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Cell-specific gene networks
and drivers in rheumatoid
arthritis synovial tissues
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1Institute of Computational Life Sciences, Zürich University of Applied Sciences (ZHAW),
Wädenswil, Switzerland, 2AI for Scientific Discovery, IBM Research Europe, Rüschlikon, Switzerland,
3Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland, 4Division of
Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 5Department
of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, United States
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease

characterized by inflammation and hyperplasia of the synovial tissues. RA

pathogenesis involves multiple cell types, genes, transcription factors (TFs) and

networks. Yet, little is known about the TFs, and key drivers and networks

regulating cell function and disease at the synovial tissue level, which is the site

of disease. In the present study, we used available RNA-seq databases generated

from synovial tissues and developed a novel approach to elucidate cell type-

specific regulatory networks on synovial tissue genes in RA. We leverage

established computational methodologies to infer sample-specific gene

regulatory networks and applied statistical methods to compare network

properties across phenotypic groups (RA versus osteoarthritis). We developed

computational approaches to rank TFs based on their contribution to the

observed phenotypic differences between RA and controls across different cell

types. We identified 18 (fibroblast-like synoviocyte), 16 (T cells), 19 (B cells) and 11

(monocyte) key regulators in RA synovial tissues. Interestingly, fibroblast-like

synoviocyte (FLS) and B cells were driven by multiple independent co-regulatory

TF clusters that included MITF, HLX, BACH1 (FLS) and KLF13, FOSB, FOSL1 (B

cells). However, monocytes were collectively governed by a single cluster of TF

drivers, responsible for the main phenotypic differences between RA and

controls, which included RFX5, IRF9, CREB5. Among several cell subset and

pathway changes, we also detected reduced presence of Natural killer T (NKT)

cells and eosinophils in RA synovial tissues. Overall, our novel approach identified

new and previously unsuspected Key driver genes (KDG), TF and networks and

should help better understanding individual cell regulation and co-regulatory

networks in RA pathogenesis, as well as potentially generate new targets

for treatment.
KEYWORDS

rheumatoid arthritis, key driver, gene regulatory network (GRN), co-regulation,
transcriptomic factor, FLS, monocyte, T cell
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1 Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disorder

characterized by synovial inflammation and hyperplasia that may

lead to joint destruction (1, 2). With a prevalence estimated between

0.5 and 1% (3), it is one of the most common chronic inflammatory

diseases. The risk of developing RA peaks around age 50 (3), and

similarly to most autoimmune diseases, females are affected 2 to 3

times more than males (3, 4). The development of biologic disease-

modifying anti-rheumatic drugs (bDMARDs) and JAK inhibitors

targeting various inflammatory pathways has significantly

improved disease control and outcomes (5, 6), yet a considerable

number of RA patients still have an inadequate response to therapy

(7). As the development and progression of RA involve dynamic

interactions between multiple genetic and environmental factors,

understanding the heterogeneous pathophysiological processes

remains a major challenge (8).

Genome-Wide Association Studies (GWAS) have significantly

improved the understanding of the disease’s genetic underpinnings

and identifiedmultiple genetic loci associated with susceptibility (9, 10).

However, these loci only explain a fraction of the overall heritability

and phenotypic variance of RA (11). While new whole-genome and

whole-exome sequencing studies are likely to identify additional rare

variants previously undetectable with GWAS techniques, our ability to

translate these results into disease understanding and novel

therapeutics remains limited. At the transcriptomic level, Differential

Gene Expression (DGE) studies have compared gene expression

profiles between RA patients and healthy controls and identified

numerous pathways implicated in inflammation, antigen

presentation, hypoxia, and apoptosis during RA (12, 13). These data

have not only deepened the comprehension of RA’s pathogenesis but

have also offered promising targets for therapeutic intervention.

However, although DEG studies are effective for discovery, the large

number of detected genes often obscures the identification of key

regulatory or therapeutically actionable genes. Moreover, DEG studies

often highlight pathways that are already well-characterized,

underscoring the need for new approaches to integrate established

knowledge and data-driven computational approaches.

