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Single-cell transcriptomic
analysis identifies downregulated
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Introduction: Glioma, a prevalent and deadly brain tumor, is marked by

significant cellular heterogeneity and metabolic alterations. However, the

comprehensive cell-of-origin and metabolic landscape in high-grade

(Glioblastoma Multiforme, WHO grade IV) and low-grade (Oligoastrocytoma,

WHO grade II) gliomas remains elusive.

Methods: In this study, we undertook single-cell transcriptome sequencing of

these glioma grades to elucidate their cellular and metabolic distinctions.

Following the identification of cell types, we compared metabolic pathway

activities and gene expressions between high-grade and low-grade gliomas.

Results: Notably, astrocytes and oligodendrocyte progenitor cells (OPCs)

exhibited the most substantial differences in both metabolic pathways and

gene expression, indicative of their distinct origins. The comprehensive analysis

identified the most altered metabolic pathways (MCPs) and genes across all cell

types, which were further validated against TCGA and CGGA datasets for

clinical relevance.

Discussion: Crucially, the metabolic enzyme phosphodiesterase 8B (PDE8B) was

found to be exclusively expressed and progressively downregulated in astrocytes
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and OPCs in higher-grade gliomas. This decreased expression identifies PDE8B

as a metabolism-related oncogene in IDH-mutant glioma, marking its dual role

as both a protective marker for glioma grading and prognosis and as a facilitator

in glioma progression.
KEYWORDS

oligoastrocytoma, glioblastoma multiforme, cell-of-origin, metabolism, pathways,
clinical significance, phosphodiesterase 8B (PDE8B)
1 Introduction

Glioma stands as one of the most prevalent and lethal brain

tumors, distinguished by significant cellular, genetic, epigenetic,

and environmental heterogeneities (1, 2). Despite considerable

advancements in diagnostics and therapies including surgery,

radiotherapy, chemotherapy, and immunotherapy, gliomas

remain incurable and are associated with high mortality rates (3).

Biologically, gliomas predominantly originate from neural stem

cells (NSCs) (4–8), NSC-derived astrocytes (9) or oligodendrocyte

precursor cells (OPCs) (10–13), accounting for about 80% of

malignant central nervous system tumors. The World Health

Organization (WHO) classifies gliomas into four grades (I–IV)

(14), where grades III (anaplastic glioma) and IV (glioblastoma

multiforme, GBM) are high-grade (HG), and grade II typically

corresponds to low-grade (LG) glioma (15). Understanding the

molecular underpinnings across different glioma grades is crucial

for identifying novel therapeutic targets.

Altered cellular metabolism is recognized as a hallmark of gliomas

(16, 17). In recent decades, research has concentrated on the metabolism

of glucose in cancer cells, with targeting theWarburg effect emerging as a

novel concept for glioma treatment (18). Additionally, shifts in lipids

(19–21), amino acids (22, 23) as well as other metabolites (24–26)

metabolisms in gliomas are drawing increased attention, revealing new

metabolic genes, pathways, and therapeutic targets (19, 27). Moreover,

accumulating evidence underscores the interplay between cellular

metabolism and molecular changes in both cancer and immune cells

(28). Genetic and epigenetic mutations, such as IDHmutations (27) and

H3K27M mutations (29), drive metabolic reprogramming, potentially

creating vulnerabilities in glioma cells (30, 31). Thesemetabolic shifts also

significantly impact epigenetics, extending beyond the classical

mechanisms of tumor pathogenesis (28, 32). Distinct cell-of-origin

properties are also implicated in glioma progression, influencing tumor

malignancy and drug sensitivity (33), although the comprehensive cell-

of-origin and metabolic atlas across high and low-grade gliomas remain

unclear. In 2021, the WHO published the fifth edition of the

Classification of Tumors of the Central Nervous System, and IDH

mutations have become an official glioma type (34). However, in gliomas,

IDH mutations are recognizable in >80% of WHO Grade II/III cases,

and IDH mutations are also common in secondary GBM, which can

even account for 73% of clinical cases (35). Precisely, because of its
02
uniqueness, various IDHmutant-specific targeting strategies are now in a

flourishing stage (36). Therefore, we sought to use novel techniques to

provide new evidence on the link between IDH mutations and gliomas.

