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Background: Immune checkpoint inhibitors (ICIs) have revolutionized

gastrointestinal cancer treatment, yet the absence of reliable biomarkers

hampers precise patient response prediction.

Methods: We developed and validated a genomic mutation signature (GMS)

employing a novel artificial intelligence network to forecast the prognosis of

gastrointestinal cancer patients undergoing ICIs therapy. Subsequently, we

explored the underlying immune landscapes across different subtypes using

multiomics data. Finally, UMI-77 was pinpointed through the analysis of drug

sensitization data from the Genomics of Drug Sensitivity in Cancer (GDSC)

database. The sensitivity of UMI-77 to the AGS and MKN45 cell lines was

evaluated using the cell counting kit-8 (CCK8) assay and the plate clone

formation assay.

Results: Using the artificial intelligence network, we developed the GMS that

independently predicts the prognosis of gastrointestinal cancer patients. The GMS

demonstrated consistent performance across three public cohorts and exhibited

high sensitivity and specificity for 6, 12, and 24-month overall survival (OS) in receiver

operating characteristic (ROC) curve analysis. It outperformed conventional clinical

and molecular features. Low-risk samples showed a higher presence of cytolytic

immune cells and enhanced immunogenic potential compared to high-risk samples.

Additionally, we identified the small molecule compound UMI-77. The half-maximal

inhibitory concentration (IC50) of UMI-77 was inversely related to the GMS. Notably,

the AGS cell line, classified as high-risk, displayed greater sensitivity to UMI-77,

whereas the MKN45 cell line, classified as low-risk, showed less sensitivity.

Conclusion: The GMS developed here can reliably predict survival benefit for

gastrointestinal cancer patients on ICIs therapy.
KEYWORDS

artificial intelligence, gastrointestinal cancer, genomic mutation, immunotherapy,
immune landscape
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Introduction

Gastrointestinal cancers constitute a significant health challenge

worldwide, accounting for 26% of all cancer diagnoses and 35% of

cancer-related fatalities (1). Immune checkpoint inhibitors (ICIs)

have emerged as a potentially effective therapeutic strategy for a

variety of cancer types, including those of the gastrointestinal

cancer (2, 3). However, the response rate to ICIs is limited,

varying from 10–20% across different tumor types (3, 4).

Consequently, the development of biomarkers capable of

accurately identifying patients who are likely to benefit from ICIs

therapy is of paramount importance.

Microsatellite instability (MSI), a genetic indicator of tumor

responsiveness to ICIs, stands as the sole validated biomarker in

clinical trials for gastrointestinal cancers (5, 6). However, MSI-high

tumors are relatively uncommon, representing only 0–5% of all

metastatic gastrointestinal cancer cases (7). Programmed death

ligand-1 (PD-L1) expression is another commonly assessed

biomarker for the application of ICIs, but its predictive value is

inconsistent across different trials due to heterogeneity and

variability of expression and detection (8, 9). Another promising

biomarker under investigation is the tumor mutation burden

(TMB), which has demonstrated a correlation with response to

ICIs in recent research (10). However, TMB is not a reliable

biomarker for gastrointestinal cancer (11). Not all mutations have

the same immunogenic impact, and some mutations, such as

CDKN2A, ARID1A, ARID1B, ARID2, ERBB4, and ZFHX3, may

modulate the outcomes of ICIs treatment in positive or negative

ways (12–15). Besides, In the context of gastrointestinal tumors,

certain genetic mutations are closely linked to the effectiveness of

immunotherapy. Mutations in the AKT1 and CDH1 genes have

been associated with primary resistance to ICIs (16). These insights

highlight the importance of gene mutations in predicting responses

to immunotherapy and tailoring personalized treatment approaches

for patients with gastrointestinal cancers. TMB scoring systems do

not account for the differential effects of these mutations, limiting

their predictive value for ICIs (17). To overcome this limitation,

some studies have suggested refining the TMB algorithm (18) or

constructing gene mutation-based signatures to improve the

survival prediction of ICIs in gastrointestinal cancer (17, 19, 20).