Further complicating the analysis, most studies still rely on bulk

data, wherein the cellular composition of tissues significantly

confounds the molecular findings (14, 15). In other words, the

observed differential expression between RA and controls may

primarily arise from disparities in cell composition rather than

differences in cellular gene expression. For instance, RA synovial

tissues exhibit significantly more leukocytes than control groups (15,

16), and a meta-analysis has revealed variable DEGs across datasets,

with approximately half of the DEGs up-regulated in synovial tissues

being down-regulated in blood samples (12). Recent single-cell RNA

sequencing (scRNA-Seq) sequencing studies are offering valuable

insights into disease traits at the single-cell level (15, 16), however,

the exploitation of these data is still challenged by limited patient

numbers, batch effects, and sparse data (17). Notably, the inference of

gene regulatory networks (GRNs) from scRNA-Seq has proven to be

particularly challenging, in part because of the difficulty of identifying

cell type-specific regulatory interactions from heterogeneous samples

(18–20).
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Addressing the cell composition challenge requires the

development of novel approaches for identifying transcription

factors (TFs) and their associated regulatory signatures in a cell

type-specific manner. TFs play a pivotal role in regulating gene

expression in a tissue-specific manner (21), and with an estimated

count of 1,000 TFs in humans (22), identifying those that govern the

phenotypic traits of RA synovial cells may offer opportunities for

discovering novel therapeutic targets.

In this study, we provide a comprehensive analysis of gene

regulation of RA in synovial tissues. Unlike previous studies in RA,

which relied on the inference of cohort-averaged GRNs (23–25),

our approach enabled us to gain new insights into sample-specific

regulatory mechanisms by leveraging bulk gene expression data (15,

26) and to identify TFs driving gene expression in RA-associated

cell types. Namely, we identify key RA regulators in a cell type-

specific manner, such as IRF8 in monocytes, STAT5B in B cells,

ELF4 in T cells, and MITF in fibroblast-like synoviocytes (FLS). We

next construct a co-regulation network in each cell type by

evaluating the correlation among the target genes that are shared

by the identified TFs. In FLS and B cells, we observe a common

regulatory pattern characterized by a strong correlation among all

TFs, while distinct co-regulation clusters emerge independently in

the other cell types. Our computational modeling and findings

indicate new targets for cell-specific treatment strategies in RA and

provide novel insights into the cell-specific regulation of

RA pathogenesis.
2 Results

2.1 Heterogeneous cellular composition
accounts for most of the gene expression
variability across RA biopsies

We exploited analyzed public RNA-Seq data of synovial

biopsies from 28 healthy control samples, 152 individuals with

RA, and 22 patients with osteoarthritis (OA) (26). Each sample

contained the gene expression profile of 25,000 genes. As healthy

biopsies are rare and difficult to obtain (27), we compared RA

synovial biopsies to both OA and healthy samples.

We first used UMAP (28) to visualize the samples in two

dimensions, and observed significant distributional differences

between the gene expression profiles of RA biopsies and controls,

the latter comprising OA and healthy samples (Figure 1A). A DEG

analysis revealed that more than half of the genes (∼15k) were

significantly differentially expressed [p< 0.05; Student’s t-test with

Benjamini-Hochberg correction (31)]. This uncommonly high

number of DEGs, which is typically on the order of a few hundred

in studies of blood samples from patients with other diseases, such as

coronary artery disease (32), obesity (33, 34), diabetes (35, 36) or

kidney (37), led us to hypothesize that the observed variability might

arise from cellular heterogeneity across synovial biopsies, rather than

from intra-cellular gene expression differences between the two tested

groups. To test this hypothesis, we used xCell (38) to estimate the

relative proportions of the various cell populations present in our

samples. xCell is a signature-based method that employs single-
frontiersin.org
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sample gene set enrichment analysis to compute an enrichment score

per sample. This score is indicative of the relative proportion of each

cell type within a sample (Methods Section 2.2). xCell detected

significantly increased enrichment scores for several cell

populations in both RA vs normal and RA vs OA tissue

comparisons (Figure 1B; p< 0.05, Student’s t-test). Interestingly,

biopsies from early and established RA had similar gene expression

signatures and cellularity, suggesting that similar cell types and

processes regulate disease through the different stages of

progression (Supplementary Section A.1, Supplementary Figure S1).

