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Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune

checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in

advanced RCC. However, the overall response rate of RCC to monotherapy

remains limited. Given its immunomodulatory effects, a combination of

radiotherapy (RT) with immunotherapy is increasingly used for cancer

treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy

(CIRT), represents an innovative approach to cancer treatment, offering

superior physical and biological effectiveness compared to conventional

photon radiotherapy and exhibiting obvious advantages in cancer treatment.

The combination of CIRT and immunotherapy showed robust effectiveness in

preclinical studies of various tumors, thus holds promise for overcoming

radiation resistance of RCC and enhancing therapeutic outcomes. Here, we

provide a comprehensive review on the biophysical effects of CIRT, the efficacy

of combination treatment and the underlying mechanisms involved in, as well as

its therapeutic potential specifically within RCC.
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1 Introduction

Globally, renal tumors are the 14th most prevalent malignant

tumors, registering 430,000 new cases in 2020. With a steadily rising

incidence rate, the burden of RCC continues to grow, resulting in

numerous patients dying annually due to inadequate treatment (1,

2). 90% of renal tumors are renal cell carcinoma (RCC). At the time

of diagnosis, 30% of RCC patients already exhibit metastasis, and a

prognostic analysis indicates that nearly 30% of postoperative

patient possess recurrence or metastasis. Since RCC responds

poorly to both radiation and chemotherapy, a more effective

treatment is critical for current RCC therapy (3–5).

Immune checkpoint inhibitors (ICIs), such as anti-programmed

death receptor 1 (anti-PD-1), anti-programmed death-ligand 1 (anti-

PD-L1), and anti-cytotoxic T-lymphocyte-associated protein-4 (anti-

CTLA-4), constitute the primary approach to immunotherapy,

achieving a considerable effect in patient with non-small cell lung

cancer (NSCLC) or malignant melanoma among other cancer patient

(6, 7). For RCC, ICIs treatment notably enhances the objective

response and overall survival rates in patients with advanced

disease, serving as the first- and second-line therapies for metastatic

RCC. However, the total clinical efficacy rate stands at roughly 20%-

40%, with only a subset of patients truly benefiting from

immunotherapy (8–10). Hence, augmenting the effects of

immunotherapy especial ly a combining treatment of

immunotherapy with different therapeutic strategies is the major

concern of RCC therapy currently. Studies indicate that RT can

modulate immune responses and induce immunogenic cell death,

thereby enhancing the systemic anti-tumor effects of

immunotherapy. Extensive research focusing on the combination

of RT with ICIs is underway (11, 12). Since RCC exhibits limited

sensitivity to X-ray and g-ray radiation, few studies reported the

application of combination treatment in RCC.

Charged particles, especially hydrogen ions (protons) and

carbon ions, are being increasingly used for cancer therapy.

Notably, carbon ion radiotherapy (CIRT), the most prevalent

used heavy ion radiation, has superior physical and biological

characteristics to conventional photon radiation such as X-rays or

g-rays (13, 14). In addition, the combination treatment of CIRT and

immunotherapy of malignant melanoma and breast cancer showed

a better tumor suppression effect than the combination treatment of

proton radiation thus present an encouraging prospect of CIRT

combination treatment (13, 15). The combination treatment of

CIRT and ICIs might offer a solution to RCC therapy.

In this article, we reviewed the biophysical effects of CIRT, the

efficacy of combination treatment and the underlying mechanisms

involved in, as well as its therapeutic potential specifically within RCC.
2 Radiation therapy and radiation
therapy of RCC

2.1 Radiation therapy and CIRT

Approximately half of global tumor patients are treated with

ionizing radiation (IR) therapy nowadays, either alone or as a
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complement to other treatments (16). Photon radiation such as

X-rays and g-rays are the most common cancer treatments and

recently RT has emerged as a primary approach for cancer

treatments (17). Though clinical photon radiotherapy enables the

effective dosage distribution of tumor area, the concurrently

irradiation of surrounding healthy tissues is inevitable and

nonnegligible. Clinically, the late effects of radiotherapy gravely

impact patients’ quality of life. Consequently, an important aspect

of current radiation oncology research is still focusing on strategies

to mitigate the influence of conventional radiation therapy on

healthy tissues by other treatments such as chemotherapy,

surgery, immunotherapy, or comprehensive treatments.

Preclinical studies and clinical usage of particle radiation, such

as protons, heavy ions beam, neutrons, and boron neutrons therapy,

indicate its distinct physical and biological attributes. Presently,

carbon ion beams represent the most prevalent types of medical

heavy ions beam radiation and its elevated linear energy transfer

(LET) endows it with distinctive radiobiological traits. When

carbon ions enter tissue, they will release the vast majority of

their energy at the end of trajectory, form an inverted energy

deposition curve which called Bragg peak (18). Modulating

the energy of ions allows for adjusting the depth of the Bragg

peak in tissue, leading to the focused release of energy within

tumor sites. This characteristic of energetic charge particle

radiation greatly reduces energy deposition in healthy tissues,

providing precise targeting of tumor area and minimizing

side effects. Yet, the Bragg peak’s duration is sharp, with its half-

maximal width spanning just a few millimeters. In clinical settings,

a spread-out Bragg peak (SOBP) is frequently utilized to encompass

tumor areas. The high linear energy transfer (LET) characteristic

ensures that the SOBP has elevated radiation dose deposition,

facilitated accurate and thorough lesion irradiation while

also significantly reduced harm to healthy tissue (19).

