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SAPHO syndrome is a complex inflammatory disorder affecting the skin and

bones, characterized by osteomyelitis, acne, and pustulosis. Cytokines play a

pivotal role in the pathogenesis of SAPHO syndrome, especially in inflammatory

responses and immune regulation. This article reviews the cytokines involved in

the pathogenesis of SAPHO syndrome, such as tumor necrosis factor a (TNF-a),
interleukin 1b (IL-1b), IL-6, IL-10, and transforming growth factor-b (TGF-b), and
discusses their potential as intervention points for treatment. These findings

elucidate the intricate immune regulatory network of SAPHO syndrome and

provide a theoretical foundation for the development of new targeted

therapeutic strategies.
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1 Introduction

SAPHO syndrome, a rare immune-mediated disorder, is characterized by its primary

clinical manifestations: synovitis (inflammation of the synovial membrane, leading to joint

pain and swelling), acne (severe acneiform eruptions, often resistant to conventional

treatments), pustulosis (pustular skin lesions, commonly affecting the palms and soles),

hyperostosis (excessive bone growth, particularly in the sternoclavicular region), and

osteitis (inflammation of the bone, causing pain and structural changes), from which its

acronym is derived. First described in 1987, the syndrome encapsulates a spectrum of

diseases sharing similar clinical and radiological features (1). The clinical manifestations of

SAPHO syndrome are diverse, ranging from dermatological symptoms like severe acne and

pustulosis to complex osteoarticular symptoms including pain and swelling in the sternum,

clavicle, and spine (2, 3).

SAPHO syndrome can affect individuals of any age, but it typically presents in young

adults (4). There is no strong sex predilection, although some studies suggest a slight female

predominance. The prevalence of SAPHO syndrome varies by region, with higher

reporting rates in Europe and East Asia, potentially reflecting differences in diagnostic

practices and awareness (5). The clinical course of SAPHO syndrome is often chronic and

relapsing, significantly impacting patients’ quality of life. The dermatological and
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osteoarticular manifestations are frequently the most debilitating,

necessitating a multidisciplinary approach to management (6).

Despite advancements in SAPHO syndrome research over the

past decades, the precise etiology and pathogenesis of the disorder

remain elusive. It is currently hypothesized that SAPHO syndrome

could be linked to a variety of factors, including genetic

predispositions, immune system abnormalities, and microbial

infections. The role of cytokines in its pathogenesis is particularly

emphasized, as these key signaling molecules regulate immune and

inflammatory responses. Understanding their impact is critical for

elucidating the mechanisms of the disease. Moreover, since existing

treatments for SAPHO syndrome primarily address symptoms and

lack targeted therapeutic approaches, developing novel treatments

based on cytokine modulation is of paramount importance.

This review article aims to thoroughly examine the central role

of cytokines in the pathogenesis of SAPHO syndrome. Pro-

inflammatory cytokines like tumor necrosis factor a (TNF-a) and
interleukin 1b (IL-1b) are crucial in promoting inflammatory

responses, exacerbating tissue damage and pain by activating

pathways such as nuclear factor kB (NF-kB). Conversely, anti-
inflammatory cytokines such as IL-10 and transforming growth

factor b (TGF-b) strive to restore immune balance by mitigating

inflammatory responses. This discussion of cytokine involvement

not only provides a theoretical basis for new targeted therapies but

also explores directions for future treatment improvements to

enhance clinical outcomes.
2 SAPHO syndrome

2.1 Pathophysiology of SAPHO syndrome

SAPHO syndrome encompasses a spectrum of inflammatory

skin and skeletal disorders, primarily characterized by bone

proliferation and osteitis. Commonly, these bone alterations

manifest in the anterior chest wall, including the sternum and

clavicle, and extend to the cervical vertebrae and sacroiliac joints.

Typically, the lesions involve bone sclerosis and hypertrophy of the

adjacent soft tissues (7). Pathologically, bone lesions in SAPHO

syndrome may present as acute inflammatory responses, and as the

condition progresses, bone marrow fibrosis and significant sclerosis

of bone trabeculae may develop (8). These features distinguish

SAPHO syndrome from other forms of osteitis, such as infectious

osteitis (3, 9).

The dermatological manifestations of SAPHO syndrome vary,

with the most prevalent being severe acne and pustular eczema,

especially palmoplantar pustulosis. These skin lesions can manifest

either before or concurrently with the skeletal symptoms (10).