Our strategy to deconvolute synovial cellularity was able to

identify populations known to be expanded in RA, such as T cells, B

cells, plasma cells, dendritic cells (DC), and monocytes (15, 16, 39).

To further validate these results, we used CIBERSORT (40), an

alternative deconvolution method for bulk RNA expression.

Compared to xCell, CIBERSORT focuses exclusively on immune

cells and employs a different algorithmic approach, namely, a linear

regression based on a predefined gene expression matrix of known

cell types (Supplementary Section A.2, Supplementary Figure S2).

CIBERSORT and xCell findings were similar regarding the

enrichment of plasma cells, memory B cells, CD4+ memory T

cells, and dentritic cells (DC), thus confirming the different synovial

cellularity between RA and controls (Supplementary Table S1).

In addition to these well-documented cell populations, xCell

also identified other cell-specific traits associated with RA, such as

an increased representation of both immature dendritic cells (iDC)

(29) and conventional dendritic cells (cDC) (30, 41), as well as a

previously unrecognized reduction of Natural killer T cells (NKT),

pericytes and eosinophils, compared with controls. These analyses

revealed the high variability in cellular composition within synovial

tissues, which may explain a significant fraction of the gene

expression variability observed among RA patients (14). To

quantify this effect, we calculated the expression variance

explained by cellular composition using the R-squared score. This

statistical measure represents the proportion of total gene

expression variance explained by the enrichment scores estimated
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with xCell. xCell scores were used as inputs in a linear regression

model to predict gene expression values. The R-squared score was

then derived by comparing the model’s predictions with the original

observations. Significantly, we found that the 18 cell types shown in

Figure 1B account for 61% of the variance in gene expression

(Supplementary Section A.3, Supplementary Figure S3).
2.2 Gene regulation in RA vs control
samples differs widely across synovial
cell types

The measured gene expression in synovial tissues is a mixture of

gene expression profiles from different cell types, which complicates

the task of extracting cell type-specific gene regulatory information.

To address this challenge, we adjusted the gene expression values to

correct for cellular composition biases using a linear model

(Methods Section 2.3). The corrected gene expression data served

as a basis for constructing a gene regulatory network, unbiased by

cell type heterogeneity. In addition, we also leveraged cell type-

specific bulk RNA-Seq data from RA and OA synovial fibroblasts,

monocytes, B cells, and T cells (15) to complement our analyses of

the synovial tissue biopsies, resulting in 5 independent gene

expression datasets from synovial tissues (Table 1).

Focusing on the cell type-specific datasets, we used a

Student’s t-test to identify the genes that were differentially

expressed between RA and OA samples. Here, we considered

OA samples as the control group due to the unavailability of

biopsies from healthy patients. From this analysis, we obtained a

differential expression score for each gene (denoted texpr). Next,

we examined the correlation of these scores texpr across each pair

of cell type-specific datasets (Methods Section 2.6). The

correlation among the genes’ differential expression scores was

notably low (< 0.1) across all considered datasets, suggesting

disparate regulatory mechanisms for each RA-associated cell

type (Supplementary Figure S7).
BA

FIGURE 1

Heterogeneous cellular composition in synovial tissues. (A) UMAP representation of the gene expression data, with samples colored as a function of
diagnosis. Healthy and RA biopsies are projected quite far apart from each other. (B) Cell types with significantly different enrichment scores in both
RA vs normal and RA vs OA tissues (p< 0.05, Student’s t-test), ordered by average enrichment score across tissues, except for DCs, T cells, and B

cells that were grouped together for visual clarity. Error bars show the 95% confidence intervals defined as std=
ffiffiffiffi
N

p
. MSC, mesenchymal stem cells;