Machine learning and deep learning are powerful tools for solving

complex problems in medicine using large clinical data sets (20). These

methods have demonstrated their achievements and efficiency in

prediction and clustering tasks (21). By applying these novel

technologies, we can explore the mechanisms of therapy resistance at

different levels, such as transcriptional, epigenetic, and translational

levels, and find more clues to improve the efficacy of ICIs (22–24).

Thus, we developed a novel artificial intelligence network that

integrated traditional regression algorithms, machine learning, and

deep learning, comprising a total of 22 algorithms and 297 algorithm

combinations, greatly surpassing the previous 101 algorithm

combinations (25). This comprehensive approach allows us to more

accurately analyze and predict the outcomes of immunotherapy for

gastrointestinal tumors.
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In this work, we used genomic mutation information to develop

and validate an artificial intelligence network-based genomic

mutation signature (GMS). This study may provide guidance for

immunotherapy treatment decisions and improve the clinical

outcomes of gastrointestinal cancer.
Methods

Designing research studies and
collecting data

We present the overall study design in Figure 1. We collected 233

gastrointestinal cancer cases treated with ICIs from Memorial Sloan

Kettering Cancer Center (MSK) as a training cohort to screen for

mutations with prognostic potential and to construct a prognostic

signature (11). We also obtained two independent validation cohorts of

gastrointestinal cancers with ICIs treatment from public databases. The

combined Janjigian and Pender cohort comprised 39 cases of

metastatic chemotherapy-refractory esophagogastric cancer (26) and

9 cases of metastatic or advanced gastrointestinal cancer (27). The

PUCH cohort consisted of 91 patients with gastrointestinal cancer (17).

The patient enrollment criteria are as follows: (1) primary

gastrointestinal cancers; (2) availability of gene mutation profiles and

clinical annotations, including follow-up data; (3) receipt of at least one

cycle of a CTLA-4 inhibitor, PD-1/PD-L1 inhibitor or combined

treatment. Furthermore, we obtained somatic mutation data, mRNA

expression profiles, and copy number variations (CNV) for a non-

immunotherapy gastrointestinal cancer cohort consisting of 184 cases

of esophageal cancer, 439 cases of gastric cancer, and 380 cases of

colorectal cancer from The Cancer Genome Atlas (TCGA) database.

The genomic and clinical data for the MSK cohort, the Janjigian and

Pender cohorts, and the PUCH cohort, are openly available and were

downloaded from the following sources: MSK cohort (http://

www.cbioportal.org/study?id=tmb_mskcc_2018), Janjigian cohort

(https://www.cbioportal.org/study/summary?id=egc_msk_2017),

Pender cohort (http://clincancerres.aacrjournals.org/content/27/1/

202.article-info), and PUCH cohort (https://www.bcgsc.ca/

downloads/immunoPOG/). The data from the TCGA dataset are

available for download at https://portal.gdc.cancer.gov/.
Analysis of mutation data and evaluation of
clinical outcomes

Tumor tissues from the MSK and Janjigian cohorts were subjected

to sequencing using the MSK-IMPACT sequencing technique, which

involved either a 341-gene panel, a 410-gene panel, or a 468-gene panel.

For the Pender cohort, whole-genome sequencing (WGS) was utilized

for tumor tissue analysis, and whole-exome sequencing (WES) was

employed for the PUCH cohort. The mutated gene status was assigned

a value of 1, and the wild-type gene status was assigned a value of 0. The

primary survival endpoint considered was overall survival (OS). The

clinical response was assessed per the Response Evaluation Criteria in
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Solid Tumors version 1.1. Durable clinical benefit (DCB) met the