Additionally, CIRT typically causes clustered DNA damage,

making it difficult for cells to repair, thus facilitating the

elimination of tumor cells (20). Furthermore, CIRT is less

sensitive to the alterations in tumor cell cycle, radiation

susceptibility, and oxygen concentration, allowing them to

substantially counteract tumor radio-resistance.

Currently, the US, Japan, Germany, and China are leading in

the field of heavy ion cancer therapy, achieving significant results in

breast cancers, skin cancer, cranial cancers, prostate cancer, and

more. In China, several hospitals now offer heavy ion cancer

treatment services. For instance, the The Wuwei Tumor Hospital

in northwest China’s Gansu Province boasts China’s first self-

developed carbon ion therapy facility which was co-developed by

the Institute of Modern Physics, Chinese Academy of Sciences

(CAS) and a subsidiary company. Since 2020, the facility has

completed over 1,500 cases of tumor patient, achieving

considerable success. According to the data from the Particle

Therapy Co-Operative Group (PTCOG), by the end of 2020,

40,000 patients globally had undergone heavy ion radiotherapy

(primarily CIRT).

Currently, many clinical studies on heavy ion radiotherapy have

been completed (Table 1) or are in progress (Table 2). Among 216

NSCLC patients, single-fraction CIRT showed comparable
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efficacy to the previous fractionated regimens and only one case

of serious late toxicity was observed (21). 21 patients with

melanoma treated with heavy ion beam irradiation showed

that the 3-year local control rate was 92.3% (22). 75 patients with

locally recurrent nasopharyngeal carcinoma were treated with
Frontiers in Immunology 03
CIRT, the 1-year overall survival was 98.1% and no severe acute

or late toxicities were found (23). Among 2,157 prostate cancer

patients receiving CIRT, the 5-year biochemical relapse-free

survival rates for low, intermediate, and high-risk patients were

100%and no serious toxicities were identified (24). In addition,
TABLE 1 Clinical cases of heavy-ion radiotherapy.

Tumor types Sample
size

Dosage Efficacy Toxicity

nasopharyngeal
carcinoma1

75 50-66 Gy, 2-3 Gy/fraction 1-year OS: 98.1% No≥grade 2 acute toxicity;
≥grade 3 late toxicity:

mucosal necrosis (9.3%)
dry mouth (1.3%)

temporal lobe necrosis (1.3%)

Melanoma2 21 57.6-64 Gy/16 fractions 3-year OS:49.2%
3-year LCR:92.3%

Acute grade 2-3 toxicity: mucositis
(53%), leukopenia (43%) was improved

after conservative treatment
no ≥grade 3 late toxicities

prostate cancer3 2517 63 Gy、66 Gy/20 fractions
57.6 Gy/16 fractions
51.6 Gy/12 fractions

5-year OS:
Low risk group,100%;

medium risk group,99%;
high risk group,96%

5-year LCR:
low risk group,98%;

medium risk group: 96%;
high risk group: 99%

Grade 2 late toxicity:
GU 4.6%、GI 0.4%

No ≥ grade 3 GI toxicity
≥ grade 3 acute and late GU

Toxicity (<0.1%)
grade 2 late toxicity: GU 4.6%,

GI0.4%

NSCLC4 216 28 Gy-50 Gy 5-year OS:49.4%;
5-year LCR:72.7%

No ≥grade 3 toxicities
(pulmonary and skin adverse

effects);
grade 2 toxicities (< 2%)

1 case of grade 3 late toxicity
(chest wall pain)

adenocarcinoma
of the uterine
cervix5

58 Total pelvic
irradiation:36 Gy/12 fractions,

Local enhanced
irradiation:26.4 Gy-38.4 Gy/8

fractions

5-year OS (Salvage Surgery):68.2%
5-year OS:38.1%
5-year LCR:54.5%

≥Grade 2 late toxicity (13.8%)

Rectal Cancer6 180 67.2-73.6 Gy/16 fractions 73.6Gy:
5-year OS:59%;

5-year LCR:88%. Single-arm phase 2
trial:

3-year OS: 75%;

No > grade 3 acute toxicity

Uterine Cervical
Carcinoma7

22 72 Gy/20 fractions 2-year OS:82%;
2-year LCR:67%. 2-year LCR (Salvage

therapy): 81%

Acute toxicity:
stage 1, no ≥grade 3 non- hematologic toxicity;
stage 2, grade 3 diarrhea (1 case), grade 3 nausea