DC, dendritic cells; iDC, immature dendritic cells (29), cDC: convential dentritic cells (30).
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Nonetheless, this approach failed to provide insights into the

regulatory connections among the DEGs. It also did not reveal

whether these connections involved TF-mediated inhibition,

activation, or co-regulation. To investigate this question, we

assembled gene regulatory networks of the synovial tissue and its

constituent cell types by combining RA gene expression data with

information about TF-binding motifs [CIS-BP (42)] and protein-

protein interactions [StringDB (43)]. We leveraged PANDA (44), a

computational strategy designed to optimize the alignment between

gene expression data and pre-existing knowledge (Methods Section

2.9), and used LIONESS (45) to estimate individual gene regulatory

networks for each sample in our cohort. In these sample-specific

networks, each edge connecting a TF and a target gene (TG) has an

associated weight that represents the likelihood of a regulatory

interaction between the TF and the TG. We leveraged this collection

of networks to evaluate whether the TF-TG interaction edge weights

differ significantly between the RA and control samples and to

identify potential TFs that might regulate the regulatory differences

(Figure 2A). More precisely, we compared the differences in edge

weights between RA and OA samples using a Student’s t-test, and
Frontiers in Immunology 04
obtained a score tedge for each edge TF→ TG. For each cell type, we

assembled all tedge scores in a differential GRN (dGRN) network,

which highlights the edges that are differentially regulated between

RA and OA (Figure 2A). Then, to quantify TFs regulatory function,

we define a TF regulatory score (treg) defined as the mean of the

absolute values of the edge scores ( tedge
�� ��) between the TF and all its

TGs (Method 2.10). As a positive (respectively negative) tedge
indicates a strong upregulation (respectively downregulation) TF-

TG interaction in RA with respect to OA (control) tissues, TFs with

a high treg are potential key regulators to explain the differential

gene expression between RA and OA.

Table 2 lists the top 10 TFs ranked by their regulatory scores for

each synovial tissue cell type. Interestingly, several TFs, including

RFX5, CEBPZ, SCRT1, and MXI1, are in the top 10 in more than

one cell type, suggesting that these TF are broader key regulators in

synovial tissues. We examined the correlation between the TF

scores (treg ) on each pair of networks and obtained similar results

to those previously observed with the cell-specific gene expression

signatures, i.e. a low overall correlation (< 0.1) indicating distinct

regulatory mechanisms across cell types (Figure 2B).

For additional insight into the pathways involved in RA in each

cell type, we ran a pathway enrichment analysis on the major TF

regulators using a collection of pathways compiled from the Gene

Ontology (GO) (46), KEGG (47), and Reactome (48) databases.

First, we selected the TFs with a treg score higher than one standard

deviation above the mean (Z-statistics > 1). This led to the selection

of between 40 and 90 TFs per tissue and cell type (Supplementary

Figure S8A). Interestingly, the overlap between the selected TFs was

low, and only 7 TFs were shared by 3 cell types or more

(Supplementary Figure S8B). Because the enrichments were run

with TFs exclusively, we removed any terms associated with RNA

and DNA transcription, as these are ubiquitous processes and not

likely to be RA-specific. After this filtering, we obtained between 60

and 120 significantly enriched pathways (i.e. padj <  0:05) for each

cell type (Supplementary Figure S9A). In Figure 3, we show the 10

most significant pathways for each cell type. As expected, well-

established RA pathways are evident across multiple cell types,

such as TNF (49), IRF (50) and ATF6 (51), along with pathways
BA

FIGURE 2

(A) Networks were inferred from the gene expression profiles of RA and OA biopsies in different cell types. Network edges are endowed with
weights representing the probability of regulatory interactions between a transcription factor (TF) and a target gene (TG). The analysis of differences
in edge weights between RA and OA facilitated the construction of a differential GRN (dGRN) for each cell type. The dGRN was used to compute a
regulatory score for each TF in each cell type. (B) Heatmap of the Pearson correlation between the TF regulatory scores in each tissue type, i.e.
synovial tissue, monocyte, FLS, B cell, and T cell).
TABLE 1 List of datasets of RNA-Seq data from synovial tissues and
bipartite networks computed from them.