Skeletal symptoms typically include pain and swelling in the

anterior chest wall and chronic pain, often associated with bone

proliferation and inflammation near joints. This bone proliferation

can impair the function of adjacent joints, adversely affecting the

patient’s quality of life (3, 11, 12). Imaging examinations are vital for

diagnosis, revealing characteristic changes in the affected bones,

including bone proliferation and erosion (13).
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2.2 Pathogenesis

SAPHO syndrome is an immune-mediated inflammatory

disorder whose pathogenesis involves complex interactions

between genetic and environmental factors. Although specific

genetic markers have not been conclusively identified, genetic

susceptibility plays a crucial role in SAPHO syndrome. Research

has indicated that particular genetic variations, such as mutations in

the PSTPIP2 and NOD2 genes, might be linked to the onset of

SAPHO syndrome; however, these findings necessitate further

confirmation (14). Environmental factors, especially infectious

agents, are considered significant triggers for the syndrome.

Notably, infection with Propionibacterium acnes is believed to

potentially trigger inflammatory responses by activating the

immune system (15–17).

The immune response in SAPHO syndrome is characterized by

both autoimmune and inflammatory components. Studies show

that the immune responses, particularly those mediated by

neutrophils and T cells, are overly active in affected individuals.

For instance, neutrophils in patients with SAPHO syndrome

demonstrate excessive activation, releasing substantial quantities

of pro-inflammatory cytokines like IL-8 and TNF-a (17).

Furthermore, the signaling pathways involving IL-1 and TNF-a
are central to the pathophysiology of SAPHO syndrome, supporting

the use of biologic treatments such as TNF-a inhibitors and IL-1

receptor antagonists (6, 10, 18).
3 Biological basis of cytokines

3.1 Definition of cytokines

Cytokines are a class of small protein molecules secreted by

cells, primarily involved in signal transmission between cells to

regulate immune and inflammatory responses. They interact with

specific cell surface receptors and modulate the differentiation,

migration, and activation of immune cells. This class includes

various types such as interleukins (ILs), tumor necrosis factors

(TNFs), and interferons (IFNs), which are pivotal in both innate

and adaptive immunity. Given the extensive bioactivity and

overlapping functions of cytokines, a detailed biological

understanding is essential for the development of therapeutic

strategies against diverse diseases (7, 19, 20).
3.2 Cytokines and the immune system

Cytokines play a pivotal role in immune regulation by

modulating the activities of various immune cells, such as T cells, B

cells, and macrophages, thereby shaping the body’s response to

pathogens. For example, IL-2, a crucial growth factor, is essential

for the proliferation and survival of T cells, while TNF and IL-6 are

key in initiating and sustaining inflammatory responses. Moreover,

cytokines influence cell migration and localization within tissues,

enhancing the efficiency and precision of immune responses (21).
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Recent studies have also shown that cytokines such as IL-10 and

TGF-b possess anti-inflammatory properties that regulate immune

responses, thus mitigating excessive immune activity and preventing

damage to host tissues (22–24).
4 Role of cytokines in the
SAPHO syndrome

4.1 TNF-a

In SAPHO syndrome, tumor necrosis factor a (TNF-a) serves as
a key pro-inflammatory cytokine, significantly influencing

inflammatory responses and bone remodeling. TNF-a regulates

inflammation, immune responses, and cell survival by activating

cellular signaling pathways, notably the nuclear factor kB (NF-kB)
pathway (25). TNF-a operates via its receptors, TNFR1 and TNFR2,

with TNFR1 activation being particularly critical. Upon binding,

TNFR1 initiates the formation of a signaling complex by recruiting

adaptor proteins such as TRADD, FADD, and RIP1. This complex

activation leads to the phosphorylation and degradation of IkB,
consequently releasing NF-kB to translocate into the nucleus and

activate gen expression related to inflammation, cell proliferation,

and survival (Figure 1). TNF-a also drives inflammatory and cellular

responses by stimulating the MAPK pathway, which includes ERK,

JNK, and p38 MAPK. Activation of these pathways increases the

production of inflammatory cytokines, intensifying the inflammatory

response, particularly in conditions like SAPHO syndrome (26–28).