(2 cases), no acute
grade 4 hematologic toxicity

late toxicity: ≤grade 3
gastrointestinal toxicity (2 cases)

hepatocellular
carcinoma8

23 55、60、65 and 70 Gy/10
fractions

1-year OS:91.3%
3-year OS:81.9%
5-year OS:67.1%

Acute toxicity:
grade 3 toxicity 8.7% (leukopenia)

late toxicity:
grade 4 8.7% (due to gastric
bleeding, cirrhosis and portal

hypertension)

chordomas and
chondrosarcomas9

67 60 Gy/20 fractions Chondrosarcoma:
3-year OS:100%, 3-year LC: 100%

Chordomas:
3-year OS:89%, 3-year LC:87%

No ≥ grade 3 toxicity

RCC10 10 72 Gy/16 fractions 5-year OS: 74%
5-year LCR:100%

Grade 4 skin toxicity:one patient
(T4 tumor)
OS, overall survival; LCR, local control rate; GU, genitourinary toxicity; GI, Gastrointestinal toxicity; NSCLE, non-small cell lung cancer; RCC, renal cell carcinoma.
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in cervical cancer, uterine adenocarcinoma, rectal cancer,

hepatocellular carcinoma, chondrosarcoma, pancreatic cancer,

and chordoma, heavy ion radiotherapy has also shown better

clinical results and lower radiation toxicities (25–29). As

compared with XRT, the 5-year overall survival rate for

malignant melanoma post-CIRT (44%) was significantly higher

than conventional radiation therapy (CRT) (25%) (30); In stage I

inoperable NSCLC patients, the 5-year overall survival rate for

CIRT (42%) was significantly higher than CRT (20%) (31). All these

studies demonstrated the safety and efficacy of heavy ion

radiotherapy especially the CIRT.
2.2 Radiation therapy of RCC

In vivo and in vitro studies have confirmed that RCC is a radio-

resistant tumor, and photon radiation is primarily used for

symptom relief in patients with advanced renal cell carcinoma

(32–34).

Recently, Stereotactic Body Radiation Therapy (SBRT) has

shown intriguing therapeutic effects in the treatment of RCC (35).
Frontiers in Immunology 04
SBRT is a radiotherapy technique that utilizes image-guided

technology and highly conformal doses, achieving significant local

control rates for primary and metastatic tumors. It can be applied to

patients who are not surgical candidates as well as those with

extensive or oligometastatic disease. Several studies have already

confirmed the excellent efficacy and safety of SBRT in RCC (36, 37),

considering the side effect of photon radiation, more attempts based

on different radiation strategies would still be worthful.

There are few reports of RCC heavy ion radiotherapy, but the

two papers showed that CIRT has notable therapeutic effects and

lower toxicity. One study exhibited intriguing outcomes. Long-term

follow-up revealed that the 5-year local control rate, disease-free

survival rate, tumor-specific survival rate, and overall survival rate

were 94.1%, 68.9%, 100% and 89.2%, respectively (38). In another

study, 10 RCC patients treated with CIRT achieved 100% local

control and 74% overall survival at 5 years, with only one patient

experiencing grade 4 skin toxicity. These studies indicated the safety

and favorable therapeutic results of CIRT in RCC (39).

Overall, though research on CIRT for RCC is quite limited,

given the biological advantages of CIRT over CRT, it holds

application benefits and research value in the treatment of RCC.
TABLE 2 Ongoing clinical trials of heavy ion radiotherapy (data from ClinicalTrials.gov).

NCT
Number

Conditions Status Interventions Phase: Population Locations

NCT05009446 •Mucosal
Melanoma
•Sinonasal
Melanoma

Recruiting intensity-modulated radiation therapy
or volume
of rotating intensity-modulated
radiotherapy or
Proton or heavy ion radiation therapy

Early
Phase 1

28 •Eye& ENT Hospital, Fudan University,
Shanghai, Shanghai, China

NCT04143984 •

Nasopharyngeal
Carcinoma

Recruiting Carbon-ion radiotherapy Phase 2 146 •Shanghai Proton and Heavy Ion
Center, Shanghai, Shanghai, China

NCT02739659 •Prostate
Carcinoma

Recruiting carbon-ion radiotherapy Not
Applicable

73 • Shanghai Proton and Heavy Ion
Center, Shanghai, Shanghai, China

NCT04724577 • Radiotherapy
•Prostate Cancer

Recruiting carbon ion radiotherapy Not
Applicable

30 • Shanghai Proton and Heavy Ion
Center, Shanghai, China

NCT05613452 •Non-small Cell
Lung Cancer

Recruiting Carbon ion radiotherapy Phase 2 43 • Shanghai Proton and Heavy Ion
Center, Shanghai, Shanghai, China

NCT05692661 • Triple Negative
Breast Cancer
•HER2-positive
Breast Cancer

Recruiting proton plus carbon ion radiotherapy Phase 1 2 • Shanghai Proton and Heavy Ion
center, Shanghai, China

NCT05106699 •Prostate Cancer Recruiting •Radiation: proton plus
carbon ion radiation

Not
Applicable

54 • Shanghai Proton and Heavy Ion
Center, Shanghai, China

NCT05692674 •Breast Cancer Recruiting adjuvant hypofractionated intensity-
modulated proton radiotherapy