Dataset/net-
works name

Reference Method Number of
patients/
networks

PANDA_Synovial_Tissue (26) PANDA,
LIONESS

152 RA, 22 OA

PANDA_FLS (15) PANDA,
LIONESS

18 RA, 12 OA

PANDA_Synovial_Monocyte (15) PANDA,
LIONESS

17 RA, 13 OA

PANDA_Synovial_B cell (15) PANDA,
LIONESS

8 RA, 7 OA

PANDA_Synovial_T cell (15) PANDA,
LIONESS

17 RA, 13 OA
An individual network is computed for each RA and OA sample.
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FIGURE 3

Top 10 significant pathways enriched on the main TFs involved in RA for each specific cell type. Pathways were compiled from GO (46), KEGG (47)
and Reactome (48). These pathways were ranked based on adjusted p-values.
TABLE 2 Top 10 ranked TF regulators in each synovial cell type, along with their Z-scores in parentheses.

Rank Syn. Tissue Syn. Monocyte Syn.
Fibroblast (FLS)

Syn. B cell Syn. T cell

1 ZNF282 (7.01) NFE2 (5.71) RORC (3.39) JUN (6.59) HAND1 (5.85)

2 SCRT2 (6.30) CEBPZ (5.63) NKX2-1 (3.37) STAT5B (4.89) REST (4.97)

3 NR6A1 (4.06) IRF8 (5.59) HOXA1 (3.20) CTCF (4.04) ELF4 (4.59)

4 SCRT1 (3.70) PBX3 (5.60) ETV2 (2.67) TCF3 (3.45) EHF (4.21)

5 FOSL2 (3.11) NFYA (5.49) MITF (2.64) JUND (3.37) NR4A1 (3.36)

6 RFX5 (2.52) RFX5 (4.62) SIX5 (2.61) NKX2-3 (3.20) SCRT1 (3.32)

7 MXI1 (2.41) IRF9 (3.97) ELF5 (2.46) KLF13 (3.03) NRF1 (3.19)

8 ZBTB33 (2.29) MXI1 (3.32) ZBTB1 (2.42) PBX3 (2.69) EPAS1 (2.94)

9 JUNB (2.07) IRF4 (3.21) FOXC2 (2.27) TWIST1 (2.69) NFYB (2.81)

10 RELA (2.05) ARID2 (2.88) TBX4 (2.23) FOSB (2.52) CEBPZ (2.77)
F
rontiers in Immunology
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TFs found in the top 10 in more than one network are highlighted in bold. Z-statistics for all TFs in each network are available in Supplementary Data 1).
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associated with osteoclast differentiation (52) and T helper (Th) cell

differentiation (53). Our analysis also identified less commonly

documented pathways in the context of RA, such as those

associated with RUNX1, found in monocytes and fibroblasts, and

HOX, predominantly in fibroblasts and T cells.

To get a more complete overview of the ∼400 significant

pathways that were identified across the three pathway databases

[GO (46), KEGG (47), Reactome (48)], we split each term by words

and counted the accumulated word count found in each cell type

(Supplementary Figure S9B). We identified, among others, T cells,

alpha-beta, myeloids, and B cells, as words that appear consistently

across cell types, specically T cells had 24 occurrences, “a/b

signaling” 9 occurrences, myeloid cells 8 occurrences and B cells

7 occurrences.
2.3 A subset of RA key driver genes are
consistently identified across cell types
and tissues

The analysis of the sample-specific networks identified a list of

candidate master regulator TFs in RA, and generated detailed

statistics about the regulatory function of these TFs and their TGs

within each cell type Supplementary Data 1) However, different

network inference methods exhibit considerable variability in their

inferred networks (54), typically due to the varying algorithmic

assumptions and limited sample sizes. In our study, sample sizes

were small in all considered cases, ranging from 15 to 40 samples for

the cell type-specific networks. Hence, relying on the predictions of

a single computational method might lack the robustness required

to identify promising therapeutic targets. To increase our

confidence in the identified RA regulators, we augmented our

study by incorporating a selection of pre-existing literature-

derived networks, which also included edge weights as a metric

for assessing the confidence of the interactions between nodes.

These include (i) RIMBANET (55), a probabilistic causal network

reconstruction approach that integrates multiple data types,

including metabolite concentration, RNA expression, DNA

variation, DNA–protein binding, protein–metabolite interaction,

and protein–protein interaction data; (ii) StringDB (43), a database

of known and predicted protein–protein interactions from

numerous sources, including experimental data, computational

prediction methods, and public text collections; (iii) GIANT (56),

a collection of networks that accurately capture tissue-specific and

cell type-specific functional interactions. As RA is an autoimmune

disease, we selected networks computed from immune-related

tissues (including lymph nodes, spleen, tonsils, and blood).

