlogram, only coefficients (r) greater than 0.3 are shown.
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Despite testing numerous sets of clinical and diametric features in

our cohort of patients, most significant models demonstrated similar

performance in prediction of alc_nadir. Reassuringly, in the era of

artificial intelligence and advanced statistical methods, the subjective

selection of features made by experts (heuristic methods) based on

their experience and knowledge exhibited the best fit, as shown in

Supplementary Figure S2. However, it also showed high variability.

This variability may arise because experts can make mistakes or

simply not choose optimal solutions. Although expert knowledge is

often undervalued in modern science, our study indicates that

combining statistical methods with expert knowledge can yield the

best results. Surprisingly, three-five variables models presented best

performance in which lung_mld, lung_v05p, lung_v10p, heart_v05p

or edic played crucial role in prediction RIL. It’s worth to emphasize

that low doses variables (lung_v05p, lung_v10p, heart_v05p) shows a

strong correlation with lung_mld and heart_mld and edic. Similar

results concerning heart and lung dose metrics were observed in

study by Abravan et al., where data mining techniques were

employed to discern regions where a significant correlation exists

between RT dose and ≥G3 lymphopenia (31). Heart, lungs, and

thoracic vertebrae were identified as regions linked to RIL, with key

diametric parameters being mean doses to the lungs and heart and

thoracic vertebrae V20 (31). In other studies, Tang et al. (lung_v05,

lung_v10) and Xie et al. (lung_v05) and Kim et al. (lung_v05) and

Kong et al. (lung_v05) observed that low doses in the lung were

associated with RIL (39–42). Additionally, studies have demonstrated

that low doses to the heart (heart_v05) are crucial in the induction of

RIL during stereotactic body radiation therapy (SBRT) and CRT (43,

44). The metrics edic and EDRIC (Estimated Dose of Radiation to the
Frontiers in Immunology 07
Immune System) were also predictive of RIL (14, 16). Similarly, Kim

et al. noted that the dose to circulating blood cells (as a function of

lung and heart dose) was associated with severe RIL during photon

and proton radiotherapy (36). Other studies addressing various

malignancies in thoracic region have identified relationship

between mean and low doses in heart and lung (and low doses)

and RIL (11, 26). Our analysis showed that the threshold values of

lung_v05p ≤ 51.8% and lung_mld of 10.67Gy can are significant in

prediction of alc_nadir for patients with alc_1 ≤2.005K/mm3 and

alc_1 >2.005K/mm3 respectively.

In our most effective models, the features previously outlined in

literature such as age and tumor volume, treatment time,

hypofractionation and pci usage were absent; however, they were

incorporated in subsequent(less efficient) models (39, 40, 44).

Surprisingly, previously described correlation of low-medium dose

metrics of vertebrae(v05-v20) and other of bones with hematologic

toxicity have been rarely observed in our best models (18, 19, 31, 45).

It is noteworthy that dose metrics for vertebrae and other bones can

serve as proxies for lung and heart dose metrics, as demonstrated in

our correlation matrix. Furthermore, in some of the aforementioned

studies where bones doses were associated with RIL, heart and lung

doses were not assessed which complicate comparison (18, 19, 45).

Additionally, it may be assumed that since approximately 50% of

active bone marrow is in the pelvis, the dose metrics of bone marrow

in this region may be critical in the induction of RIL. This correlation

has been observed in numerous studies focusing on gynecological,

genitourinary, and lower gastrointestinal malignancies (11, 35).

Another explanation for the lack of impact of the dose-volume

parameters of vertebrae and bones on lymphopenia could be the
FIGURE 3

Prediction of Common Terminology Criteria for Adverse Events (CTCAE) ≥ grade 3 lymphopenia. Receiver Operator Curves for prediction of
Common Terminology Criteria for Adverse Events (CTCAE) ≥ grade 3 lymphopenia.
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FIGURE 4

The optimal outcome, as indicated by the lowest Root Mean Square Error (RMSE) of individual models depending on the number of selected
features. The models with specific number of features are grouped according to increasing RMSE. The dots represent the actual RMSE values of the
models. The boxplots of the root mean square error (RMSE) values for individual models are displayed along the X-axis, as a function of the number
of selected features, which are indicated on the Y-axis. The plots are organized in ascending order of the minimum RMSE value. Models
incorporating fewer features proved to be the most effective; notably, the set containing three variables was an optimal selection across all
computational models assessed.
TABLE 2 Best performing models for prediction of absolute lymphocyte count nadir.