Phase 2 67 • Shanghai Proton and Heavy Ion
center, Shanghai, China

NCT05212857 •Prostate Cancer Recruiting Radiotherapy for primary lesion.
Radiotherapy for metastatic lesion

Phase 2 160 •Fudan University Shanghai Cancer
Center, Shanghai, Shanghai, China

NCT05010343 •Localized
Prostate Cancer

Recruiting carbon ion irradation.Carbon Ion
Irradiation With SIB

Phase 2 140 • Shanghai Proton and Heavy Ion
Center, Shanghai, China

NCT04214366 •Adenoid
Cystic Carcinoma

Recruiting Carbon ion
irradiation.Bimodal irradiation

Phase 2 314 • University of Heidelberg,
Radiooncology, HIT,
Heidelberg, Germany
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3 Immunotherapy and ICIs in RCC

3.1 immunotherapy

Immunotherapy aims to enhance a patient’s own immune

system’s ability to recognize and attack cancer cells, thus

achieving a better tumor control effect. This approach has

significantly improved the current status of cancer treatment (40).

Current immunotherapeutic strategies mainly include ICIs,

adoptive T cell therapy, and cancer vaccines (41). Immune

checkpoints refer to a set of negative regulatory molecules

owned by immune cells. Among them, the immunosuppressive

transmembrane protein PD-1 is expressed on T cells, B cells and NK

cells, with PD-L1 and PD-L2 being its ligands (42). Within the

Tumor Microenvironment (TME), tumor cells can upregulate

the expression of PD-L1 or PD-L2, by which binding to PD-1 on

the surface of immune cells, thereby inducing apoptosis of immune

cells and keeping surviving of themselves (43, 44). Another immune

checkpoint, CTLA-4 (CD152), is a transmembrane protein

expressed on CD4+ T cells, CD8+ T cells and Treg cells, with its

ligands primarily being CD80 and CD86 expressed on Antigen-

Presenting Cells (APCs). When CTLA-4 binds to its ligands, it

promotes Treg cells to secrete immunosuppressive factors, thereby

inhibiting T cell responses (45).

ICIs aim to block the inhibition of immune cells to increase

the number of anti-tumor cells in the TME (mainly T cells) to

achieve tumor suppression (Figure 1). In recent years, many

immunotherapeutic drugs have received FDA approval, such as

anti-PD-1, anti-PD-L1, and anti-CTLA-4 monoclonal antibodies

(e.g., Pembrolizumab, Atezolizumab, Nivolumab, and Ipilimumab).

Clinically, ICIs have been widely used and have achieved excellent

results in cancer treatment. The approval of these drugs indicates

the efficacy and prospects of immunotherapy. Although

immunotherapy has achieved these successes, the efficacy of

monotherapy is limited, and its mechanism is not yet fully

understood (46). How to make it effective for more types of

tumors and benefit more patients remains an unresolved issue.
3.2 ICIs in RCC

Higher expression levels of PD-L1 in tumor often categorized it

as an immune “hot” tumor which is inclined sensitive to ICIs (47). A

majority of RCC subtypes, including clear cell RCC (ccRCC) which

constitutes approximately 75% of RCC, papillary RCC, translocation

RCC, and collecting duct carcinoma, exhibit a PD-L1 expression ratio

exceeding 10% (48, 49). Concurrently, the preclinical use of ICIs

(anti-CTLA-4 and anti-PD-1) alone or in combination in treating

ccRCC has shown notable results (50–53), as illustrated in Table 3.

Unfortunately, in clinical, RCC often develops resistance to first-line

ICIs treatments, and the majority of RCC patients do not derive long-

term benefits from them. Therefore, developing new treatment

modalities to overcome these resistance mechanisms is crucial for

the treatment of RCC.
Frontiers in Immunology 05
Considering the l imitat ions of monotherapy with

immunotherapy, researchers have become increasingly interested

in combination strategies of ICIs with other treatment modalities.

Among them, RT has garnered significant attention due to its

immune-stimulating effects, and numerous related studies have

been conducted. However, there is limited research on the

combination treatment of ICIs and RT in RCC. The radio-

resistance of RCC might be one of the factors limiting work in

this area. CIRT demonstrates superior efficacy in RCC compared to

CRT. The future utilization of CIRT is anticipated to be extensive in

the management of RCC. Considering the commendable efficacy

demonstrated by ICIs in RCC treatment, the amalgamation of CIRT

and ICIs has the potential to further augment the anti-tumor effect

exerted by ICIs. This combination warrants further investigation in

subsequent studies. CIRT has gained attention for its immune-

stimulating effects in RCC. The synergy between CIRT and ICIs

holds promise for enhancing anti-tumor effects, emphasizing the

need for further investigation in future studies.
4 The combination of RT
and immunotherapy

Radiation causes direct damage to tumor cells while also

inducing systemic biological effects that generate anti-tumor

responses (Figure 1). Through these mechanisms, RT can

transform tumors with low immune cell infiltration (referred to

as “cold” tumors) into tumors with high immune cell infiltration

(referred to as “hot” tumors), thereby enhancing the effect of tumor

immunotherapy (54). This role of RT has been widely recognized,

forming the fundamental principle behind the combination of

radiation and immunotherapy.
4.1 The combination of CRT
and immunotherapy

Current RT combined with immunotherapy includes

combinations with DC vaccine, ICIs, and CAR-T cell therapy.

