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Single-domain antibodies and
aptamers drive new
opportunities for
neurodegenerative
disease research
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Neurodegenerative diseases (NDs) in mammals, such as Alzheimer’s disease (AD),

Parkinson’s disease (PD), and transmissible spongiform encephalopathies (TSEs),

are characterized by the accumulation of misfolded proteins in the central

nervous system (CNS). Despite the presence of these pathogenic proteins, the

immune response in affected individuals remains notably muted. Traditional

immunological strategies, particularly those reliant on monoclonal antibodies

(mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB)

crossing, andmaintaining protein stability. This has led to a burgeoning interest in

alternative immunotherapeutic avenues. Notably, single-domain antibodies (or

nanobodies) and aptamers have emerged as promising candidates, as their

reduced size facilitates high affinity antigen binding and they exhibit superior

biophysical stability compared to mAbs. Aptamers, synthetic molecules

generated from DNA or RNA ligands, present both rapid production times and

cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities

suitable for ND research and therapeutic development. Cross-seeding events

must be considered in both traditional and small-molecule-based

immunodiagnostic and therapeutic approaches, as well as subsequent

neurotoxic impacts and complications beyond protein aggregates. This review

delineates the challenges traditional immunological methods pose in ND

research and underscores the potential of nanobodies and aptamers in

advancing next-generation ND diagnostics and therapeutics.
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1 Introduction

A defining characteristic across numerous mammalian

neurodegenerative diseases (NDs) is the production and

subsequent aggregation of misfolded proteins in the central

nervous system (CNS). Classic examples include neurofibrillary

tangles (NFTs) of the tau protein observed in Alzheimer’s disease

(AD) and prion protein fibrils and plaques observed across animal

and human transmissible spongiform encephalopathies (TSEs) (1).

Despite the pathogenic nature of misfolded proteins, individuals

impacted by NDs typically display limited to no immune response.

The mammalian adaptive immune system’s reactivity is primarily

restricted to non-self or foreign molecules and pathogens, whereas

dysfunctional or nonviable proteins from self produce little to no

response (2). Insufficient immune activation represents clear

challenges when considering antibody-focused ND diagnostics

and therapeutics, which require specific binding to target

biomarkers and pathogenic proteins. Examples of diagnostic

limitations include the lack of specific antemortem immuno-

assays for Alzheimer’s Disease (AD), Parkinson’s Disease (PD),

and Chronic Traumatic Encephalopathy (CTE) and no widely

available antibodies specific to infectious conformations of TSE

prions (PrPSc). When considering ND immunotherapeutics using

traditional monoclonal antibodies (mAbs), a multitude of

challenges persist related to tissue and biophysical specific

barriers, including limitations of mAbs in crossing the blood-

brain barrier (BBB), deep tissue penetration, and maintenance of

biophysical stability. Moreover, intracellular misfolded protein

fibrils require drug-delivery systems that can solubilize and revert

to their native scaffold.

In light of these challenges, the scientific community is exploring

alternative options tomAbs for ND immunodiagnostic and therapeutic

applications. Recent developments in single-domain antibody and

aptamer research hold great promise for overcoming the limitations

of traditional antibodies, and mounting evidence indicates these

molecules can be leveraged for both diagnostic and therapeutic ND

applications. Single-domain antibodies, or nanobodies, are Ig isoforms

that lack light chain sequences, consisting of heavy-chain variable

domains (VHH) in camelids and variable new antigen receptors

(VNARs) in cartilaginous fishes. Nanobodies are substantially smaller

than traditional mAbs (i.e., shark nanobody ~12-15 kD vs. mammalian

IgG ~150 kD) and have soluble variable domains (3). A growing body

of research has focused on leveraging nanobodies for a variety of

applications, including ND diagnostics and therapeutics (4–9). In

parallel, encompassing qualities attributed to nanobodies, aptamers

are synthetic molecules generated by DNA or RNA ligands with low

production time and costs (10, 11). Both molecules have intrinsic

properties that are attractive for ND research and clinical applications.

In this review, we first highlight the limitations of traditional

immunology-based approaches to ND research. We then introduce

nanobodies, aptamers, and the ND-associated misfolded proteins

that can be targeted using these molecules to develop next-

generation ND diagnostics and therapeutics.
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2 The challenge of “The Self”:
limitations of the mammalian adaptive
immune system for pathogenetic
protein recognition

The mammalian immune system is a highly complex and

proficient network of organs, cells, and molecules with the sole

purpose of defending the host from harmful invaders, but what if

the invader originates from the host itself? The innate and adaptive

mammalian immune systems are highly adept at protecting the

host from foreign molecules by generating incredibly diverse

antibody repertoires for a vast array of encountered pathogens.

There are many ways to activate the innate immune response; for

example, the detection of foreign pathogens by antigen-presenting

cells (APCs) recruits neutrophils that induce proinflammatory

chemokines and cytokines (12, 13). Adaptive immunity is

initiated upon antigen uptake of APCs, which then migrate to

lymph nodes and present to naive T cells (14). Soluble antigen

exposure can induce antibody production from naive B cells, many

of which are initially lower affinity immunoglobulin isoforms (i.e.,

IgM). Further interactions with antigen and activated T cells can

induce class switching and somatic hypermutation, resulting in

affinity maturation that leads to antibodies with increased antigen

binding capabilities (15).