Recent advancements in single-cell sequencing have provided

unprecedented resolution in studying glioma. By employing this

technology, the cellular architecture and heterogeneity (37–41),

along with fate determinants and regulators (37, 42–49) and the

tumor microenvironment’s immune cells (8, 50–52), have been

explored extensively. Yet, the metabolic landscape of glioma and its

clinical relevance remains largely uncharted through single-cell

analysis. This study initiates with single-cell transcriptome

sequencing of low-grade (Oligoastrocytoma, WHO grade II) and

high-grade (Glioblastoma Multiforme, WHO grade IV) glioma

samples. We compared metabolic pathway activities and gene

expressions in HG versus LG, validating findings with TCGA and

CGGA datasets for clinical relevance. Our results highlight

phosphodiesterase 8B (PDE8B) as a potential benign prognostic

biomarker for glioma, leading us to further investigate its impact on

glioma growth through cellular and animal studies. This research

delineates metabolic differences between glioma grades and

identifies critical genes in glioma metabolism, offering new

insights into glioma progression and treatment strategies, with a

focus on PDE8B as a pivotal metabolic enzyme.
2 Materials and methods

2.1 Patient recruitment and
sample collections

Patients were recruited at the local hospital’s neurosurgery clinic

from October 2023 to January 2024. Before taking part in the study, all

individuals were given complete and accurate verbal and written

information about it. Subjects who took part in the study provided

written informed consent. Following the screening, four primary

glioma samples were obtained from two untreated patients, one

female with WHO grade IV glioblastoma in the left temporal lobe as

high-grade glioma (HG) and one man with WHO grade II

oligodendrocyte astrocytoma in the right temporal lobe as low-grade

glioma (LG). Table 1 contains detailed basic clinical and pathological

information on two patients who participated in this study.
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2.2 Single-cell transcriptomics profiling of
glioma samples

Four fresh samples were collected prior to surgery and digested into

single-cell suspensions before being examined using droplet-based

single-cell transcriptome profiling through the Cell Ranger software

pipeline (version 3.1.0) provided by the 10 x Genomics Chromium

system. The number of high-quality cells in each sample after Cell

Ranger quantitative quality control ranged from 2419 to 10733.

Following the removal of low-quality cells such as doublets,

multiplets, and apoptotic cells, the final number of cells collected

varies from 1606 to 9744, the average number of UMIs (Unique

molecular identifiers) in each cell is 7325 to 15424, the average

number of genes in each cell is 2424 to 3858, and the average ratio of

mitochondrial genes in each cell is 0.0569 0.1190. We used the R

package Seurat (version 3.1.1) to process the filtered unique molecular

identifier (UMI) count matrix (28). The algorithm provided by

Macosko et al. was used to identify the top variable genes across

single cells (29). Principal component analysis (PCA)was used in Seurat

to reduce dimensionality using the RunPCA function (PC num = 15)

(28). We used the FindClusters function to analyze cell groups using

graph-based clustering according to their gene expression profiles, the

RunTSNE function to display clusters using a 2-dimensional t-

distributed stochastic neighbor embedding (t-SNE) method, and the

FindAllMarkers function to find marker genes in each cluster in Seurat

(28). Then, we used the R package SingleR, an automated annotation

method for unbiased scRNA-seq cell type detection, with Human

Primary Cell Atlas from Mabbott et al. (53). as the reference

transcriptome datasets, to infer the cell types (30, 31, 54). The

FindMarkers function in Seurat was used to identify differentially

expressed genes (DEGs). The criterion for substantially different

expression was established at P.Value = 0.05 and |log2foldchange| >

0.58. The hypergeometric distribution was used to perform GO (Gene

Ontology) enrichment and KEGG (Kyoto Encyclopedia of Genes and

Genomes pathway enrichment) analyses of DEGs.
2.3 Tissue staining

Glioma tissues were fixed in 4% paraformaldehyde (P0099,

Shanghai Beyotime Biotechnology Co., Ltd.) for 24 h and

dehydrated with gradient alcohol. The sections were embedded in

paraffin, stained with hematoxylin (517–28-2, Sigma-Aldrich

Corporation) for 5 min. After washed with running water, the

sections were differentiated with 1% hydrochloric alcohol for 5–10s.
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The sections were counterstained with eosin (15086–94-9, Sigma-

Aldrich Corporation) for 3 min. After dehydration with ethanol and

absolute ethanol (64–17-5, Chengdu Kelong Chemical Co., Ltd.),

the slices were observed under a light microscope.