criteria for complete response (CR), partial response (PR), or stable

disease (SD) persisting for ≥6 months. Conversely, no durable benefit

(NDB) was defined as progressive disease (PD) criteria or SD <6

months (28).
Artificial intelligence network-based
signature generation

We constructed a novel artificial intelligence network based on 297

algorithm combinations, integrating 22 algorithms from traditional

regression, machine learning, and deep learning. These algorithms

included random survival forest (RSF), supervised principal

components (SuperPC), oblique random survival forests

(obliqueRSF), gradient boosting with component-wise linear models

(GLMBoost), gradient boosting with regression trees (BlackBoost),

stepwise Cox, recursive partitioning and regression trees (Rpart),

parametric survival model (Survreg), Ranger, conditional inference

trees (Ctree), least absolute shrinkage and selection operator (LASSO),

partial least squares regression for Cox (plsRcox), survival support

vector machine (survival-SVM), Ridge, elastic network (Enet), deephit

survival neural network (DeepHit), deepsurv survival neural network

(DeepSurv), cox-time survival neural network (CoxTime), extreme

gradient boosting (XGBoost), Coxboost, CForest, and variable selection

oriented LASSO bagging algorithm (VSOLassoBag). We developed the

signature as follows: (1) Prognostic genes were identified via univariate

Cox regression in the MSK cohort. (2) Initial signature discovery

utilized an artificial intelligence network in theMSK cohort. (3) Further

testing of the network occurred in two validation cohorts (Janjigian/

Pender and PUCH). (4) Harrell’s concordance index (C-index)

evaluated each model’s performance across all cohorts. The model

with the maximal average C-index across the test cohorts was deemed

optimal based on its superior predictive ability. The source code and

specific parameters of this artificial intelligence network can be found at

the following GitHub repository: https://github.com/miaolab1998/

AI_network/tree/main.
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Functional annotation of the GMS

We collected immune modulators from a previous study

(29). We used four algorithms to quantify immune infiltrating

cells: the quanTIseq algorithm (30) of 11 immune cells, the

estimating the proportions of immune and cancer cells (EPIC)

algorithm (31) of eight immune cells, the Microenvironment

Cell Populations-counter (MCPcounter) algorithm (32)of ten

immune cells, and the Estimation of STromal and Immune cells

in Malignant Tumours using Expression data (ESTIMATE)

algorithm (33). We also acquired 29 classical immune

signatures from the work of He et al. (34). The cytolytic

activity scores (CYTs) were estimated using the geometric

mean of GZMA and PRF1 (35). Employing the GSVA R

package, which is grounded in the single-sample gene set

enrichment analysis (ssGSEA) technique, we quantified the

enrichment levels of the 29 immune signatures across each

sample (36) . Ut i l i z ing the GSVA method (36) and

clusterprofiler (37) R packages, we executed gene set variation

analysis (GSVA) and gene set enrichment analysis (GSEA) on

the MSigDB database. We also used Metascape for enrichment

analysis (38).
Calculation of immunogenomic indicators

We obtained immunogenomic indicators from the pan-cancer

immune landscape study (29). In summary, they established the

intertumoral heterogeneity (ITH) score to quantify the subclonal

genomic fraction, reflecting tumor genome segments unaccounted

for by the dominant clone. This was determined via ABSOLUTE, a

tool modeling tumor alterations including subclonal and clonal

components with varying ploidies. CNV burden metrics were n_segs,

indicating segment count per sample, and frac_altered, denoting

proportion of bases diverging from baseline ploidy. The aneuploidy

score aggregated altered chromosomal arms. Additionally, T-cell
FIGURE 1

An illustration of the general workflow adopted in this study.
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receptor (TCR) and B-cell receptor (BCR) diversity indices like

Shannon entropy and richness were calculated from cancer RNA-

seq data.
Oncogenic pathway enrichment scores

From the study by Sanchez-Vega et al (39), we obtained ten

canonical oncogenic pathways that include 187 oncogenes. We

applied the GSVA method, facilitated by the GSVA R package (36),

to calculate the enrichment scores for these pathways in each sample.
Uncovering genomic mutational signatures

Employing the maftools R package, we conducted nonnegative

matrix factorization (NMF) on a dataset of 96 trinucleotide context

mutations from gastrointestinal cancer specimens, which were

obtained from the TCGA. We then compared the resulting

mutational landscape to the Catalogue of Somatic Mutations in

Cancer (COSMIC), employing cosine similarity for the assessment.
Drug prediction

We retrieved data on tumor cell line sensitivity to potential drugs

and mutations from the Genomics of Drug Sensitivity in Cancer

(GDSC) database. The cell line sensitivity was assessed using the

lower half maximal inhibitory concentration (IC50) values of the

respective drugs.
Cell line culture

The human gastric cancer cell lines AGS and MKN45 were

acquired from the Shanghai Institutes for Biological Sciences, part of

the Chinese Academy of Sciences. MKN45 cells were grown in RPMI

1640 medium supplemented with 10% FBS and 1% penicillin-

streptomycin. AGS cells were cultivated in Ham’s F-12 medium with

the same supplements. The cells were incubated at 37°C with 5% CO2.
CCK-8 detection

Cells were seeded into a 96-well plate at an optimal density of

5,000 cells per well. We treated the cells with different

concentrations of UMI-77 and incubated them for 48 h and 72 h.