TNF-a impacts immune cells by promoting the recruitment of

neutrophils and the activation of macrophages and T cells, thus

enhancing the inflammatory milieu (Figure 2). TNF-a also affects

bone cells, specifically osteoclasts and osteoblasts. TNF-a promotes

osteoclast differentiation and activation, leading to increased bone

resorption, while it inhibits osteoblast differentiation and function,

impairing bone formation and repair. These dual actions on immune

and bone cells underscore TNF-a’s pivotal role in the pathogenesis
Frontiers in Immunology 03
and progression of SAPHO syndrome, contributing to both

inflammation and bone pathology (29–34).
4.2 IL-1b

Interleukin-1 beta (IL-1b), a key pro-inflammatory cytokine,

plays a significant role in the pathogenesis of SAPHO syndrome.

Produced primarily by activated macrophages and monocytes, IL-

1b promotes the differentiation and activation of various immune

cells, including macrophages, neutrophils, and T cells, enhancing

the inflammatory response (Figure 2). IL-1b increases the

production of other cytokines and chemokines, further amplifying

the recruitment and activation of immune cells at inflammation

sites (35–37). It activates multiple signaling pathways, including

nuclear factor kB (NF-kB) and mitogen-activated protein kinase

(MAPK), exacerbating SAPHO syndrome symptoms (38, 39).

Upon binding to its specific receptor, IL-1R, IL-1b initiates

MyD88-dependent signal transduction, activating downstream

IRAK4 and IRAK1, which leads to the activation of TRAF6.

TRAF6, a crucial signaling molecule, triggers TAK1, which

subsequently activates the IKK complex and MAPKs. This

activation sequence culminates in the phosphorylation and

degradation of IkBa, releasing NF-kB to translocate into the

nucleus and stimulate the expression of genes related to

inflammation (Figure 3). Concurrently, activation of the MAPK

pathway enhances the activity of the AP-1 transcription factor,

intensifying the inflammatory response (40–45). Through these

signaling pathways, IL-1b promotes the production of

inflammatory mediators such as IL-6 and TNF-a and boosts the

expression of chemokines and cell adhesion molecules that enhance

the recruitment of inflammatory cells to inflammation sites.

Additionally, in bone cells, IL-1b stimulates osteoclastogenesis,

leading to increased bone resorption. IL-1b also inhibits

osteoblast differentiation and function, impairing bone formation

and repair. This dual action on immune and bone cells contributes

to the chronic inflammation and bone pathology characteristic of
FIGURE 1

Tumor necrosis factor a (TNF-a) activates the nuclear factor kB (NF-kB) pathway in the SAPHO syndrome.
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SAPHO syndrome, exacerbating symptoms and disease progression

(32, 42, 44, 46).
4.3 IL-6

Interleukin-6 (IL-6) plays a pivotal role in SAPHO syndrome by

promoting the proliferation and differentiation of B cells and T cells,
Frontiers in Immunology 04
thereby enhancing the immune response (Figure 2). IL-6 initiates

intracellular signaling by binding to its specific receptor, IL-6 receptor

(IL-6R), and pairing with the gp130 co-receptor. This interaction

activates Janus kinase (JAK), leading to the phosphorylation of signal

transducer and activator of transcription 3 (STAT3). The

phosphorylated STAT3 then forms dimers and translocates to the

nucleus to stimulate gene expression related to inflammation, cell

survival, and proliferation (Figure 4). Additionally, IL-6 engages the
FIGURE 3

Interleukin-1 beta (IL-1b) activates the nuclear factor kB (NF-kB) pathway in the SAPHO syndrome.
FIGURE 2

In SAPHO syndrome, IL-1b, IL-6, TNF-a, IL-17, and IL-23 have significant effects on T cells, B cells, macrophages, and neutrophils.
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MAPK and PI3K-Akt signaling pathways, further influencing cellular

metabolism and functions (46–49). In SAPHO syndrome, excessive

IL-6 expression is strongly linked to the development of osteitis and

skin lesions. It promotes bone resorption by enhancing osteoclast

differentiation and activity while concurrently inhibiting osteoblast

functions, thereby disrupting bone remodeling balance. This

imbalance contributes to the typical bone lesions and pain in

patients with SAPHO syndrome. Furthermore, IL-6 drives the

differentiation of naive T cells into Th17 cells, a subset of T cells

that produce IL-17, a potent pro-inflammatory cytokine. This

differentiation process exacerbates the inflammatory response,

contributing to the chronic inflammation observed in SAPHO

syndrome. IL-6 also enhances the activation and survival of T cells,

further sustaining the inflammatory environment (32, 46–48, 50).
4.4 IL-23 and IL-17