Nesslinger et al. assessed the serum samples of prostate cancer

patients who received cancer vaccine combined with RT or RT

alone. The results indicated that the combination therapy enhanced

the spread of antigens and the immune response to other tumor

antigens (55). In a Phase II clinical trial, most prostate cancer

patients who received cancer vaccine combined with RT showed

a significant increase in PAS-specific T cells, indicating a PAS-

specific cellular immune response, which was not observed in the

solo radiotherapy group (56). A meta-analysis revealed that

the combination of PD-1/PD-L1 inhibitors with RT extended the

overall survival of NSCLC patients, simultaneously improving the

objective response rate and disease control rate, without increasing

the incidence of adverse events above grade 3. It was also found that

SBRT or SBRT combined with surgery and PD-1/PD-L1 inhibitors

is more effective than CRT combined with PD-1/PD-L1 inhibitors

(57). Formenti et al. confirmed that in chemo-resistant metastatic
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1428584
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1428584
NSCLC, RT combined with CTLA-4 inhibitor induced systemic

anti-tumor T cells. Treatment with anti-CTLA-4 antibodies alone

or in combination with chemotherapy was less effective (58).

DeSelm et al. found that low-dose radiation sensitized tumor cells

to the immune rejection response of locally activated CAR-T cells,

reducing the recurrence of antigen-negative tumors (59). Current

research in the CAR-T cell and radiation fields is limited, but it’s

clear that RT can play an essential role in the combination

treatment of patients undergoing CAR-T therapy in various

clinical settings (60). However, RT also has a negative immune

regulatory effect, promoting immune suppression to some extent.

When radiation kills tumor cells, it can also cause a certain degree of

lethal radiation. The local hypoxic environment caused by RT
Frontiers in Immunology 06
induces the aggregation of immune suppressive cells and M2-type

macrophages in the TME and the elevation of immune

suppressive factors.

In summary, RT, as a local treatment modality, can trigger a

systemic immune response, suppressing the growth of distant non-

irradiated tumors, also known as the abscopal effect. This became

the fundamental principle of combining RT and immunotherapy.

However, it can also lead to immune suppression. Therefore, when

RT triggers a systemic anti-tumor immune response, administering

immunotherapy as an adjunct to counteract the negative immune

regulatory effects of RT and amplify its immune-stimulating effects

holds promise as a curative treatment for tumors and achieving

control over systemic metastatic tumors.
FIGURE 1

Radiation-induced immune effects and therapeutic mechanism of ICIs (anti-PD-1, anti-PD-L1 and anti-CTLA-4). (A) Radiation causes accumulation
of cytoplasmic dsDNA in tumor cells, which can induce activation of the cGAS-STING pathway in tumor cells and APC. The enrichment of cGAS
promotes the synthesis of second messenger cGAMP, which in turn binds to STING, recruits and phosphorylates downstream TBK-1 and IRF-3.
Nuclear translocation of IRF-3 induces the transcription of IFN-1, and IFN-b stimulates the release of IFN-g by bystander T cells and distant T cells.
IFN can inhibit tumor cell division while inducing apoptosis, activate effector cells and increase the activity of NK cells, macrophages and tumor
infiltrating lymphocytes, thereby enhancing the anti-tumor immune effect. STING induces tumor cell death by promoting the secretion of pro-
inflammatory cytokines such as IL-6 and TNF through NF-kB. (B) Irradiation promotes HMGB-1 efflux, and HMGB-1 binds to TLR-4 to promote the
differentiation and maturation of DC and antigen cross-presentation, thereby activating CD4 T cells and CTL. CTL induces apoptosis of tumor cells
through secretion of PFN, GzmB, etc., or recognition of tumor cell MHC by TCR. (C) Radiation induces the exposure of tumor antigens and the
generation of neoantigens (as indicated by calreticulin exposure to tumor cells), thereby exerting anti-tumor effects through DCs. (D) Irradiation can
up-regulate the expression of PD-1 on immune cells and PD-L1 on tumor cells, and the combination of the two can promote the apoptosis of
immune cells, resulting in immunosuppression. Anti-pd-1 and anti-PD-L1 can promote the proliferation and differentiation of immune cells (mainly
T cells) by antagonizing this process, and finally play an anti-tumor role. (E) The immune checkpoint CTLA-4 expressed on T cells exerts
immunosuppressive effects by binding to its ligands CD80 and CD86, which are mainly expressed on DC. Blockade of this process by anti-CTLA-4
can promote the proliferation and maturation of T cells. cGAS, cGMP-AMP synthase; STING, interferon gene stimulator; TBK-1, TANK-binding kinase
1; IRF-3, interferon regulatory factor 3; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; HMGB1, human high mobility group protein;
TLR-4, Toll-like receptor 4; CTL, cytotoxic T cells; PFN, perforin; GzmB, Granzyme B; TCR, T cell receptor; MHC, major histocompatibility complex;
ER, endoplasmic reticulum. Image created with BioRender.com, with permission.
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4.2 The combination of CIRT
and immunotherapy

Carbon ion has unique biological and physical efficacy

compared to CRT (61). Compared to X-rays, carbon ions have a

stronger cytotoxic effect on tumor cells, and the enhancement of

radiotherapy-induced immune cell infiltration and remodeling of

the TME is more pronounced. For deep tumors like RCC that are

resistant to CRT, carbon ions achieve a cytotoxic effect that CRT

cannot achieve and can effectively promote immune responses.