We measured and recorded the absorbance value on the cell growth

curve and calculated the IC50.
Colony formation assay

1000 untreated cells were cultured in each well of a six-well

plate, either with UMI-77, DMSO, or without any treatment, for a

period of 2 weeks. Following this, colony formation was analyzed.
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Statistical analysis

Categorical data were examined with the chi-square test, and

numerical data with the Wilcoxon test. Pearson test was employed

for association analysis. Survival curves were generated with the

Survival and survminer packages in R. Univariate and multivariate

Cox regression analyses were performed to assess the GMS’s clinical

factor independence. Receiver operator characteristic curve (ROC)

and area under the ROC curve (AUC) were used to determine the

predictive sensitivity and specificity for survival or response.

Statistical significance was defined as a P value below 0.05, unless

stated otherwise. All analyses were conducted using R version 4.2.3.
Results

Construction and valiation of the GMS

The characteristics of patients in these three immunotherapeutic

cohorts are detailed in Supplementary Table 1. The training cohort

consisted of 233 gastrointestinal cancer patients (esophagogastric

cancer, N = 123; colorectal cancer, N = 110) from MSK who

received ICIs. We identified 74 prognostic genes through univariate

Cox analysis and selected seed genes with a mutation frequency greater

than 3%. These genes were then subjected to our artificial intelligence

network to construct a GMS. The optimal model, comprising a

combination of VSOLassoBag and RSF, was determined based on its

highest average C-index (C-index = 0.71) among the 297 algorithm

combinations evaluated through 10-fold cross-validation (Figure 2A).

The VSOLassoBag algorithm selected 23 genes based on curve elbow

point detection (CEP) method and used them to construct the most

reliable GMS by RSF (Figures 2B, C). The GMS score was determined

for each participant and stratified them into high and low-risk groups

per the training set (median GMS score = 16.65). The high-risk group

had markedly inferior OS versus low-risk (all p < 0.05) across all

cohorts (Figures 2D–F). In the MSK cohort, 6-month AUC = 0.785,

12-month AUC = 0.799, and 18-month AUC = 0.837 (Figure 2D). In

the Janjigian&Pender cohort, 6-month AUC = 0.771, 12-month AUC

= 0.823, and 18-month AUC = 0.829 (Figure 2E). In the PUCH cohort,

6-month AUC= 0.782, 12-monthAUC= 0.699, and 18-month AUC=

0.697 (Figure 2F). The time-dependent ROC curves demonstrated the

strong and consistent performance of the GMS across all cohorts. In

the two test cohorts, a notable number of patients with DCB had low

GMS scores (all p < 0.05). The ROC analyses in these cohorts suggested

that the GMS could be a valuable predictive biomarker for

immunotherapy clinical benefit, with AUCs of 0.786 and 0.643,

respectively (Figures 2G, H). These findings suggest the GMS may

act as a robust predictor of responses and outcomes for gastrointestinal

cancer patients undergoing immunotherapy.
The strong predictive performance of GMS

Univariate and multivariate Cox regression analyses were

conducted across all cohorts to evaluate GMS as an independent
frontiersin.org
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predictor of OS in immunotherapy patients. In the univariate and

multivariate analyses, GMS emerged as a robust predictor, not

affected by adjustments for age, gender, drug category, MSI, PDL-1,

and TMB (Figures 3A–C), solidifying its predictive utility in

prognosis. To compare the predictive superiority of GMS, we

assessed it against common clinical traits and molecular features.