In the pathogenesis of SAPHO syndrome, interleukin-23 (IL-

23) and interleukin-17 (IL-17) form a critical cytokine axis

significantly influencing inflammation and bone lesions. IL-23,

secreted by dendritic cells and macrophages, primarily functions

to maintain and expand the Th17 cell population, the principal

producers of IL-17 (51, 52). IL-23 also enhances the recruitment

and activation of neutrophils and macrophages, contributing to a

robust inflammatory response (Figure 2). IL-23 binds to its receptor

complex, consisting of IL-23R and the co-receptor IL-12Rb1,
thereby activating the JAK/STAT signaling pathway, particularly

STAT3. This activation promotes the differentiation and survival of

Th17 cells. Th17 cells produce IL-17, which, upon binding to IL-

17R, triggers downstream signaling pathways including NF-kB and

MAPK, notably the p38 and ERK pathways (Figure 5). This process
Frontiers in Immunology 05
enhances the production of inflammatory mediators such as TNF-

a, IL-1b, and IL-6, intensifying inflammation and tissue damage.

IL-17 also enhances the recruitment and activation of neutrophils

and macrophages, contributing to a robust inflammatory response

(53–55). In SAPHO syndrome, dysregulation of the IL-23/IL-17

axis is closely linked to the distinctive symptoms of skin and bone

lesions. In bone cells, IL-17 directly stimulates osteoclastogenesis,

leading to increased bone resorption. IL-17 inhibits the

differentiation and function of osteoblasts, impairing bone

formation and repair. The combined effect of increased osteoclast

activity and reduced osteoblast function results in the characteristic

bone lesions of SAPHO syndrome. By affecting both immune and

bone cells, IL-17 plays a pivotal role in the pathogenesis of SAPHO

syndrome, driving the inflammation and bone pathology that are

hallmarks of the disease (56–59).
4.5 IL-8

In SAPHO syndrome, IL-8 primarily recruits and activates

neutrophils at inflammation sites. This chemokine not only

attracts neutrophils but also enhances their adherence to

endothelial cells, facilitating transendothelial migration. Once

activated, neutrophils release enzymes and reactive oxygen species

that contribute to inflammatory damage in SAPHO syndrome,

evident in bone resorption and skin lesions (60). Beyond its

chemotactic role, IL-8 also stimulates the production of other

inflammatory cytokines. Specifically, IL-8 has been shown to

upregulate the production of TNF-a and IL-1b, creating a

feedback loop that amplifies the inflammatory response, which is

crucial for sustaining chronic inflammation characteristic of

SAPHO syndrome (17). IL-8 acts through multiple signaling
FIGURE 4

Interleukin-6 (IL-6) activates the JAK-STAT pathway in SAPHO syndrome.
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pathways, primarily by binding to its receptors, CXCR1 and

CXCR2, on neutrophils. This binding activates downstream

signaling pathways including MAPK, NF-kB, and PI3K/Akt,

leading to transcriptional activation of genes involved in

inflammation, survival, and migration of immune cells, further

contributing to the disease’s pathogenesis (61–63).
4.6 IL-18

Interleukin-18 (IL-18) plays a critical role in the inflammatory

and pathogenic mechanisms of SAPHO syndrome, affecting both

innate and adaptive immune responses. IL-18 enhances the activity

of macrophages and dendritic cells, leading to increased production

of pro-inflammatory cytokines such as TNF-a, IL-1b, and IL-6.

This amplifies the inflammatory response, promoting chronic

inflammation characteristic of SAPHO syndrome (14). IL-18 is

key in activating Th1 and NK cell responses, enhancing the

production of IFN-g by these cells, thereby exacerbating the

inflammatory response in SAPHO syndrome. Elevated levels of

IL-18, observed in conditions with similar inflammatory profiles,

suggest its involvement in sustained inflammatory processes in

SAPHO syndrome (64, 65). IL-18 signals primarily through the IL-

18 receptor (IL-18R), engaging the NF-kB signaling pathway, a

central pathway in inflammatory responses. Activation of NF-kB
leads to the transcription of various pro-inflammatory genes,