The paraffin section of glioma tissues was deparaffinized and

hydrated. The sections were incubated with PDE8B (ARG10811,

arigo Biolaboratories Corporation), ABAT (64430, Cell Signaling

Technology, Inc.) and ADCY2 (PA5–114701, Thermo Fisher

Scientific) primary antibody overnight at 4°C. The sections were

then stained with the appropriate HRP-labeled polymer-conjugated

secondary antibody (C31460100, Thermo Fisher Scientific) for

60 min. The sections were counterstained with hematoxylin for

3 min. Immunostaining images were captured.
2.4 RNA isolation and quantitative real
time PCR

Total RNA from tissues and cells was extracted using TRIzol

reagent (T9424, Merck Corporation). RNA reverse transcription was

performed according to the instructions of the Vazyme kit, Nanjing

(R211–01, Nanjing Vazyme Medical Technology Co., Ltd.). Real time

PCR was performed using synthetic primers for the corresponding

genes. The reaction conditions were first predenaturation at 95 °C for

2min, followed by 40 cycles of denaturation at 95 °C for 10 s, annealing

at 60 °C, and extension for 30 s. GAPDH was used as the reference

gene. Relative gene expressions were calculated by the 2-△△Ct method.

The primer sequences used were as follows: GAPDH: Forward, 5’-ACA

GCCTCAAGATCATCAGC-3’; Reverse, 5’-GGTCATGAGTCCTTC

CACGAT-3’. PDE8B: Forward, 5’-ACGCAGGCTTCAACAGGAG-3’;

Reverse, 5’-CGTGGTCATCGCTTGTTATTTCT-3’.
2.5 Western blotting analysis

The glioma tissues and adjacent tissues were ground with liquid

nitrogen, fully lysed with cell lysate. The total protein was extracted.

BCA kit (P0010, Shanghai Beyotime Biotechnology Co., Ltd.) was

used for protein quantification. A 30uL loading system with 100 ug

mass was prepared. Then, the sample was denatured at 95°C for

5 min. The proteins sample were separated by 12% SDS-PAGE gel,

and then transferred to the membrane and blocked in 5% skim milk

for 1h. Primary antibodies (PDE8B) were incubated at 4°C

overnight and secondary antibodies were incubated. Quantitative

analysis was performed by Image J software.
TABLE 1 Detailed information about two patients who participated in this research.

Sample
Types

Gender Age First
Symptom

Lesion Surgery
Date

Pathological grade Ki67 KPS score at discharge
after surgery

LG Male 37 Dizziness Left
temporal
lobe

2020/7/20 Oligodendrocyte astrocytoma
(WHO grade II)

0.15 90

HG Female 38 headache Right
temporal
lobe

2020/9/4 Glioblastoma (WHO grade IV) 0.3 60
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2.6 Statistical analysis

All of the experiments were performed at least three times.

GraphPad Prism 9.0 statistical software was used to analyze the

data. Measurement data in line with normal distribution were

expressed as mean ± standard deviation. Student’s t-test was used

for comparison between two groups, and one-way analysis of

variance was used for comparison between multiple groups.

P<0.05 was considered statically significant.
3 Results

3.1 Overall metabolism landscape of high
grade and low grade glioma

Initially, to acquire a single-cell expression matrix from high-grade

(HG) and low-grade (LG) glioma, two fresh tissue samples per group

were utilized. These were clinically and pathologically identified as
Frontiers in Immunology 04
WHO grade IV Glioblastoma Multiforme and WHO grade II

Oligoastrocytoma for the HG and LG groups, respectively. After

preprocessing, quality control, and dimension reduction of 1667

metabolic genes in the KEGG pathway database, 15 clusters were

generated, as displayed in Figure 1A. The t-SNEmap revealed distinctly

different expression patterns between HG and LG groups, suggesting

unique metabolic landscapes for each (Figure 1B). Based on the

expression specificity of known markers (Figure 1D), these 15

clusters were categorized into 10 cell types: Astrocytes, Cytotoxic

CD8+ T cells, Endothelial cells, Exhausted CD8+ T cells, Microglia

cells, Mural cells, Naïve CD4+ T cells, NK cells, Oligodendrocyte

progenitor cells (OPCs), and Oligodendrocytes (Figure 1C).
3.2 Comparative analysis of metabolic
landscape in HG and LG glioma