The immune system can leverage a multitude of strategies to fight

off both foreign pathogens and damaging or dysfunctional self-

molecules, such as pathogen-associated molecular patterns (PAMPs)

and danger-associated molecular patterns (DAMPs), respectively (16).

However, there are several scenarios in which immune response

pathways fail to protect the host. A portion of the immune system

focuses on eliminating self-reactive lymphocytes to prevent

autoimmunity (17). Various factors can induce autoimmunity,

including inflammation, genetics, environmental exposure, and

apoptosis. Chronic inflammation and apoptosis can result from

cellular or proteomic dysfunction associated with cancer and NDs,

where the enhanced detection of DAMPs induces overreactivity to

autoantigens (18). This overreactivity or hypersensitivity to

autoantigens can limit the ability to detect and respond to the actual

problem while facilitating disease progression. Self-tolerant individuals

with increased exposure to DAMPs from NDs go vastly undetected,

leading to prolonged pre-clinical periods without symptom

presentation while also facilitating disease progression (19).

The protein-only hypothesis of prion disease, proposed by Dr.

Stanley Prusiner in 1982, was a fundamental departure from

traditional infectious disease biology, postulating infectious

proteins (i.e., prions), not bacterial or viral agents, could cause

disease (20). Most NDs are classified as prion or prion-like diseases,

with neuropathogenic features arising from cascading protein-

misfolding events. Prion diseases (i.e., BSE, CJD, scrapie, etc.)

flout biological norms, with identical amino acid sequences

between healthy and infectious protein conformations that thwart

any sustained or specific immune response against PrPSc. Notably, a
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humoral immune response to misfolded proteins is mainly absent

for many NDs, especially those of the CNS (21, 22). This is not

surprising, given that most self-reactive B and T lymphocytes are

eliminated before exiting to the periphery, and those that do cannot

recognize misfolded proteins, given their tendency to be insoluble

(23). B cell receptors may recognize and bind novel PrPSc epitopes

due to their ability to recognize both linear and discontinuous

antigenic epitopes. However, this initial B cell response would be

muted due to the inability to break down insoluble proteins for

presentation on MHCII to facilitate CD4+ T cell help (24). In

addition, APCs might uptake misfolded prion proteins but

cannot digest infectious variants that form a protease-resistant

hydrophobic core (25). If these proteins cannot be digested, they

cannot be presented on MHC molecules, leading to a lack of T cell

activation and subsequent help for high-affinity antibody

production (26–30). Moreover, accumulating misfolded proteins

can pose problems by blocking pathways in APCs, impeding or

preventing their ability to perform regular tasks.

Another challenge of the mammalian immune system’s response

to ND is the sheer size of traditional antibodies (i.e., ~ 150 to 950 kD

for IgG and IgM) (31). Despite the immune system’s difficulty in

producing high-affinity mAbs specific to ND proteins, there are

methods and animal models to overcome these hurdles for use in

ND diagnostics and therapeutics. However, the size and insolubility

of mAbs prohibit transcytosis, a process where molecules are

endocytosed and deposited into a new surface across the plasma

membrane, limiting deep-tissue penetration and passage into the

brain (32–34). For passage across the BBB, mAbs are restricted to

specific Fcɣ or neonatal Fc receptors, limiting the amount of mAbs

delivered to the brain and correlate with both the low percentage of

mAb drug delivery and extremely high costs (35, 36). More

challenges are presented as most infectious proteins form a tightly

bound hydrophobic core while retaining identical amino acid

sequences to their healthy conformation, creating specificity

limitations in mAbs (37). Consequently, mAbs that bind to specific

yet identical sites within the functional and dysfunctional self-

proteins cannot discern between the healthy and infectious protein

isoforms (38). While this underscores limitations in the mammalian

immune response and effective therapeutics, it also has encouraged

unconventional immunodiagnostic and therapeutic solutions.

Physiological barrier structures in most animals are complex

and difficult to surpass for a reason, particularly the blood-brain

barrier. Effective drug delivery to the brain has more challenges than

size for passing the BBB itself. Once past the barrier, many factors

must be considered for a successful therapeutic (39). Researchers

have experienced limitations related to vesicles for intracellular

transport, stability in pH and electrical charge changes, renal

clearance rate, and more (40–42). For the last 50 years,

immunology and engineering research has tried to overcome size,

specificity, and biophysical stability concerns by producing

fragments with solely the antigen-binding region. However, doing

so significantly reduces stability and affinity (43–45). Strategies to

produce ND-specific mAbs mainly require knock-out bioassay

models, which can be useful but costly (46, 47). The production

cost of mAbs themselves after identification and isolation is

exceedingly high, limiting accessibility for research, diagnostics,
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and therapeutics (3, 48). Moreover, mAb biophysical stability varies

in mammalian or monoclonal models, impacting its specificity and

affinity, resulting in a loss of reliability in diagnostics and treatments

(49, 50). BBB breakdown has been well recorded in nearly all NDs,

resulting in microhemorrhages from endothelial damage and

capillary leakage, impaired glucose transport and drug regulation,

and immune cell infiltration (51–53). There is an increasing need to

address other neuropathological hallmarks of ND, like massive

neuronal loss and neuroinflammation; therapeutics not sensitive

to this have a higher probability of causing further damage (54–56).