amplifying the inflammatory response and contributing to tissue

damage and bone remodeling observed in SAPHO syndrome (66,

67). Additionally, IL-18 activates crucial signaling molecules like

MAPKs and the PI3K/AKT pathway, which are essential for

propagating the inflammatory response. Besides its immune-

stimulatory roles, IL-18 indirectly influences bone resorption in

bone cells by promoting the production of RANKL, a key factor in

osteoclast differentiation and activation. This results in increased
Frontiers in Immunology 06
osteoclast activity and bone resorption, contributing to the bone

lesions typical of SAPHO syndrome. By affecting both immune and

bone cells, IL-18 plays a critical role in the pathogenesis of SAPHO

syndrome, exacerbating the inflammatory and bone remodeling

processes (65, 67, 68).
4.7 IL-10

IL-10 is a potent anti-inflammatory cytokine known to inhibit

the activation of various immune cells and the release of cytokines.

In SAPHO syndrome, IL-10’s regulatory function potentially

alleviates chronic inflammation and autoimmune responses by

reducing the production of pro-inflammatory cytokines such as

tumor necrosis factor a (TNF-a) and interleukin-1b (IL-1b) (18).
Moreover, IL-10 promotes the differentiation of B cells and

antibody production, enhancing immune regulation against

infections and inflammation (69, 70). IL-10 activates STAT3 via

the JAK-STAT signaling pathway, increasing the expression of anti-

inflammatory genes such as SOCS3, which inhibits the activation of

immune cells like macrophages and T cells, as well as the

production of pro-inflammatory factors (71–73). Additionally, IL-

10 enhances its anti-inflammatory effects through the PI3K/Akt

pathway by activating mTOR, which inhibits NF-kB activation and

the expression of downstream inflammatory genes (74).
4.8 TGF-b

Transforming Growth Factor-beta (TGF-b), another key anti-

inflammatory cytokine, helps maintain tissue homeostasis and

immune tolerance. It reduces inflammation by inhibiting the

activation of macrophages and T cells and supports immune

balance by enhancing the differentiation and function of regulatory
FIGURE 5

Interleukin-17 (IL-17) activates the nuclear factor kB (NF-kB) and Mitogen-Activated Protein Kinase(MAPK) pathways in SAPHO syndrome.
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T cells, crucial for controlling autoimmune disease progression (75–

78). TGF-b initially binds to the type II TGF-b receptor on the cell

surface. This interaction facilitates the recruitment and binding of the

type I TGF-b receptor, forming a receptor complex. Upon TGF-b
binding, TbRII undergoes autophosphorylation and subsequently

phosphorylates TbRI. This phosphorylation promotes the

activation of Smad2 and Smad3, which then associate with Smad4

and translocate to the nucleus to regulate genes related to anti-

inflammation and immune tolerance (79) (Figure 6). TGF-b also

activates other signaling pathways such as MAPK and PI3K, further

regulating cell survival, proliferation, and differentiation, thereby

playing a multifaceted role in immune regulation (80, 81). In

SAPHO syndrome, IL-10 and TGF-b collaboratively modulate

immune cell activity and inflammatory response intensity, helping

to control disease activity and progression. The functions of these

cytokines extend beyond merely inhibiting inflammatory responses

to include promoting tissue repair and regeneration, essential for the

long-term management and treatment of patients with SAPHO

syndrome (6, 18).
4.9 Cytokines and skin lesions connection

Numerous studies have investigated the connection between

cytokines and skin lesions in SAPHO syndrome. Research has

consistently demonstrated that cytokines, including TNF-a, IL-1,
IL-6, IL-17, and IL-23, are abnormally expressed in the skin lesions

of patients, often characterized by severe pustulosis and acne (18).

One particular study on patients with SAPHO syndrome showed

that treatment with Secukinumab, an IL-17 inhibitor, significantly

alleviated skin lesions and joint pain, indicating a crucial role of IL-17

in the associated skin manifestations. Furthermore, other research
Frontiers in Immunology 07
has revealed that anti-TNF-a treatments can provoke skin lesions in

some patients, highlighting the influential role of TNF-a in these

dermatological manifestations (56, 82).

Additionally, there is evidence suggesting that skin lesions in

SAPHO syndrome may be linked to anomalies in the IL-23 pathway

(83). For instance, paradoxical skin reactions have been observed in

some patients following IL-17 inhibitor therapy, pointing to complex

interactions between the IL-23 and IL-17 signaling pathways in

affecting the syndrome’s dermatological features (84, 85).