Thus, the application of “CIRT combining immunotherapy” shows

a very promising prospect. Currently, the combination of CIRT and

immunotherapy has made some progress in NSCLC (62), and this

combined approach is increasingly being seen as an effective cancer

treatment modality.

Carbon ions induce immune stimulation. Research has found

that carbon ion beams can regulate anti-tumor immunity in various

ways and have unique advantages in remodeling the TME. A large

amount of literature has reported the advantages of carbon ion

beams in immune regulation. Spina et al. compared the immune

regulatory effects of CIRT and biologically equivalent doses of X-ray

radiotherapy (XRT) in an in situ 4T1 breast cancer mouse model.

The results found that low-dose CIRT can usually retain

lymphocytes that are crucial for the anti-tumor immune response,

and higher dose CIRT more effectively induced the secretion of pro-

inflammatory cytokines, while even at low doses, XRT had

lymphotoxicity (15). Guo et al.’s study showed that the activation

of the cGAS-STING pathway caused by CIRT is greater than that of

XRT, and it also promoted the infiltration of NK cells, CD4+ and

CD8+ T cells (63). In Luo et al.’s research, CIRT was able to reduce

the phosphorylation of STAT3 mediated by the JAK3/STAT2

pathway, thereby inhibiting the formation of regulatory T cells

(Treg) (64), and in TME, Tregs can suppress the anti-tumor activity

of NK cells (65). In a study of 32 localized prostate patients treated

with CIRT, it was found that the carbon ion could effectively retain

lymphocyte numbers, promote their proliferation, enhance T-cell
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function, and also weaken the induction of immunosuppressive

cells and the expression of immunosuppressive cell factors, thus

effectively inducing immune activation (66). These results indicate

that compared to XRT, CIRT can significantly promote the

proliferation of immune cells and the secretion of pro-

inflammatory cytokines in both animals and humans, exerting a

more effective anti-tumor effect.

Carbon ion beams have a superior ability to induce

immunogenic cell death compared to CRT. While irradiating and

killing tumor cells, they also induce immunogenic changes in these

cells, which is one of the key mechanisms by which radiotherapy

modulates anti-tumor immunity. Ran et al. discovered that after

XRT and CIRT treatments, A549, H520, and Lewis Lung

Carcinoma (LLC) cells both showed time-dependent increases in

the levels of HMGB1, IL-10, and TGF-b. However, only XRT

exhibited a dose-dependent increase in HMGB1 levels.

Simultaneously, carbon ions induced a higher level of HMGB1,

while relatively reducing the levels of immunosuppressive factors

IL-10 and TGF-b (67). Onishi M and colleagues irradiated HeLa,

SiHa and KYSE-70 cells with carbon ions of different LET, finding

that HMGB1 release levels significantly increased in all these cancer

cell lines and intensified with increasing LET (68). HMGB1, upon

binding with TLR-4, promotes cytokine secretion, antigen cross-

presentation, and the differentiation and maturation of DC, further

activating helper and effector T cells (69); TGF-b and IL-10 are

significant immunosuppressive factors in the TME, working by

reducing DC function and T-cell activation, promoting Treg cell

transformation, and facilitating MDSC maturation (70–73). Huang

and colleagues irradiated four human cancer cell lines with photons,

protons, and carbon ions. The results showed that 48 hours after

irradiation, carbon ions at 2 Gy and 4 Gy significantly promoted the

cell surface translocation of calreticulin, which was much more

pronounced than with protons and photons (74). In normal cells,

calreticulin is primarily found in the endoplasmic reticulum. When

exposed on the cell surface, it can be recognized, taken up and

processed by DCs, thus upregulating the immunogenic death of the
TABLE 3 Comparison of pivotal phase III clinical trials with available results evaluating ICIs.

Author Tested
Drugs

Comparison Phase Histology OS (HR, 95% CI, p) Median PFS (HR, 95%
CI, p)

Brian1 atezolizumab
plus

bevacizumab

sunitinib III ccRCC 24-mo:
PD-L1 positive population:66%vs57%
(0.84,0.62-1.15,0.2857)
ITT population:63%vs60%(0.93,0.76-
1.14, 0.4751)

PD-L1 positive population:11.2-mo
vs 7.7-mo(0.74,0.57-0.96,0.0217)
ITT population:11.2-mo vs 8.4-mo
(0.83,0.70-0.94,0.0219)

Robert2 atezolizumab
plus

bevacizumab

sunitinib III ccRCC PD-L1 positive population:38.7-mo(53.9%)vs
31.6-mo(56.5%),(0.85,0.64-1.13)
ITT population:36.1-mo(54.8%)vs35.3-mo
(55.3%), (0.91,0.76-1.08,0.27)