Moreover, pre-clinical studies lack endpoints specific to

immunotoxicity, imperative safety aspects, and limitations of

animal models for predicting toxicity (57, 58).

Despite the observations above, other studies have shown aspects

of the immune system that restrict and abet prion replication (59). In

diseases such as Chronic Wasting Disease (CWD) in North

American cervids, early prion replication within lymphoid tissues

implicates a significant role of the lymphoreticular system (60, 61).

Moreover, proteins in some NDs begin as soluble molecules, like

amyloid-beta monomers, with recent findings showing a correlation

between the CNS and the adaptive immune response (62–65).

Another group discovered memory B cells displaying IgG reactivity

to the disease-associated hyperphosphorylated isoform of tau (66).

These findings suggest that the immune system might play a more

significant role in NDs than originally hypothesized (67).
3 Single-domain antibodies

In the 1990s, a new immunogenic class of variable-heavy-chain-

only antibodies (VHH) was discovered in camelids, opening the

door to specific, high-affinity single-domain binding regions called

nanobodies (Nbs) (68). The absence of the first constant domain

within the heavy and light chains results in a smaller molecular

mass than mAbs of around 80-95 kDa (69). Camelid VHH Nbs

consists of two constant domains, a hinge region and a variable

heavy chain domain, with antigen-binding capabilities that do not

require domain pairing (70, 71). VHHs have highly conserved

variable domain regions called complementarity-determining

regions (CDR), the central entity involved with antigen binding

(72). Predominant binding in the CDR3 region enables epitope

binding in regions unreachable or concealed to mAbs.

Another heavy-chain-only new antigen receptor Ig subtype,

variable new antigen receptors (VNARs), was discovered in

cartilaginous fishes (73). VNARs are composed of two highly

soluble variable domains that mediate antigen-binding interactions.

Each independent variable domain is around 12 kDa, significantly

smaller than mAbs (74, 75). This characteristic, along with their

intrinsic stability, solubility, and high affinity for their targets, makes

VNARs coveted for diagnostics and therapeutics and have coined a

“silver bullet” reputation (3). VHHs and VNARs can withstand

extreme temperatures, pH, alkaline and enzymatic environments,

and pressure, making them suitable for novel therapeutic applications

(71, 76). Moreover, cartilaginous fishes have one of the oldest

adaptive immune systems in the world and lack many highly

conserved mammalian immunity genes. For example, sharks can
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produce robust immune responses upon immunization of the

natively folded or misfolded mammalian proteins associated with

neurodegeneration (77). Multiple immunizations over four months

induce a secondary immune response and affinity maturation,

producing highly specific VNARs (78, 79).

Nanobody research has resulted in significant progress in the

areas where mAbs are limited; however, restricted access to the

animal models and potential immunotoxic effects of a non-human

model has halted progress on the utility of nanobodies for ND

research (3, 80). Generation of single-domain antibodies from naïve

libraries, or amplification of the VNAR or VHH repertoire, results

in lower affinity and broader specificity to antigens than immunized

animals (81). Antibody production and validation are extremely

time and money-consuming processes, especially for ND-specific

research. Significant advancements have been made in developing

synthetic immunogenic molecules or chemical antibodies that

leverage short nucleic acid sequences for antigen detection to

overcome time and expense issues (10, 11).
4 Aptamers

Aptamers are high-affinity nucleic acid ligands genetically

scaffolded by selecting functional RNA molecules into short

sequences of oligonucleotides in vitro, termed SELEX (10, 11).

Approximately 5-15 kDa, aptamers consist of 20 to 100 nucleic acid

residues and can be generated to target a particular region of interest

rather than an entire molecule. Aptamers have many beneficial

characteristics that mirror single-domain antibodies, including

specificity, biophysical stability, and small size (82). Furthermore,

aptamers can return to their native state after being denatured,

making them advantageous tools for diagnostic and therapeutic

applications. Unlike mAb manufacturing, aptamer production is not

prone to contamination, is highly economical, and is easily scalable in

that no model organisms or cell lines are required (83).

Both Ig isotypes in camelids and cartilaginous fish lack light

chains, reducing their size to around 1/10th of mAbs (3, 72).

Aptamers can be as small as 1/15th of mAbs, enabling potential

BBB passage by size and solubility (83). Their small size allows high

biodistribution within the body and intracellular robustness, but it

also means rapid renal clearance, presenting a significant problem

for chronic disorders like NDs. However, a simple solution is fusion

to the Fc-region, allowing FcRn-mediated recycling in endothelial

cells along the BBB (84).