GMS exhibited significantly higher accuracy compared to other
Frontiers in Immunology
 05
variables, such as age, gender, drug type, the genomic mutation

signature of immunotherapy for gastrointestinal tumors identified

in previous studies (GIPS) (17), TMB, MSI, and PD-L1, across all

three cohorts (Figures 3D–F). These results indicate that our GMS

holds promise as a reliable surrogate for predicting the prognosis of

gastrointestinal cancer patients receiving immunotherapy in

clinical practice.
B C

D

E

F

G

H

A

FIGURE 2

Development and validation of an artificial intelligence network using 297 algorithm combinations. (A) Evaluation and C-index computation for 297
prediction models across all validation datasets. (B) Determination of the number of trees by minimizing error. (C) Variable importance of the top 23
genes determined using the random survival forest (RSF) algorithm. (D-F) Kaplan-Meier survival analysis (left) and receiver operating characteristic
(ROC) (right) curves for overall survival (OS) in the MSK (D), Janjigian and Pender (E), and PUCH (F) cohorts. (G, H) The correlation between genomic
mutation signature (GMS) and response (left), as well as the ROC of GMS predicting clinical response (right) in the Janjigian and Pender cohort (G),
and PUCH cohort (H).
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Potential biological peculiarities of
the GMS

We examined the biological mechanisms of GMS in the TCGA

dataset. We noted that the GMS displayed a negative correlation

with numerous immune pathways, including graft-versus-host

disease, natural killer cell-mediated cytotoxicity, cytokine-cytokine

receptor interaction, antigen processing, asthma, allograft rejection,

and autoimmune thyroid disease pathways (Figure 4A). Conversely,

the GMS showed a positive correlation with several tumorigenic

pathways, such as DNA replication, mismatch repair, manchette
Frontiers in Immunology 06
assembly, cytosine DNA methylation, meiotic telomere clustering,

and cell cycle pathways (Figure 4A). Further analysis revealed

significant differences in immunological and tumorigenic

pathways between the high- and low-risk groups (Figure 4B). The

genes with high expression in the low-risk group were enriched in

immune activation and infiltration pathways (Figure 4C). GSEA

using Kyoto Encyclopedia of Genes and Genomes (KEGG) terms

showed the low-risk group had enrichment in NK cell cytotoxicity,

Th17 cell differentiation, and influenza A, as anticipated

(Figure 4D). In contrast, the high-risk group displayed

enrichment in DNA replication and cell cycle pathways. These
B

C

D E F

A

FIGURE 3

Univariate and multivariate Cox regression analyses of the GMS and other characteristics. (A) GMS subjected to univariate and multivariate Cox
regression analyses in the MSK cohort. (B) GMS subjected to univariate and multivariate Cox regression analyses in the Janjigian and Pender cohort.
(C) GMS subjected to univariate and multivariate Cox regression analyses in the PUCH cohort. (D) Comparison of GMS performance with other
clinical and molecular variables for prognosis prediction in the MSK cohort. (E) Comparison of GMS performance with other clinical and molecular
variables for prognosis prediction in the Janjigian and Pender cohort. (F) Comparison of GMS performance with other clinical and molecular
variables for prognosis prediction in the PUCH cohort.
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results indicate that a lower GMS score tends to be associated with

an inflammatory environment.
Extrinsic immune landscapes of the GMS

We assessed the GMS as an indicator of immune status by

analyzing its association with infiltration of immune cells and
Frontiers in Immunology 07
expression of immune checkpoints. Figures 5A, B show that

the low-risk group had increased infiltration of immune cells and

immune modulatory activity in the TCGA dataset. Comparison of

the 29 immune signatures between groups revealed that the low-risk

group had higher prevalence of immune cells including CD8+

T cells (p < 0.05) (Figure 5C). To determine if the risk

groups corresponded to low and high infiltration cohorts,

unsupervised clustering of the 29 immune signatures for TCGA
B

C

D

A

FIGURE 4

Biological peculiarities of the GMS in the TCGA dataset. (A) Outlining the biological characteristics of two groups based on GMS using MsigDB-based
Gene Set Variation Analysis (GSVA) in the TCGA dataset. (B) T-distributed Stochastic Neighbor Embedding (t-SNE) plot to illustrate differences in
pathway activity between two GMS groups based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. (C)
Metascape-based enrichment analysis of high expression genes in the low-risk group. (D) Gene Set Enrichment Analysis (GSEA) for GO and KEGG
terms to investigate biological pathways associated with GMS in the TCGA dataset. **p < 0.01; ***p < 0.001.
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patients was performed. This identified two distinct immune

patterns: high and low immune infiltration (Figure 5D). Notably,

the low-risk group was more common in the high infiltration

cluster (p < 0.05) (Figure 5E). Furthermore, low-risk tumors

were linked to significantly higher CYT scores (p < 0.05)