The metabolic landscape between HG and LG glioma was

further explored by comparing the metabolic pathway activities
A B

D

C

FIGURE 1

Metabolism prolife and cellular architecture in high and low grade glioma. (A) All 15 clusters were generated with dimension reduction; (B) T-SNE
map showing the distinct metabolism characteristics in HG and LG samples; (C) Cell type distribution identified with classical markers in T-SNE map;
(D) Representative cell markers used in this study for cell type identification.
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and gene expressions. Utilizing 85 metabolic pathways and 1667

genes from the KEGG pathway database, as described in the

algorithm reported by Xiao et al. (55), pathway activities for the

10 cell types in both HG and LG groups were calculated, with
Frontiers in Immunology 05
overall pathway activities illustrated in Figures 2A, B. Notably, the

highest metabolic activity in LG glioma was observed in

oligodendrocytes, ranking second in the HG glioma group.

Conversely, astrocytes exhibited the highest metabolic activity in
A B

D

C

FIGURE 2

Metabolism pathways comparison in cell types. (A, B) Overall metabolism pathway activities in all 10 cell types of both HG and LG glioma;
(C) Metabolic heatmap showing the differential activities of 79 pathways in all 10 cell types; (D) Glioma grade differential network of pathways with
corresponding cell types.
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HG glioma, suggesting a distinct cell-of-origin basis for

oligodendrocytes and astrocytes in LG and HG glioma, respectively.
3.3 Identification of most changed
metabolic pathways in all cell types

Further analysis compared individual metabolic pathway

activities across the 10 cell types in both groups. Metabolically

changed pathways (MCPs) was defined as having HG-activity >1
Frontiers in Immunology 06
and LG-activity <1, or the reverse (Supplementary Table 1). Of all,

79 MCPs were identified, with 6 pathways observed in more than

five cell types, including Arachidonic acid metabolism, Metabolism

of xenobiotics by cytochrome P450, Glycolysis/Gluconeogenesis,

Oxidative phosphorylation, Nitrogen metabolism, and Ether lipid

metabolism. Most MCPs were prevalent in astrocytes (55/86) and

OPCs (53/86), followed by oligodendrocytes (27/86), microglia cells

(26/86), and endothelial cells (25/86), with other cell types showing

fewer MCPs (Figures 2A, B), aligning partially with the overall

metabolic landscape depicted in Figure 2C. A stricter criterion was
A B

DC

FIGURE 3

Clinical relevance and prognostic performance of metabolism pathways in glioma. (A) Eleven metabolism pathway activities in glioma samples with
clinical parameters, in TCGA datasets; (B) Eleven metabolism pathway activities in glioma samples with clinical parameters, in CGGA datasets;
(C) Forest map showing the prognostic performance of metabolism pathway activities in TCGA datasets; (D) Forest map showing the prognostic
performance of metabolism pathway activities in CGGA datasets.
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applied to pinpoint the most changed MCPs, setting the pathway

activity ratio (HG/LG) at >1.1 or <0.9. As a result, 35 MCPs across 9

cell types were identified (Supplementary Table 2, Figure 2D).

Notably, while most MCPs in astrocytes and OPCs showed

decreased activity, endothelial cells and microglia cells displayed

increased activity in the HG group. Despite most MCPs exhibiting

consistent trends across most cell types, a small number

demonstrated converse trends in distinct cell types, such as a

decrease in oxidative phosphorylation activity in endothelial cells

and an increase in microglial cells.
3.4 Clinical significance of metabolism
pathways in glioma