Despite highly advantageous qualities, clinical ND trials for Nbs

and aptamers are currently limited (85, 86). Unmodified aptamers

that have progressed to clinical trials generally led to poor results

from rapid clearance and patient instability (87). As there have been

well-documented strategies to bypass this issue, including albumin,

polymeric materials, and conjugation to the Fc domain, researchers

should thoroughly assess the aptamer’s biophysical dynamics (88,

89). Despite this, there are concerns about how viable and safe these

non-humanized models will work in patients, with some clinical

trials being pulled due to FDA concerns (38). Further concerns have

been expressed that aptamers’ ability to produce wanted outcomes

in humanized models relies on the model they were created in and
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can result in unwanted neurotoxicity from aptamers interacting

with complexes and proteins not previously addressed (90, 91).
5 Immunodiagnostic and
therapeutic targets

Gold standard techniques involve labor-intensive animal

models and immunodiagnostics restricted to postmortem tissues,

presenting comparable barriers between NDs. The prion field has

significantly advanced the functionality of transgenic (Tg) mice and

medical translation to recapitulate natural ND progression (92–94).

However, other NDs that involve heterogeneous protein species, i.e.,

tau and ɑ-synuclein, lack models and prion strains with essential

characteristics of clinical disease presentation. While this presents

many problems, reliance on pre-formed fibrils (PFFs) that do not

mimic human tau or ɑ-synuclein prion strains has resulted in

variable therapeutic efficacy once translated to human trials.

Moreover, available anti-amyloid therapeutics are expensive and

lack beneficial evidence, likely correlated with variance from Tg

models and PFFs that do not faithfully recapitulate natural human

disease (95, 96).

Current federally approved human and animal diagnostics are

limited by the lower sensitivity of mAbs, requiring tissues with high

concentrations of target proteins confined to the CNS and impeding

early detection opportunities (97, 98). The hindrance of

postmortem samples has resulted in vastly intricate, costly, and

time-consuming differential diagnosis and symptom presentation

methodologies (99). Despite decades of research focused on

diagnostics, prevention, and therapeutics, 1 in 5 patients with

dementia-like diseases are misdiagnosed, and approximately 20%

are on inappropriate medications (100). As these conditions are

substantially time-sensitive, with symptom presentation arising in

the late stages of the disease, there is an increasing need for timelier

and more specific antemortem diagnostics (101, 102).

Many NDs share massive neuronal loss as a feature of disease,

leading to similar, non-specific clinical phenotypes that fail to

elicit an immune response, making prevention, intervention, and

treatment strategies nearly impossible. Prion-like self-templating

propagation mechanisms have been identified in other NDs like

Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD),

Chronic Traumatic Encephalopathy (CTE), Amyotrophic Lateral

Sclerosis (ALS), Dementia with Lewy Bodies (DLB), and Parkinson’s

Disease (PD) (103). The coexistence of various misfolded proteins and

conditions has led to elusive and cloudy diagnoses, implying probable

cross-over betweenNDs (Figure 1). Misfolding events for NDs typically

occur in the neocortical or entorhinal cortices in the temporal lobe,

resulting in co-conditions from probable cross-seeding events (110,

111) (Figures 2, 3, Supplementary Figure S1).

Diagnostic and therapeutic strategies for NDs based on

traditional approaches have largely failed to provide healthcare

breakthroughs. In light of recent advancements in nanobody and

aptamer research and development, we will review key protein targets

classified by major CNS protein deposits observed in NDs (reviewed

in 136–142). The following proteins dually represent biomarkers and

therapeutic targets of NDs (Figure 1 and Supplementary Table S1).
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5.1 The mammalian prion protein in
prion diseases

Prion Diseases, or Transmissible Spongiform Encephalopathies

(TSEs), are rapidly progressive neurodegenerative diseases of

mammals with a 100% fatality rate. TSEs of global importance

include Creutzfeldt-Jakob Disease (CJD) in humans, CWD in
Frontiers in Immunology 05
cervids, and Bovine Spongiform Encephalopathy (BSE) in cattle

(143). The pathogenic agent associated with TSEs derives from the

highly conserved major mammalian prion protein (PrP) expressed

by the PRNP gene. PrPC is a glycophosphatidylinositol anchored

protein that is abundantly expressed on the outer membrane of cells

within the CNS and immune system (144, 145). The normal PrPC

isoform comprises an unstructured N-terminus, a conserved middle
FIGURE 2

(Left) Lateral View of Human Brain with Floating Limbic and Gray Matter Structures. (Right) Midsagittal View of Human Brain with Cross-Section of
Midbrain. Colors correspond to regions within Figure 3. Created with BioRender.com.
FIGURE 1

Key Immunodiagnostic and Therapeutic Targets by Associated Neurodegenerative Disease. Checkmarks indicate the presence of corresponding
protein aggregates in respective ND. Numbered annotations correlate to candidate single-domain antibodies (Nbs) and aptamers (Apt), provided in
Supplementary Table S1. All protein structures are human-derived except PrPSc are 263K prions from Tg7 mice. pTau PDB code - 5O3L (104).
Amyloid-b PDB code - 5OQV (105). ɑ-Synuclein PDB code - 6H6B (106). PrPSc PDB code - 7LNA (107). CTE-pTau PDB code - 6NWP (108). TDP-43
PDB code - 7KWZ (109). Created with BioRender.com.
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region, and a globular C-domain rich in alpha helices and minimal

beta-sheet content (146, 147). The pathogenic PrPSc isoform lacks

alpha-helical structures but is rich with high beta-sheet content

primarily constituted in the hydrophobic core (148). Prion strain

diversity has created a spectrum of clinical presentations and

pathologic features, i.e., variant CJD (vCJD) is highly distinctive

compared to classical or sporadic CJD (sCJD) and other NDs (149).