(Figure 5F). These results implied a relatively inflamed and

immunostimulatory microenvironment, which may be amenable

to immunotherapy (40).
Intrinsic immune landscapes of the GMS

To clarify the factors affecting tumor immunogenicity between

the two risk groups, we initially examined the neoantigen load, TCR

diversity, mutation rate, BCR diversity, CNV burden, aneuploidy,

and intertumoral heterogeneity. Compared to the high-risk group

(all p < 0.05), the low-risk group harbored a higher mutation rate

and neoantigen burden alongside significantly greater BCR and

TCR diversity (all p < 0.05) (Figure 6A). However, the high-risk

group exhibited significantly higher aneuploidy and CNV burdens

(all p < 0.05) (Figure 6A). This aligns with existing research

associating tumor aneuploidy with dampened immunotherapy

responses (41). Compared to the low-risk group, individuals in

the high-risk group exhibited significantly greater intertumoral

heterogeneity (p < 0.05) (Figure 6A). This finding aligns with the

hypothesis that tumors, facing a diminished immune response, may

evolve clonally, leading to increased heterogeneity. This suggests

that the heightened immunogenicity in the low-risk group might

trigger an extrinsic immune response. To further explore the

underlying mutational processes, we profiled mutational

signatures based on somatic mutation data in both groups. This

analysis revealed two distinct mutagenic patterns within the TCGA

cohort (Figure 6B). The low-risk group exhibited a higher

prevalence of SBS6, a mutational signature associated with

defective DNA mismatch repair (Figure 6C). We further analyzed

oncogene enrichment in ten key pathways, revealing distinct

patterns. Whereas the cell cycle and Wnt pathways were enriched

in the high-risk group (potentially linked to immune exclusion)

(42), the Notch, PI3K, RAS, TGF beta, and TP53 pathways showed

higher activity in the low-risk group (Figure 6D).
Copy number features of the GMS

The high-risk and low-risk groups harbored vastly different

chromosomal abnormalities (Figure 7A). Notably, the low-risk

group, unlike the high-risk group (Figures 7B, C), exhibited focal

amplifications of immune genes, including PD-L1 (9p24.1) and PD-

L2 (9p24.1). While 625 amplified genes were shared between the

groups, the high-risk and low-risk groups harbored 373 and 1597

unique amplified genes, respectively. We further analyzed these

amplified genes using Gene Ontology (GO) biological processes

(Figure 7D). The GO enrichment analysis revealed a different

pattern in the low-risk group (Figure 7D), including five

immune-related processes focused on cell proliferation

(mononuclear, lymphocyte, and leukocyte) and adaptive
Frontiers in Immunology 08
immunity through immunoglobulin superfamily domain

recombination. Notably, no such immune pathways enrichment

was observed in the high-risk group (Figure 7D). Intriguingly, PD-

L1 and PD-L2, key players in immune modulation, reside within the

9p24.1 amplification peak unique to the low-risk group, suggesting

their potential contribution to the observed enhanced immune

response. Consistent with this, mRNA expression of PD-L1 and

PD-L2 mirrored the CNV pattern, with their levels being

significantly higher in the low-risk group (Figure 7D),

highlighting the influence of tumor copy number variations on

immune infiltration patterns.
Identification of small molecule drugs
negatively associated with GMS