The single-cell data provided insights into altered metabolic

pathway activities in HG and LG glioma. Utilizing bulk sequencing

data, TCGA and CGGA datasets were employed to investigate the

clinical significance of these pathway activities. Gene set variation

analysis (GSVA) of all 85 metabolic pathways was conducted,

with the overall activity (GSVA Score) heatmap displayed in

Supplementary Figures 1A, B. Subsequent statistical analysis of

metabolic pathways with clinical parameters used t-tests or one-

way ANOVA. All 30 metabolic pathways demonstrated statistical

significance (p<0.05) with primary disease, histological type, sample

type, and vital status in TCGA datasets, and 21 pathways showed

clinical significance (p<0.05) with PRS type, histology, grade, and

vital status in the CGGA dataset (Supplementary Table 3). The

intersection of these pathways in both datasets highlighted 11

pathways with clinical relevance: Amino sugar and nucleotide sugar

metabolism, Pyruvate metabolism, Propanoate metabolism,

Butanoate metabolism, Fatty acid biosynthesis, Fatty acid

degradation, Synthesis and degradation of ketone bodies,

Biosynthesis of unsaturated fatty acids, Valine-leucine and

isoleucine degradation, N-Glycan biosynthesis, and Vitamin B6

metabolism, as shown in Figures 3A, B. Pyruvate metabolism, a

well-characterized cell glycolysis and energy metabolism pathway in

glioma, showed significant relevance with glioma clinical parameters

such as grade, histology, and vital status (Supplementary Figure 1C).
3.5 Prognostic performance of
metabolic pathways

The prognostic performance of these metabolic pathways was

analyzed in both CGGA and TCGA datasets, revealing that 59

pathways in the CGGA dataset and 58 in the TCGA dataset

exhibited significance for overall survival, with 48 common

significant pathways (Figures 3C, D, Supplementary Table 4).

Notably, pathways such as Glycolysis/Gluconeogenesis and the

Citrate cycle (TCA cycle) showed either unfavorable or favorable

prognostic performance in both datasets. Additional Kaplan-Meier

survival plots for another 10 pathways are provided in

Supplementary Figure 2, covering Carbohydrate metabolism
Frontiers in Immunology 07
(Pentose phosphate pathway and pyruvate metabolism),

Nucleotide metabolism (Purine metabolism and Pyrimidine

metabolism), Amino acid metabolism (Cysteine and methionine

metabolism, and Glutathione metabolism), Lipid metabolism (Fatty

acid biosynthesis and Glycerolipid metabolism), and pathways

related to Selenocompound metabolism and Vitamin B6

metabolism. Collectively, these results underscore the clinical

significance of metabolic pathways in glioma.
3.6 Clinical investigation of astrocytes and
OPCs metabolic DEGs in glioma

In a further step, the gene expression profiles between HG and LG

groups were compared, leading to the identification of differential genes

(DEGs) across 10 cell types (Supplementary Table 5). Astrocytes and

OPCs exhibited the highest number of DEGs, followed by endothelial

cells, microglia, oligodendrocytes, and mural cells (Figure 4A). The

expression of metabolic DEGs in these six cell types is depicted in

Figure 4B. Given the prevalence of metabolic DEGs and MCPs in

astrocytes and OPCs, these cell types were selected for detailed analysis.

The metabolic DEGs in astrocytes and OPCs are presented in volcano

plots (Figures 4C, D, respectively). These DEGs were also cross-

validated with those identified in the TCGA dataset comparing

glioblastoma multiforme (GBM) with low-grade glioma (LGG)

(Figure 4E). Consequently, all 9 and 4 common metabolic DEGs

were found in astrocytes and OPCs, respectively, including LDHA and

ABAT in both cell types (Figure 4F). Thus, attention was focused on

these 11 genes (t-SNE map in Supplementary Figure 3), and their

significance with clinical parameters was investigated in CGGA glioma

datasets (Figure 5A). Similar to the TCGA datasets, all 11 genes

exhibited WHO grade-dependent expression in glioma samples, with

6 upregulated (LDHA, MIF, NAMPT, PGK1, SAT1, and PLOD2) and

5 downregulated genes (ALDOC, ABAT, ADCY2, GALNT13, and

PDE8B) (Figure 5B). Furthermore, all 11 genes also showed a

significant correlation with 1p/19q co-deletion and IDH mutation

status (Figures 5C, D), with expression trends consistent with WHO

grades. Regarding the primary-recurrent-secondary (PRS) type,

ALDOC and ABAT exhibited decreased expression, while MIF and

PGK1 showed increased expression in recurrent and secondary glioma

groups (Figure 5E).
3.7 Prognostic significance of the 11
metabolic genes

The prognostic significance of these 11 metabolic genes was

further validated using both CGGA (Figure 6A) and TCGA

(Figure 6B) datasets. Consistent with the changes in expression,

patients with higher expression of LDHA, MIF, NAMPT, PGK1,

SAT1, and PLOD2, and lower expression of ALDOC, ABAT,

ADCY2, GALNT13, and PDE8B showed poorer survival rates in

all glioma samples (Supplementary Figure 4). Additionally, the

prognostic significance of these genes in LG and HG was analyzed,
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and most genes demonstrated consistently good performance in the