The median age onset for vCJD is late 20s, with long incubation

periods and early presentation of psychiatric symptoms, whereas

sCJD has a median age onset of 58 years old, a shorter clinical

duration, and early onset of neurological signs (112).

The generation of PrP-specific antibodies in the late 1990s into

the 2000s identified two concerns. First, there was an inability to
Frontiers in Immunology 06
create mAbs specific to the infectious PrPSc isoform, which resulted

in a wide variety of mAbs seeking different epitopes using Prnp0/0

mice (150, 151). Second, an influx of mAbs induced neurotoxicity in

PrPSc-infected animal models associated with the flexible tail of the

N-terminus (FTgpi-expressing and tga20 mice) (152, 153).

Currently, PRN100 is the only anti-PrPC mAb to reach human

clinical trials, where signs of PrPSc clearance were potentially

attributed to the mAb treatment. Abnormalities in white cell

counts, protein levels, and postmortem neuropathology findings

were ascribed to the rapid clearance of PrP deposits. However, three

patients developed bacterial infections during treatment, resulting

in the death of two patients. Potentially adverse findings, insufficient

data, and clinical significance suggest the need to identify mAb-
FIGURE 3

Anatomical Brain and Brainstem Regions by Neurodegenerative Disease (ND) (Top Row) and Misfolded Protein Aggregate Deposits (see Figure 1).
Separate associated anatomical regions of each ND and misfolded protein aggregate deposits are visualized in Supplementary Figure S1. Alzheimer’s
Disease (AD), Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), Chronic Traumatic Encephalopathy (CTE), variant Creutzfeldt-
Jakob Disease (vCJD), Parkinson’s Disease (PD), Lewy Body Disease (DLB). pTau (t), Amyloid-b (Ab), ɑ-Synuclein (ɑ-syn), CTE-pTau (CTE-t) (110, 112–
135). Created with BioRender.com.
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associated neuro or immunotoxic complications and alternative

drug delivery models (57, 154).

Various single-domain antibodies have been generated to target

PrP, including VHH nanobodies, Nb484, and PrioV3. In vitro protein

crystallization of human PrP in complex with Nb484 inhibited PrPSc

propagation by competitively binding the hydrophobic region of the

infectious PrP isoform (155). These data unequivocally pointed

toward the role of the hydrophobic region in PrPSc formation and

provided the first documentation of an epitope associated with

infectivity (4). PrioV3 exhibited migration across the BBB and

negated prion replication in mouse neuroblastoma cell lines (156).

Other PrioV3 studies using FVB/N mice likely leads to prion

infection tolerance due to the PRNP species barrier between mice

and humans (157, 158). Furthermore, camelids express the highly

conserved mammalian prion protein; thus, VHHs are likely to

develop tolerance to PrPSc (3). The lack of follow-up studies and

preferential binding to the c-terminus in both isoforms suggests

PrioV3 might be more suited for diagnostic applications.

RNA-based PrP aptamers or synthetic nucleic acid ligands have

been produced specific to infectious isoform PrPSc in vitro,

including DP7, that reduces PrPSc production in 3F4-ScN2a cell

lines, SAF-93 primarily utilized in sandwich SPR detection assays,

and R24 that displays inhibition to the conversion of infectious PrP

(159–161). Of these, R24 is an unimolecular structure of two G-

quadruplex R12 aptamers that bind conjointly, allowing stability

upon interaction with prion-infected GT1-7 cells to block the

infectious conversion of PrP (161). The g-quadruplex structure

binds to PrP similarly to mRNA, allowing insight into how

messenger RNA might be involved with protein misfolding (162).

R24 displayed one of the lowest recorded IC50 values and highest

anti-prion ability to date within prion-infected cell based assays

among all anti-prion materials (Nbs, RNA/DNA aptamers, etc.) at

100 nM, providing a novel inhibition mechanism and insight into

prion pathology and potential therapeutics (139, 161).

Despite the lack of clinical trials for potential therapeutics in

prion disease, prion research insights have informed the entire ND

field. Molecules specific to infectious PrPSc, such as VHH Nb484 and

RNA-based aptamer R24, represent significant advancements given

that both display the ability to inhibit PrPC to PrPSc conversion in

vitro. These studies have the potential to inform future therapeutics.
5.2 Amyloid-beta in Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common age-associated

ND characterized by dementia, cognitive decline, and synaptopathy

(110). Although numerous mechanisms have been proposed for the

origins of AD, the majority of research focuses on the amyloid

hypothesis, which states the misfolding of extracellular beta-

amyloid (Ab) aggregates into plaques causes neurodegeneration

and, therefore, is the hallmark of AD (163). The hypothesis

identified Ab as the causative agent for AD; however, key AD

neuropathologies include hyperphosphorylated tau NFTs (164, 165).