Id Method Features
No

of features

MAE
(thousand/

mm³)

RMSE
(thousand/

mm³)

Accuracy
(%)

1
Random Forest
cross validation, 5 fold

alc_1, heart_v05p,
lung_mld, lung_v05p

4 0.213 0.274 60.58

2
ARD Regression
cross validation, 5 fold

alc_1, lung_mld, lung_v05p 3 0.219 0.276 60.01

3
Bayesian Ridge
cross validation, 5 fold

alc_1, lung_mld,
lung_v05p, lung_v10p

4 0.219 0.277 60.13

4
Linear Regression
cross validation, 5 fold

alc_1, edic 2 (5) 0.218 0.277 60.33

5
AutoML
train (75%): cross validation, 5 fold,
test (25%)

All 30

0.195
(validation)

0.201
(test score)

0.252
(validation)

0.272
(test score)

70.15
(test score)
F
rontiers in
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Models selected according to Root Mean Squared Error (RMSE) and automatic machine learning method prediction is presented. RMSE, Mean Absolute Error (MAE), Accuracy =100%−MAPE,
where MAPE – Mean Absolute Percentage Error, also known as mean absolute percentage deviation (MAPD) is shown.
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FIGURE 5

(A–J) Model performance in prediction absolute lymphocyte count (alc_nadir). Comparison of most efficient models for prediction alc_nadir. The
plots on the left show the actual values vs predicted values given by the models. The darker color applies to the top 80% of results. A perfect
regression model would display data points on the diagonal defined by predicted equal to actual values. The size of the points is related to the
residuals. The plots on the right show residual histograms. For automatic machine learning (AutoML) the values come only from the test set (25%).
The split is as follows: 75% of the set was used for training data, on which 5-fold cross-validation was again applied. This set therefore contains both
training and validation data. The results testing was based on the remaining 25% of the data set. For all other models, cross-validation with 5-fold
splits was used (all data were used for both training and testing). The final result is based on the average value obtained from the individual sets.
Frontiers in Immunology frontiersin.org09

https://doi.org/10.3389/fimmu.2024.1426635
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kuncman et al. 10.3389/fimmu.2024.1426635
bone marrow regeneration observed during irradiation, which was

assessed in patients undergoing chemoradiotherapy of the pelvic

area (46).

What is important is that different validation techniques are used

in the analyzed statistics methods. Only automated machine learning

involves a split into training and test sets. The small number of patients

is a limitation, particularly for the interpretability of machine learning

models. Training on small datasets can lead to greater variability,

making predictions less stable and more sensitive to input data

changes. In our study, we used cross-validation techniques to reduce

overfitting and enhance result reliability. We used various statistical

methods to optimally select features affecting lymphopenia, which had

not been done before. The limitation of our study arises from its

retrospective nature and the relatively small, yet considerable, number

of patients, given the stringent inclusion criteria (no initial

lymphopenia, standalone RT treatment, and RT delivered in at least

15 fractions). These criteria resulted in a cohort comprised primarily of

fragile patients, which does not fully represent the broader population

eligible for concurrent chemo-radiotherapy with consolidative immune

checkpoint inhibitors. Our analysis did not summarize late

lymphopenia due to the difficulty in its assessment in a retrospective

study (irregularity of blood parameter measurements post-

chemoradiotherapy), which may constitute a limitation of the study.

The strength of our multicenter study is that we focused

specifically on the patients undergoing RT alone, without

concurrent systemic treatment and without lymphopenia at the
Frontiers in Immunology 10
beginning of treatment. This approach aimed to minimize the

influence of chemotherapy on study endpoint as patient who

suffered from lymphopenia before RT were excluded. We selected

the more sensitive numerical variable, alc_nadir, over ctcae toxicity,

and subsequently conducted a comprehensive testing of various

statistical models and variable selection strategies, generating 600

predictive models—a scope of analysis that, to the best of our

knowledge, has never been done so comprehensively before.
5 Conclusions

The RIL was predominantly triggered by low and median RT

doses in the heart and lungs (e.g., lung_mld, lung_v05p, lung_v10p,

heart_v05p or edic), with lesser impact from bone marrow-

dependent doses. RIL was most severe in patients who had lower

initial lymphocyte counts. For patients with alc_1 values less or

equal than 2.005/mm3 and lung_v05p ≤ 51.8%, a median alc_nadir

of 0.76K/mm3 was estimated, whereas for those with lung_v05p >

51.8%, a median alc_nadir of 0.54K/mm3was estimated.
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FIGURE 6

Algorithm for prediction of absolute lymphocyte count nadir (alc_nadir). Decision tree model with decision making path, max depth=2, [alc_1,
heart_v05p, lung_v5p, lung_v10p, lung_mld] RMSE = 0.29.
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