PD-L1 positive population:
8.9-mo vs 7.2-mo(0.93,0.72-1.21,
0.6138)
ITT population:9.6-mo vs 8.3-mo
(0.88,0.74-1.04,0.1218)

Brian3 atezolizumab
plus

axitinib

sunitinib III ccRCC 12-mo:
82.3%vs72.1%(0.53, 0.38-0.74, P<0.0001)

15.1-mo vs 11.1-mo(0.69, 0.57-
0.84, P<0.001

Robert4 nivolumab
plus cabozantinib

sunitinib III ccRCC 24-mo:70%vs60%(0.70,0.55-0.9,0.0043) 16.8-mo vs 8.3-mo(0.56,0.46-
0.68, p<0.0001)
OS, overall survival; PFS, progression-free survival; HR, Hazard Ratio; ccRCC, clear cell renal cell carcinoma; mo, months.
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tumor. This makes the irradiated tumor serve as an in-situ vaccine

(75). Thus, carbon ion beams induce tumor cell death in various

ways and release pro-inflammatory cytokines, chemokines, and

express tumor antigens, referred to as Damage-Associated

Molecular Patterns (DAMP). DAMPs can mediate the infiltration

of immune cells in the tumor region, thereby activating the immune

system (76).

Seventy years ago, the term “abscopal effect” was established by

Mole and began to gain attention. This refers to the phenomenon

where irradiating a tumor can lead to the regression of distant non-

irradiated metastatic tumors. The biological mechanism behind

this is not yet fully understood, but it is related to the immune

system (77, 78). RT can trigger the release of new antigens (Tumor-

Associated Antigens, TAA) from irradiated dying tumor cells,

acting as in-situ vaccines. Once TAAs are phagocytosed by

APCs, they are presented to CD8+ T cells. Activated CD8+ T

cells can recognize and attack the primary tumor and distant

metastatic tumors. Irradiated tumor cells can also release the

aforementioned DAMPs and cytokines, further enhancing the

activation of immune cells (79). However, the abscopal effect

induced by RT is not common (80). Notably, some studies have

confirmed that immunotherapy can enhance the radiotherapy-

induced abscopal effect. In Grimaldi’s research, 21 patients with

advanced melanoma underwent RT after ICIs (Ipilimumab)

treatment. The results showed that 11 patients (52%) observed

remission of distant tumors. The median OS for all 21 patients was

13 months, with the median OS being 22.4 months for those with

the abscopal effect and only 8.3 months for those without (81).

Komatsu reported a primary lung cancer patient treated with

ICIs. After three weeks of treatment with Nivolumab, the

tumor increased. Immediate RT was administered, showing a

significant reduction in the irradiated tumor and also a decrease

in the non-irradiated lung metastasis (82). The enhancement

of the radiotherapy-induced abscopal effect by immunotherapy

indicates the potential of this combined treatment approach.

Further exploration is needed to understand the specific

mechanisms of the radiotherapy-immunotherapy strategy, as

well as determining the best dosages, intervention times, etc., to

achieve optimal tumor therapeutic outcomes and effective

treatment of cancer metastasis.

Carbon ions have been shown to be more effective than CRT in

inducing the abscopal effect. In one case, a patient with recurrent

thymic carcinoma showed a significant reduction in both the

irradiated tumor and the non-irradiated distant tumor on a CT

scan on day 1 after only receiving CIRT (60 Gy/12 fractions). Acute

adverse reactions were limited to grade 1 radiodermatitis and mild

erythema, with no adverse reactions greater than grade 2 observed,

and no late adverse reactions found within 10 months (83). In

another study, 3 out of 5 patients with assessable distant tumors

observed the abscopal effect. Among them, two had multiple

metastatic lesions, and all metastatic lesions achieved a tumor

volume reduction, with an average volume reduction of 42% (84).

Additionally, animal experiments have shown that CIRT is more

effective than CRT in inhibiting the number of metastatic tumors in

radiation-induced abscopal effect (85). In 4T1 tumor-bearing mice,
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both the irradiated and non-irradiated tumors’ growth was

significantly delayed compared to the control group after

receiving CIRT, indicating the direct and abscopal anti-tumor

effects of carbon ions (86). However, the abscopal effect induced

by either CRT or CIRT is not common (87). But when combined

with immunotherapy like ICIs, significant control of both primary

and distant tumors was observed, indicating the therapeutic

potential of combined treatments in advanced tumors (85, 88).

In recent years, with research into the immunomodulatory

effects of RT, a substantial body of evidence has demonstrated the

effectiveness of combined RT and immunotherapy in cancer

treatment. CIRT, based on its unique physical and biological

advantages, has shown significant promise in combination

therapy and holds potential for the treatment of certain radiation-

resistant tumors and immunologically “cold” tumors.