Maintenance of Ab involves cleavage of the amyloid precursor

protein (APP), and improper splicing gives rise to neurotoxic

products that induce neurological dysfunction and the formation
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of fibrils (166, 167). Monomers of Ab are soluble, presenting an

opportunity to create antibodies; however, the misfolding of

peptides results in the formation of multiple neurotoxic Ab
peptide species (i.e., oligomers, protofibrils, fibrils) with non-

conventional epitopes. Current mAbs only target the healthy Ab
peptides and are unable to target all neurotoxic Ab species in AD

patients, preventing successful and reliable detection or potential

therapeutics (168–170).

Monoclonal anti-amyloid drugs ( i .e . , Donanemab,

Aducanumab, Lecanemab) have consistently progressed through

human clinical trials without adequate assessment of their impact

on the BBB’s structural integrity or potential adverse reactions

(171–173). Donanemab, approved by the FDA in 2024, is a mAb

specific to the post-translationally modified N-terminal truncated

form of Ab and is thereby selective to amyloid plaques. Early studies

indicate that Donanemab reduces amyloid plaque burden with a

slowing of cognitive decline in early-stage Alzheimer’s patients.

However, targeting insoluble Ab peptide species through several

previously FDA-approved mAb therapeutics has thus far yielded

limited improvements in patient quality of life and the spectrum of

neurodegenerative disease-associated deficits. The lack of clarity in

the current definition of clinical efficiency, and potential for

emerging neurotoxic complications when using mAb-based

therapeutics, underscores the need to better define these traits for

ND-associated immunotherapeutics (52, 171, 174, 175).

Single-domain antibodies have been found to have the

selectivity for the neurotoxic oligomeric peptides without negative

consequences; however, there has been no progression to clinical

trials (176). Multiple VHHs have facilitated the detection of the

various neurotoxic Ab peptide species, like VHH B10. Binding

confirmation of VHH B10 in vitro to mature fibrils and protofibrils,

with the selective avoidance of soluble or nontoxic peptides,

monomers, and oligomers, is highly encouraging. However, VHH

B10 could not reverse preformed fibrils and weakly bound to

dissolved or disaggregated Ab peptide and oligomers (177). Other

single-domain antibodies that selectively bind to monomers and

small oligomers have been applicable as detection tools (178).

Another research group developed VHHs specific to Ab by

incorporating peptide segments into the variable domains within

CDRs, allowing a bridge for overcoming low substoichiometric

concentrations in samples outside the CNS (6). Follow up studies

used this technique to produce a pool of VHHs with grafted motifs

of amyloidogenic peptides that eliminate antibody cross-reactivity

to other amyloidgenic proteins and neutralize toxicity in various Ab
conformers in vitro (179). Recent VHH studies are instead targeting

soluble Ab oligomers (SAbOs), given evidence of SAbOs serving as
an intermediate between monomers and neurotoxic Ab peptide

species. Investigative work of VHH Nb E3 selectively binding to

discontinuous epitopes on SAbOs and Ab plaques within AD-

specific Tg(5xFAD) mice. VHH E3 bound to SAbOs and Ab
plaques are characteristically and spatially distinct within AD

mouse models, providing evidence of E3’s capacity for early AD

detection and potential therapeutic applications (180).

Aptamers have allowed highly sensitive detection of early-onset

Alzheimer’s (181), while others have displayed inhibitory effects

with high sensitivity but low selectivity (182, 183). BACE1 is a B-
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secretase that is elevated in AD due to being the key facilitating

factor behind the cleavage of the APP (184). RNA aptamers S10 and

TH14 have been developed to interact with the short cytoplasmic

tail of the BACE1 in vitro (185). Generation of more aptamers

modulated and inhibited BACE1 activity, and lowered Ab
concentrations in cell-free and M17 neuroblastoma cell models

(186, 187). Moreover, VHHs specific to BACE1 have also been of

therapeutic interest, leveraging adeno-associated virus-based

vectors for BBB crossing. Anti-BACE1 VHH-B9 demonstrates a

high affinity for BACE1 and potential pre-clinical efficiency in

APPNL-G-F mouse models, given a single dose relieved AD cognitive

deficits and Ab pathology over 12 months (188).