LG and HG groups in CGGA datasets (Supplementary Figure 5). For

TCGA datasets, the most significant genes were observed in low-

grade groups, such as the favorable performance of ABAT, ADCY2,

ALDOC, PDE8B, and GALNT13, as well as the unfavorable

performance of LDHA, NAMPT, PLOD2, and SAT1, suggesting

prognostic prediction performance of these 11 genes in glioma,

particularly in low-grade glioma patients.
Frontiers in Immunology 08
3.8 PDE8B expression in astrocytes and
OPCs and its validation in glioma
tissues cohort

H&E staining results indicated cytoplasmic and nuclear staining

with mild atypia in glioma grade II; the density of glioma cells was

moderately increased with varied sizes and disordered arrangement,

and more pronounced atypia in glioma grade III; the density
A

B

D

E F

C

FIGURE 4

Significant differential metabolic genes in single cells and validated with TCGA datasets. (A) Differentially expressed genes in all cell types were
acquired by comparing the HG and LG groups; (B) Metabolism gene expression heatmap in most changed 6 cell types; (C) Metabolism genes with
differential expression in astrocytes; (D) Metabolism genes with differential expression in PCs were shown in volcano plot and labeled; (E) Significant
deferential genes were acquired by comparing GBM with LGG samples, shown with volcano plot; (F) Common deregulated genes in astrocytes and
OPCs were cross-validated with TCGA datasets.
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ofglioma cells was significantly dense with mitotic figures and

microvascular proliferation in glioma WHO grade IV

(Figure 7A). Subsequent IHC staining revealed the expression of

PDE8B, ABAT, and ADCY2 proteins in glioma WHO grades II-IV.

The protein expression of PDE8B, ABAT, and ADCY2 decreased in

glioma grade IV compared with glioma grades III and II. The

expression of PDE8B, ABAT, and ADCY2 proteins decreased with

increasing glioma WHO grade (Figure 7B). Further, Western

blotting assay results suggested that the protein expression of

PDE8B was markedly downregulated in glioma tissues compared

with adjacent tissues (normal). The expression of PDE8B decreased

with increasing glioma grade (Figure 7C). Moreover, RT-qPCR
Frontiers in Immunology 09
assay verified that the mRNA expression of PDE8B was significantly

downregulated in the glioma group compared with the normal

group. The expression of PDE8B decreased with the increase of

glioma grade (II-IV) (Figure 7D).
4 Discussion

Low-grade glial neoplasms are among the most prevalent brain

tumors in the pediatric population (56). High-grade gliomas,

particularly glioblastoma (GBM), represent the most aggressive CNS

cancers in adults (57). Due to its heterogeneous nature (40),
A

B

D E

C

FIGURE 5

Clinical validation of 11 metabolic genes in CGGA datasets. (A) Expression-clinical parameters heatmap of 11 metabolic genes in CGGA datasets;
(B) Expression of the 11 metabolic genes in WHO grade II, III and IV glioma samples of CGGA datasets; (C) Expression of the 11 metabolic genes in
1p/19q co-deletion glioma samples of CGGA datasets; (D) Expression of the 11 metabolic genes in IDH wide-type (WT) and mutation glioma samples
of CGGA datasets; (E) Expression of the 11 metabolic genes in PRS type (Primary, recurrent and secondary) glioma samples of CGGA datasets.
*P<0.05, **P<0.01, ***P<0.001.
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glioblastomas nearly always recur post-surgery and after radio-/

chemo-/immunotherapy treatments, making them highly lethal with

a poor prognosis (58–60). The cellular origins of glioma remain a

subject of intense debate (61). Various brain cell populations, including

neural stem cells (NSCs) (4–7), astrocytes (9) and oligodendrocyte

precursor cells (OPCs) (13, 62, 63), have been implicated in glioma

development. For instance, Wang et al. developed a cell-lineage-based

stratification model for glioblastoma, underscoring how the cell of

origin shapes distinct molecular landscapes and therapeutic

vulnerabilities even in the presence of identical driver mutations (64).