Based on the GDSC database, we identified that UMI-77,

luminespib, lapatinib, and sapitinib exhibited the lowest p-values

in the correlation test between GMS score and IC50, with UMI-77

having the smallest p-value (p < 0.05) (Figure 8A). We inferred that

UMI-77 could be more effective for high-risk patients. To test this

hypothesis, we measured the GMS of two cell lines in our laboratory

(GMS score of AGS: 17.91; GMS score of MKN45: 4.43) and

compared their sensitivity to UMI-77. The IC50 of UMI-77 for

AGS and MKN45 was 8mM and 125mM, respectively (Figure 8B). A

plate clone formation assay confirmed that AGS was more sensitive

to UMI-77 (Figure 8C).
Discussion

A genomic classifier named GMS, consisting of 23 genes, was

developed and validated. It was derived from an artificial

intelligence network aimed at enhancing the prediction of ICIs

therapy efficacy in gastrointestinal cancer patients. The selection of

the most efficient model involved utilizing a combination of

VSOLassoBag and RSF methods, which displayed the highest

average C-index in the test cohorts. The GMS had a prognostic

value independent of other factors and showed consistent

performance in the validation cohorts. ROC analysis also

demonstrated that the GMS had high sensitivity and specificity in

predicting 6/12/24 months OS and clinical response. The GMS

exhibited a significantly superior level of predictive accuracy in

comparison to both clinical attributes (e.g., sex) and molecular

characteristics (e.g., MSI, TMB, and PD-L1 expression). This

indicates the considerable potential for enhanced clinical

translation and utilization of the GMS.

Leveraging the comprehensive data of the TCGA cohort, we

delved into the diverse responses of cancers to immunotherapy

treatment. The low-risk group stood out for its dense immune cell

infiltration, rigorously supported by multiple algorithms. This

internal immunological terrain was additionally fortified by

potent immunogenic features: elevated mutation rates and a

substantial neoantigen burden. In contrast to the high-risk group,

the low-risk group also exhibited increased expression of immune

checkpoint proteins such as PD-L1, PD-1, and CTLA-4, which
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could contribute to a more favorable response to ICIs therapy. The

activated antitumor immunity, elevated PD-L1, PD-L2 and CTLA-4

expression, and heightened tumor immunogenicity likely explain

why the low-risk group benefits from ICI therapy compared to their

high-risk counterparts.

Our research offers the following novel contributions and

practical implications. Firstly, we have developed an artificial
Frontiers in Immunology 09
intelligence network that comprises 297 algorithm combinations.

This integration encompasses 22 algorithms, drawn from

traditional regression, machine learning, and deep learning

methodologies . This network featured a diverse and

comprehensive set of algorithms, and exhibited superior

predictive performance than previous studies (17, 25). Moreover,

the optimal combination was VSOLassoBag and RSF, which was
B

C

D
E F

A

FIGURE 5

Immune infiltrating characteristics of the GMS in the cohort from TCGA. (A) The relationship between the GMS and infiltrating immune cell
populations. (B) The association between the GMS and immune modulatory factors. (C) The relationship between the GMS and 29 immune
signatures score. (D) Unsupervised clustering based on 29 immune signatures. (E) The proportions of high and low immune infiltration were
estimated in both the high-risk and low-risk groups. (F) A comparison of the cytolytic activity scores (CYTs) score was conducted betweenthe high-
risk and low-risk groups. NS, no significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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not considered in the prior study (25). The dimensionality of the

variables was further reduced by the additional algorithm

combinations, making the GMS more simplified and feasible.

Secondly, the creation of multibiomarker predictive models

demands a thorough comprehension of the elements impacting

the dependability and precision of high-throughput assays in

clinical scenarios. The variability in biomarker measurements,

particularly those that is technical (platform-dependent), is a

critical concern. A number of mRNA-based signatures have been
Frontiers in Immunology 10
developed to forecast clinical efficacy for patients receiving ICI

therapy, including the T cell-inflamed gene-expression profile

(GEP), which comprises an 18-gene panel (43). The evaluation of

mRNA expression is carried out through relative quantification by

normalizing it to reference genes (44). The risk scoring and

threshold values of mRNA signatures may not be directly

applicable for validation with diverse measurement data types. In

this study, we have identified specific gene mutations to forecast the

clinical effectiveness of ICIs. Consequently, the GMS is resilient to
B C

D

A

FIGURE 6

Exploration of potential intrinsic immune response and escape landscapes in the high-risk and low-risk groups. (A) Comparison of immunogenomic
markers between the high-risk and low-risk groups. (B) Analysis of mutational activities of two extracted mutational signatures. (C) Comparison of
the SBS6 signature activity between high-risk and low-risk groups. (D) Comparison of enrichment scores for 10 oncogenic pathways between high-
risk and low-risk groups. NS, no significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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technical variations, even when different platforms are employed

across various centers. Thirdly, in clinical practice, the GMS aids in

avoiding potential immune-related adverse effects for patients who

are unlikely to respond, and it enables the early identification of

patients who may benefit from more effective therapies.