While the dropout rate of mAb therapeutics in AD clinical trials

continues to grow, such studies remain valuable because they

provide critical baseline data for scientists to consider. mAb

treatments targeting soluble Ab neurotoxic species, such as

Lecanemab, show ARIA (amyloid-related imaging abnormalities)

scores comparable to placebo and alleviate cognitive decline, albeit

with modest efficiency (175). Haynes et al., 2024 provide further

evidence that small molecules targeting soluble neurotoxic peptides

in neurodegenerative diseases could facilitate higher clinical efficacy

and improve the quality of life in early-stage neurodegenerative

disease (188). Advancements using grafted amyloid motifs into

VHH gammabodies increase specificity and reduce toxicity,

providing a method for single-domain antibodies specific to other

ND proteins. On the other hand, aptamers and VHHs that target

BACE1 inhibit interaction and the cleavage of APP, displaying

therapeutic potential and, at the same time, the importance of

identifying non-amyloid targets.
5.3 Tauopathies and other
associated proteinopathies

The microtubule-associated protein tau is a family of naturally

soluble proteins that promote microtubule assembly expressed by

the MAPT gene in the human brain (189). Abnormal or

hyperphosphorylation of tau (pTau) self-assembled into paired-

helical filaments (PHF-tau) and neurofibrillary tangles (NFTs),

result in the pathology behind many tauopathies, including AD

(190, 191). Six tau isoforms are present within the brain by

alternative splicing in the MAPT gene. Differences in isoforms

include the presence or absence of two N-terminal inserts and

three or four imperfect repeat regions in the C-terminus within the

microtubule-binding domain (192). Variations of pTau have clinical

and neuropathological heterogeneity in other tauopathies like FTD,

CTE, and DLB. The wide array of NDs containing pTau underlines

the idea of cross-seeding into comorbid neuropathological conditions

and conditions not previously considered to involve pTau (113).

Examples include subtypes of ALS, PD, and the use of CSF pTau

levels as a biomarker for CJD (114, 193, 194).

CTE is one of the greatest mysteries within ND research,

characterized as progressive neurodegeneration from mild traumatic

brain injuries (195, 196). In a study of neuropathologically confirmed

CTE cases, ~35% had additional comorbid neuropathological findings,
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protein (TDP-43) inclusions (115, 197). The vast diversity of clinical

and pathological signs pointed toward a novel CTE-specific scaffold

distinct from those in AD patients (108, 198). Heterogeneity within the

spectra of FTD and ALS patients presents similar issues with clinical

and neuropathological variability (116, 117) (Figures 1, 3).

Heterogeneity in pTau inclusions has presented difficulties in

discerning what epitopes are significant for diagnostics and

potential therapeutics (199). One of the antibodies routinely used

for pTau detection is PHF-tau-specific mAb AT8, despite its general

instability (200). Additional anti-tau mAbs targeted the N-terminus

of extracellular tau, but phase II human clinical trials resulted in

insignificant findings (201–203). On the other end of the spectra,

recent mAb studies selected the C-terminus of TDP-43 as an

epitope, displaying decreased aggregation and neurotoxic effects

of intracellular inclusions. Targeting the C-terminus allowed

clearance of misfolded aggregates and avoided RNA recognition

motifs associated with neurotoxicity and neuron loss in ALS (204).

Antibody fragments have facilitated the detection of the various

isoforms and species of pTau with multiple VHHs developed

against pTau. Discovery work exploring BBB-permeable probes

has allowed the development of VHHs to label amyloid deposits

and NFTs (7). Tau-specific VHH PrioAD120 was created by

immunization of alpacas using AD samples; however, it is one of

two Nbs without brain diffusion results in FVB/N mice (157).

Recent studies identified a Tau VHH-Fc fusion protein that

selectively binds to fibrillar Tau aggregates rather than soluble

Tau monomers. t-Nb-Fc fusion proteins display low non-specific

binding and high specificity comparable to FDA-approved anti-t
mAb Elotuzumab in vitro using P301S Tg and wild-type (WT) mice

and human brain samples. The tau conformational nanobody also

demonstrates higher biophysical stability and specificity than

conformational mAbs currently employed in clinical use (9).

Explorative studies using single-stranded DNA to identify tau-

specific aptamers displayed that tau can bind to both ssDNA and

double-stranded DNA. High-affinity and specificity tau-ssDNA

interactions are sequence specific and promote dsDNA

dissociation, suggesting ssDNA aptamers may be ideal candidates

in tau detection and treatments (205). This has led to a wave of highly

specific ssDNA aptamers able to detect, inhibit, against, and protect

the brain from the neurotoxic impacts of pTau (140, 206, 207).

Furthermore, aptamers have been used to describe RNA sequences

among comorbid NDs like ALS and FTD patients utilizing an RNA

aptamer against full-length TDP-43 (208). Continued studies using

this aptamer uncovered mechanism insights of RNA sequences

shown to destroy aggregation of TDP-43 in vitro (209).