The interaction of cell origins and oncogenic states influences glioma
Frontiers in Immunology 10
initiation and progression (65), affects the susceptibility to glioblastoma

treatments (66), and determines whether tumors develop from

astrocytes or oligodendroglial cells (67). Additionally, genetic

alterations like IDH1/IDH2 mutations (68, 69) and epigenetic

changes such as mutations in histone H3 genes (70), along with

aberrant transcriptional activity (71, 72) and disrupted metabolism

(16) intertwined with signaling pathways (73, 74), collaboratively

impact the cellular origin, oncogenic state, tumor aggressiveness, and

response to therapy (33, 75). In this study, we utilized single-cell and

spatial transcriptomics to dissect the roles of cell origin, metabolic

landscape, and transcriptional regulators in high-grade GBM and low-
A

B

FIGURE 6

Prognostic significance of the 11 metabolic genes in CGGA (A) and TCGA (B) datasets.
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grade oligoastrocytoma, thereby enhancing our understanding of

glioma’s cellular and molecular foundations.

Glioblastoma progression is closely linked to metabolic

remodeling in both cancer and immune cells (19, 76–78), with

aerobic glycolysis serving as the primary source of energy and

biosynthetic precursors (79). Targeting the Warburg effect is now

recognized as a promising therapeutic strategy (18, 80). Our study

reveals distinct metabolic landscapes and pathway alterations

between low-grade and high-grade gliomas, primarily within

astrocytes, OPCs, and oligodendrocytes, aligning with

histopathological findings (75). Beyond glycolysis/gluconeogenesis,

we observed differential activities in amino acid pathways, such

as phenylalanine metabolism, and lipid pathways, such as fatty

acid biosynthesis and sphingolipid metabolism, suggesting a

comprehensive metabolic disruption in glioma. Remarkably, we

also noted metabolic pathway variations and gene expression
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differences in immune cells, particularly microglia, indicating that

immune cell functions are also modulated by diverse metabolic

reprogramming in cancer progression (81, 82). Future detailed

investigations could elucidate the specific roles of these varied

metabolic pathways and genes in glioma.

Metabolic pathway disturbances and gene disruptions are

influenced by both extracellular and intracellular stresses (83, 84),

leading to epigenetic and transcriptional modifications that drive

cancer progression (85). Therefore, targeting metabolic pathways

presents a viable therapeutic avenue (86, 87), though the clinical

implications of these pathways in glioma require further exploration.

Our research also assessed the clinical relevance and prognostic value

of metabolic pathways and differential genes in glioma, identifying 48

prognostically significant metabolic pathways and 11 critical genes

in OPCs and astrocytes. Among these, classical carbohydrate

metabolism pathways like Glycolysis/Gluconeogenesis and the
A

B

DC

FIGURE 7

IHC staining for metabolic protein in glioma WHO II-IV. (A) H&E staining was used to detect the pathological characteristics of glioma WHO II-IV;
(B) Representative images of IHC staining for PDE8B in glioma WHO II-IV; (C) Western blotting was used to detect the protein expression of PDE8B;
(D) RT-qPCR assay was used to detect the mRNA expression of PDE8B. *P<0.05, **P<0.01, ***P<0.001.
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Pentose phosphate pathway showed detrimental effects, whereas the

Citrate cycle (TCA cycle) exhibited beneficial effects, consistent with

prior tumor studies (29, 88–90). The prognostic relevance of other

metabolic pathways also warrants increased focus in glioma,

highlighting both deleterious pathways like Purine metabolism and

Glutathione metabolism and beneficial ones like Glycerolipid

metabolism and Vitamin B6 metabolism. Furthermore, the 11

genes identified in astrocytes and OPCs displayed significant

correlations with glioma grading, IDH mutation status, and overall

prognosis, marking them as potential oncogenes or tumor

suppressors and clinically relevant indicators for molecules like

LDHA (91, 92), MIF (93, 94), and NAMPT (25, 95–98).

The cAMP/PKA signaling pathway serves as a pivotal regulator

of metabolic pathways across various diseases, with the cAMP

response finely tuned by phosphodiesterases (PDEs) (99).

Abnormal expression of PDE8B has been linked to various

diseases and cancer pathologies, including associations with

metastasis in thyroid carcinoma (100). Intriguingly, we found that

PDE8B is predominantly expressed in astrocytes and OPCs of

glioma, as demonstrated through UMAP analysis. Tissue studies

indicated that PDE8B expression decreases significantly in higher-

grade GBM tissues compared to adjacent normal tissues, paralleling

the progression to an immunosuppressed tumor microenvironment

where both immune cells and PDE8B expression are diminished.