Additionally, given that the average cost of a treatment regimen

often exceeds $120,000 (45), implementing biomarker strategies

that improve diagnostic precision can help prevent significant costs

for treatments with limited expected benefits. In summary, since
Frontiers in Immunology 11
obtaining tumor specimens through targeted next-generation

sequencing (NGS) of these genes is simpler and less costly

compared to assessing TMB, which are complex and expensive in

routine practice, the GMS with these refinement merits evaluation.

Such an assessment could enhance diagnostic accuracy and cost-

effectiveness in clinic.

Utilizing the GDSC, we identified UMI-77, a small molecule

drug that demonstrated the most significant p-value and a strong

negative correlation with GMS. UMI-77 is an FDA-approved
B C

D

A

FIGURE 7

Examination of Copy Number Alterations in High-Risk and Low-Risk Groups. (A) Displaying copy number profiles for the high-risk group (upper) and
low-risk group (lower). (B) Elaborating on cytobands with focal amplifications (left) and deletions (right) peaks identified within the high-risk group.
(C) Exploring cytobands with focal amplifications (left) and deletions (right) peaks detected in the low-risk group. (D) Circular plot showcasing the
top 5 biological processes along with their corresponding enriched genes in the high-risk (left) and low-risk (right) groups. Additionally, comparing
the mRNA expression of PD-L1 and PD-L2 between the high-risk and low-risk cohorts from TCGA (middle). **p < 0.01; ***p < 0.001.
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candidate drug for pancreatic cancer, known to inhibit cell

proliferation and induce apoptosis in pancreatic cancer cells (46).

Moreover, UMI-77 triggers mitophagy, a process that selectively

eliminates damaged mitochondria, making it a potential therapeutic

option for Alzheimer’s disease (47, 48) and glioma (49). Our

observations revealed that the AGS cell line, categorized in the

high-risk group, displayed greater sensitivity to UMI-77 than the

MKN45 cell line, which belongs to the low-risk group. Based on

these findings, we hypothesize that combining UMI-77 with ICIs

may enhance the efficacy of ICIs in the high-risk group. However,

this hypothesis necessitates further validation through in

vivo experiments.
Frontiers in Immunology 12
Limitations

Our research is not without limitations, which are important to

acknowledge. Firstly, we did not have access to comprehensive

clinical records for all patients, potentially introducing bias in the

data analysis. Secondly, the inclusion of diverse gastrointestinal

cancer types and the retrospective nature of the study may have

introduced confounding factors. Thirdly, the abundance of immune

cells and the expression of immune checkpoints should be

substantiated through immunohistochemistry techniques. To

address these limitations, further analysis and validation are

needed through prospective studies involving a large cohort of
B

C

A

FIGURE 8

Identification of small molecule drugs negatively associated with GMS. (A) Correlation of half maximal inhibitory concentration (IC50) with GMS for
UMI-77, Luminespib, Lapatinib, and Sapitinib. (B) IC50 of UMI-77 of AGS (right) and MKN45 (left). (C) Clonogenicity of AGS (above) and MKN45
(below) by using a colony-forming assay.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1428529
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2024.1428529
gastrointestinal cancer patients with diverse ethnic backgrounds

receiving ICIs therapy. Such studies would help strengthen the

findings and implications of our research.
Conclusions

In summary, our GMS emerges as a promising biomarker for

both prognosis and prediction of ICI treatment response in

gastrointestinal cancer patients. This signature also presents an

economical approach to pinpoint patients who may benefit from

immunotherapy, a concept that should be further explored through

prospective research. The GMS could significantly contribute to the

refinement of personalized treatment plans and the enhancement of

patient outcomes in gastrointestinal cancer immunotherapy.
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