The increased prevalence of comorbidity and potential for

protein cross-seeding is widely recorded in tauopathies and

underscores the need to address more than one protein target in

a candidate therapeutic (Figures 1, 3). VHH t-Nb-Fc fusion

proteins reveal how single-domain antibodies can overcome

reactivity, specificity, and stability limitations in drug delivery

applications. Moreover, using aptamers as discovery molecules

has shed light on ssDNA interactions with tau and RNA

sequences that can be used to dissociate TDP-43 aggregates.
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5.4 Synucleinopathies

Hallmark clinical presentation of Dementia with Lewy Bodies

(DLB) is intracellular fibrillar Lewy bodies composed of a-synuclein
(a-syn) or Lewy neurite aggregates causing loss of dopaminergic

neurons resulting in severe motor impairment. Core clinical features

are variations in cognitive function, particularly in attention and

alertness (118), as well as inconsistencies in behavior and

hallucination. Parkinson’s disease (PD) is attributed to specific

movement clinical signs called parkinsonism, which defines

bradykinesia with hypertonia, spasticity, and tremors. However, DLB

can resemble AD, and it can be challenging to differentiate between PD

in clinical scenarios due to pathogenic heterogeneity (Figure 3). DLB

typically has minimal dopaminergic uptake in the caudate and

putamen compared to AD and healthy patients and retention of the

medial temporal lobe, resulting in diagnosis primarily from

distinguishable clinical signs and associated patterns in atrophy (210).

The intracellular nature of Lewy neurites has proposed a tricky

hurdle for detection, disaggregation, clearance, and potential

therapeutics. Synuclein studies heavily rely on PFFs in WT mice

due to the inability to produce human synuclein prion pathology in

DLB models. Other models using oligodendrocyte-specific

promoters to express WT human a-syn (MBP1, PDGF, CNP

mice) develop pathology over varied time points (211). While

these models can clarify a-syn function, consequential impacts on

early development hinder clinical relevance in therapeutic

applications (212). Structural differences in PFFs to natural

strains induce distinct neurobiological properties, and synthetic

PFFs fail to recapitulate natural human disease (213, 214). Despite

this, Nbs and aptamers have identified novel a-syn mechanisms,

diagnostics, and potential therapeutic targets.

Researchers leveraged nanobody libraries to create VHHs specific

for a-syn, including grafting various monomers into VHH sequences

that display neutralization potency and reduce a-syn aggregation in

vitro (8). Despite the inability to slow fibril formation, NMR

spectrometry studies of NbSyn2 displays fibril interaction without

inducing structural changes via binding to the last four residues

within the C-terminus (8, 215). Other VHHs fused to a proteasomal

targeting PEST motif increased solubility and clearance of a-syn
using multiple cell culture models in situ, reducing the toxicity of

aggregates (216). Further in vivo studies using VHHs-PEST exhibited

increased clearance in Sprague-Dawley rats by targeting a-syn
monomers but did not abrogate prion spreading and neurotoxicity

(217). VHH PFFNB2 prevented neurotoxicity and prion spreading by

selective targeting of a-syn fibrils in HEK293T cell lines anda-syn Tg
mice, PAC-Tg(SNCAWT), advancing the therapeutic development

of PD (5). Ossinax, a biotechnology company, aims to facilitate drug

transport across the BBB by a VNAR specific to transferrin receptor 1

(TfR1) prevalent on brain endothelial cells. Fusion of VNAR TXB4 to

a TrkB agonist antibody, a therapeutic target for PD, enabled brain

protection leveraging the VNAR TXB4-TfR1 brain transport shuttle

in BLAB/c mice (218).

Aptamer development began with engineered single-chain Fv

antibody VH14 developed to target the non-amyloid component of

the monomeric a-syn. While having the highest affinity for its target,

it did not prevent cytotoxicity in vitro (219). Further aptamer
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exploration of M5-15 targeting both a-syn monomers and

oligomers with higher binding affinity to oligomers allows a highly

sensitive method for the detection of PD (220, 221). DNA aptamers

F5R1 and F5R inhibited aggregation in vitro and suppressed oxidative

stress associated with Lewy neurites in mitochondria (222, 223). Later

studies showed their ability to rescue Lewy neurites and reduce

aggregates, improving motor function in mouse models (224).

Increased drug efficacy studies aiming to alleviate Parkinsonism

symptoms continue to highlight the need for models and prion

strains that faithfully recapitulate natural disease progression and

presentation. Single-domain antibodies have facilitated promising

findings, including VHH PFFNB2 preventing prion spreading by

selective targeting of a-syn fibrils and VNARs that shuttle agonist

antibodies across the BBB. Finally, aptamers have provided insights

into neuropathological mechanisms of synucleinopathies while

addressing other possible cytotoxic impacts of Lewy neurites when

targeting aggregates.
6 Conclusion

Significant limitations surround traditional mAb-based

diagnostic and therapeutic approaches to NDs. When considering

potential immunodiagnostic and therapeutic protein targets, several

NDs involve multiple endogenous misfolded proteins (Figure 1), with

a growing body of evidence suggesting that cross-seeding of protein

species plays a role in disease progression (Figures 2, 3). This

observation indicates that future breakthroughs in the detection

and prevention of ND must identify key protein biomarkers during

the earliest stages of disease and mechanisms to prevent protein

misfolding cascades. Single-domain antibodies and aptamers can

bind to epitopes hidden away or concealed within misfolded forms

and protect the structural integrity of the BBB. These molecules can

be employed together, creating a powerful diagnostic tool for

multifaceted conditions while addressing more than one protein.

We posit that single-domain antibodies and aptamers have great

potential to address current gaps in ND diagnostics and therapeutics.
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