In conclusion, skin lesions in SAPHO syndrome are intimately

associated with the aberrant expression of various inflammatory

cytokines, which intensify skin pathology by impacting

inflammatory responses and immune regulatory mechanisms.

Therefore, elucidating the roles and specific mechanisms of these

cytokines in SAPHO syndrome is essential for developing precise

therapeutic strategies.
5 The potential of cytokine targeted
therapy for SAPHO syndrome

The diversity of clinical manifestations in SAPHO syndrome

complicates its treatment. Current therapeutic strategies primarily

focus on symptom relief, utilizing non-steroidal anti-inflammatory

drugs (NSAIDs), corticosteroids, disease-modifying anti-rheumatic

drugs (DMARDs), and bisphosphonates. Recent studies have

underscored the effectiveness of bisphosphonates, such as zoledronic

acid, in alleviating pain and reducing inflammatory lesions in patients

with SAPHO syndrome. Cytokine-targeted therapy, aimed at specific

inflammatory mediators integral to its pathogenesis, represents the

cutting edge of treatments for SAPHO syndrome. IL-1 and TNF-a are
FIGURE 6

Transforming Growth Factor-beta (TGF-b) activates the Smad-dependent pathway in the SAPHO syndrome.
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considered critical to the inflammatory processes of the syndrome,

with clinical trials of inhibitors like anakinra and infliximab

demonstrating benefits in reducing symptoms and enhancing

patient quality of life (10, 61, 86). Treatment of SAPHO syndrome

continues to face significant challenges, particularly in target

development. Recent studies have concentrated on identifying new

biomarkers and therapies that influence the disease’s progression. For

instance, the IL-23/Th 17 pathway has been recognized for its

potential therapeutic value in SAPHO syndrome. Biologics targeting

IL-23 and Th 17, such as Ustekinumab and Secukinumab, have

proven somewhat effective, especially in ameliorating skin

symptoms. Although the impact of these agents on osteoarticular

symptoms remains uncertain, the research provides a scientific

foundation for developing new therapeutic targets (56, 61, 85).

Furthermore, increasing evidence suggests a role for the

microbiome in the pathogenesis of SAPHO syndrome.

Propionibacterium acnes, for example, is thought to potentially

exacerbate the condition by triggering host immune responses,

offering a theoretical basis for the use of antibiotics, despite

ongoing debates about their efficacy. Future research should

continue to explore the interaction between the microbiome and

the disease, aiming to develop targeted treatments based on this

mechanism (15).
6 Conclusion

Cytokines are central to the pathogenesis of SAPHO syndrome,

encompassing synovitis, acne, pustulosis, hyperostosis, and osteitis.

Studies have indicated that pro-inflammatory cytokines, including

tumor necrosis factor a (TNF-a), interleukin 1b (IL-1b), IL-6, and
IL-8, are highly expressed in this disorder and contribute to

heightened inflammatory responses. These cytokines drive the

progression of SAPHO syndrome by influencing inflammation,

inducing acute phase responses, and facilitating chemotaxis.

Conversely, anti-inflammatory cytokines such as IL-10 and

transforming growth factor-b (TGF-b) play protective roles

by modulating immune responses and curbing excessive

inflammation. Specifically, IL-10 mitigates symptoms by inhibiting

the activities of TNF-a and IL-1, while TGF-b helps maintain tissue

homeostasis and immune tolerance, thus decelerating the disease’s

progression. These insights not only offer new therapeutic targets for

SAPHO syndrome but also enhance understanding of its complex

pathophysiological mechanisms.

Despite recent advances in cytokine research related to SAPHO

syndrome, numerous unresolved issues persist. The precise

pathogenesis, particularly the specific roles and interactions of

various cytokines, remains elusive and necessitates further
Frontiers in Immunology 08
investigation. Moreover, while various biologics have demonstrated

therapeutic promise, their clinical efficacy varies among individuals,

highlighting the need for additional data to validate their long-term

safety and effectiveness.

Future research should aim for a more comprehensive

understanding of cytokine roles in SAPHO syndrome, especially

their interplay and impact on disease progression. Additionally,

there is a need to develop more personalized treatment strategies,

potentially by customizing treatment plans according to individual

cytokine expression profiles, to enhance therapeutic efficacy

and safety.
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