In animal experiments involving the combination of carbon ion

beams with ICIs, Zhou et al. irradiated subcutaneous melanomas in

C57BL/6 mice with 5 Gy of X-rays and carbon ion beams. They

administered anti-PD-1 treatment on days 1, 2 and 4 after

irradiation. The results showed that in the combined treatment,

CIRT promoted more exposure of calreticulin and the release of

HMGB1 compared to XRT. It also induced a stronger IFN-1

response, demonstrating that CIRT effectively triggers

immunogenic cell death. In the CIRT combined with anti-PD-1

group, there was an increase in the infiltration of CD4+ and CD8+ T

cells into tumor tissues, leading to significant tumor control and an

extended survival period for tumor-bearing mice (89). Guo et al.

reported similar outcomes, showing that compared to X-ray, the

combination of CIRT with anti-PD-L1 significantly increased the

infiltration of CD4+, CD8+ T cells and NK cells into tumors, while

delaying melanoma growth. Additionally, CIRT up-regulated the

expression of PD-1 on the surface of immune cells, whereas XRT

did not. Furthermore, CIRT induced the exposure of PD-L1 on

tumor cells. High PD-1 expression in tumor-infiltrating immune

cells is considered a characteristic of immunologically “hot” tumors

(63, 90). Thus, these results demonstrate the synergistic effects of

carbon ion beams combined with anti-PD-L1 (or anti-PD-1) in

cancer therapy.

In a mouse osteosarcoma model, both CIRT and XRT, in

combination with two ICIs (anti-PD-1 and anti-CTLA-4),

inhibited the growth of distant tumors and lung metastasis. The

combination of CIRT and ICIs showed the most significant effect,

while monotherapy with radiation or ICIs did not achieve control of

distant tumors (85).In another mouse breast cancer model, the

combination of CIRT with ICIs achieved even more remarkable

therapeutic effects. Analysis of tumors irradiated with carbon ion

beams and treated with anti-CTLA-4 showed activation of NK cells,

up-regulation of tumor-associated macrophages, TNF and IL-1

response genes, along with improved activity of naive T cells in

distant non-irradiated tumors. Furthermore, cured mice exhibited

long-lasting anti-tumor immunity (14). These results indicate that

combination therapy effectively optimizes the TME, which may be

one of the reasons for distant effects and specific tumor immune

memory. In RT combined with DC-based therapy, after CIRT

and XRT combined with intratumoral or intravenous DC
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administration in mice, the former significantly inhibited lung

metastasis of mouse tumors when combined with DC, while the

latter required higher doses to achieve lung metastasis suppression.

Compared to XRT, CIRT significantly up-regulated the exposure

level of extracellular calreticulin in tumor cells (91). Therefore,

CIRT may promote the maturation of DC by increasing the

immunogenicity of tumors, further stimulating anti-tumor

immunity and reducing lung metastasis.

In terms of clinical trials, there are currently two ongoing

clinical trials regarding carbon ion radiation combined with

immunotherapy. One is a Phase II clinical trial combining CIRT

and pamrelizumab for nasopharyngeal carcinoma patients after

chemotherapy, with a plan to recruit 146 nasopharyngeal

carcinoma patients (NCT04143984). The other is a multi-center

Phase II clinical trial planned to include 27 patients

(NCT05229614), using large fraction CIRT and pembrolizumab

to treat non-small cell lung cancer, head and neck squamous cell

carcinoma, melanoma, and urothelial carcinoma; results from both

clinical trials have not yet been published.
5 Conclusions and perspectives

As research into radiotherapy and immunotherapy progresses,

the synergistic effects of radiotherapy and immunotherapy become

more apparent, especially for tumors that are not sensitive to

conventional photon radiotherapy. Carbon ions can effectively kill

tumors resistant to XRT, such as RCC, and exert an immune-

activating effect. The synergistic effects in anti-tumor of this

combined method offer the hope of eliciting a durable and potent

immune response against tumors and having a new method of

cancer treatment. Although preclinical and clinical research have

shown the advantages and efficacy of CIRT. However, research

combining carbon ions with immunotherapy are still rare and have

not been reported in renal cell carcinoma. This may be due to the

fact that heavy ion accelerators are not yet widely available globally

and the high cost of treatment limits related research.

There are possible risks and problems associated with the

combination therapy. Adverse reactions such as radiation

pneumonitis and dermatitis also accompany carbon ion

irradiation but are generally comparable or milder than CRT.

Over-activation of the immune system may cause systemic

toxicity and damage the body. With the optimization of

accelerators, the cost of CIRT will be lower in the future, and

more cancer patients can receive this advanced treatment. And new

RT technologies, such as SBRT and Flash RT, are constantly

emerging, which can control the radiation dose distribution in the

tumor target more accurately, further improve the efficacy of carbon

ion therapy and reduce adverse reactions. The adverse reactions of

tumor immunotherapy are milder and usually reversible than those

of conventional chemotherapy, and most patients can benefit from

it. The potent immune-activating effect of CIRT is expected to

reduce the dose of immunotherapeutic agents, thereby further

minimizing the adverse reactions. In the future, CIRT will benefit

more cancer patients, and its combination with other treatment
Frontiers in Immunology 09
methods, such as immunotherapy, is expected to achieve the

ultimate goal of cancer treatment from “remission” to “cure”.
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