Thus, PDE8B serves as a crucial biomarker in GBM, particularly

within astrocytes and OPCs.

Moreover, our single-cell transcriptomic analysis revealed that

PDE8B expression is markedly higher in low-grade than in high-

grade gliomas, a finding substantiated at the cellular and tissue levels

through various methods including qPCR, Western blotting, and

immunohistochemistry. This observation challenges the traditional

view that oncogenes are generally upregulated in tumor tissues to

promote malignant behaviors. The underlying mechanisms suggest

that while PDE8B expression is reduced in high-grade gliomas, it

actively promotes tumor proliferation, invasion, and growth in high-

grade glioblastoma cell lines, possibly due to differing cell origins in

high-grade versus low-grade gliomas. Research indicates that high-

grade gliomas might arise from malignant transformations of OPCs

(37, 63, 101, 102), while low-grade gliomas typically develop from

astrocytes and oligodendrocytes (54, 103, 104). This suggests that

PDE8B may perform divergent, possibly even contradictory roles

depending on the specific type of tumor cell, akin to recent findings

that miRNAs, although highly expressed, can suppress tumor growth

(105). Additionally, the structural and functional similarities between

PDE8B and another family member, PDE8A, which has been found

to regulate stemness in glioma-initiating cells and exhibit tumor-

suppressive properties (106), further complicate the understanding of

their roles in cancer. Indeed, inhibiting PDE8A in melanoma has

been shown to suppress the MAPK pathway and tumor growth,

hinting at an oncogenic role for PDE8A (107). This complexity

underscores the need for a deeper exploration of the non-canonical

functions of these enzymes, as exemplified by the metabolic enzyme

LDHA, which has been shown to activate Rac1 GTPase through non-

traditional mechanisms to promote cancer (108). Similarly, aside
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from its established role in cAMP hydrolysis, PDE8B may engage in

non-canonical activities that could elucidate its function in

glioma progression.

Here, the predictive role of PDE8B as an important biomarker in

GBM is highlighted, especially in astrocytes and OPCs. However, the

functional characteristics of PDE8B are not clear, and the specific

molecular mechanism and pathway of PDE8B when it plays its role

have not been solved, it needs to be further studied with animal

models or cell models, which is also one of the limitations. At the

same time, in addition to PDE8B, a large number of other genes were

also mentioned in this article, but we did not fully and completely

discuss or verify them, which is a pity, and we hope that this study

will provide some ideas and references for readers.

In summary, our study comprehensively investigates the

origins, metabolic profiles, and clinical implications of gliomas

across different grades, highlighting the significant role of the

metabolism-associated enzyme PDE8B as both a biomarker and a

driver of glioma progression. This research not only advances our

understanding of the complex functions of PDE8B in gliomas but

also suggests new avenues for targeted therapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Overall metabolism pathway activities in glioma samples with clinical
parameters. (A) Overall metabolism pathway activities in glioma samples

with clinical parameters, in TCGA datasets; (B) Overall metabolism pathway

activities in glioma samples with clinical parameters, in CGGA datasets; (C)
Differential metabolism pathway activities of pyruvate metabolism were

shown in TCGA and CGGA datasets.

SUPPLEMENTARY FIGURE 2

Kaplan-Meier survival plot of representative 12 metabolism pathways in TCGA

and CGGA.

SUPPLEMENTARY FIGURE 3

TSNE map showing the expression of 11 metabolism genes.

SUPPLEMENTARY FIGURE 4

Kaplan-Meier survival plot of representative 11 metabolism genes and HIF1A

in CGGA (A) and TCGA (B), in all glioma samples.

SUPPLEMENTARY FIGURE 5

Kaplan-Meier survival plot of representative 11 metabolism genes in CGGA (A)
and TCGA (B), in high grade and low–grade glioma samples.

SUPPLEMENTARY TABLE 1

All 79 metabolic changed pathways (MCPs) in HG and LG.

SUPPLEMENTARY TABLE 2

All 35 most changed MCPs in 9 cell types.

SUPPLEMENTARY TABLE 3

Clinically significant pathways in CGGA and TCGA datasets.

SUPPLEMENTARY TABLE 4

Prognostic 48 significant pathways.

SUPPLEMENTARY TABLE 5

Differential expression genes (DEGs) in 10 cell types.
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