Additionally, when available, we extracted networks associated

with cell types present in different proportions in RA vs control

patients (Section 1.1). 14 additional networks were collected for our

analysis, as detailed in the Supplementary Table S2.

While these networks recapitulate general immune knowledge

derived from various data types, they are not specific to synovial

tissues. Therefore, they are unable to discern RA-specific

relationships between TFs and TGs as effectively as the PANDA

framework does. We hence designed a different approach based on
Frontiers in Immunology 06
the key driver analysis (KDA) (57), a computational pipeline to

uncover major disease-associated regulators or causative hubs in a

biological network (Methods Section 2.8). Briefly, genes exhibiting

more connections to RA-associated genes than expected by random

chance were considered potential drivers (Figure 4A). Using a list of

RA-associated signatures as a starting point, we identified potential

key drivers genes (KDGs) linked to these signatures via network

edges. To mitigate potential network size bias in the identification of

KDGs, we only considered the top 1 million edges in each network.

Note that a fully connected network of ∼40k genes contains more

than 1 billion edges, and hence, the selected edges roughly represent

the top 0.1% network interactions.

KDA analysis requires the definition of RA-associated

signatures, i.e. lists of genes associated with the disease. A

common practice is to create gene signatures from DEGs (23, 25).

However, these signatures are likely to be biased by heterogeneity in

cellular composition and might include bystander genes that are not

directly linked to the pathogenesis of the disease. Hence, we

constructed two independent lists for KDA analysis. The first list

exploited prior meta-studies and datasets (12, 13, 59–61) from

which a list of DEGs was extracted (Supplementary Section B.1).

The second signature combined known RA-associated genes from

the literature, including GWAS (10, 62, 63), knowledge-based

datasets (64–66), and known drug targets (67, 68) (Methods

Section 2.7). To summarize, we performed KDA on 14 different

networks (Supplementary Table S1), with two RA-associated gene

signatures, which we refer to as the DEG list (93 genes) and the gene

literature list (259 genes). Interestingly, the overlap between these

databases was moderate (∼2000 genes in total after combining all

databases). Additional information is provided in Table 3;

Supplementary Section B.2.

While the overlap between the literature list and the DEG list

was quite small, i.e. overlap = A  ∩  Bj j=min( Aj j, Bj j)  =  9=93 gene

s ∼ 10%, they converge to a similar set of driver genes after KDA in

all analyzed networks (average overlap of 90%, Table 3 & red bars in

Figure 4B). This suggests that there are common drivers behind the

set of DEGs and the set of known RA-associated genes reported in

the literature. The number of identified KDGs, even when derived

from the same lists of RA-associated genes, varied significantly

across the different cell type-specific networks used in the analysis.

The highest number of KDGs was found in DC and NKT, and

tonsils & lymph nodes, among the various tissue types (all identified

KDGs in each network are available in Supplementary Data 2). This

suggests that crucial RA regulation occurs in these cell types as well

as within these tissues. We also found that several genes were

consistently identified as key drivers across most networks. More

precisely, more than 500 genes were found in more than half of the

tested networks (Supplementary Section C and Supplementary

Figure S6), and the top 20 genes were found in 75% of the

networks (Table 4). Among them, there are several that were

already included in our DEG or Literature lists (HLA and IL2

variants, CCL5, PSMB8, CTSH), but also some that were not

(PTPN6, SRGN, GBP1, LCP2, GLIPR1, CTSS, CTSH, CASP1,

CD44). Importantly, the majority of genes in our top 20 list had

been previously characterized in the context of RA (Table 4), thus

providing further validation for our discovery approach.
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2.4 Combining the KDA and
PANDA analysis

For each cell type, we compiled a list of key regulators by

retaining TFs that met the following criteria: (i) Their regulatory

scores (treg ), computed with the PANDA network specific to each

cell type, were at least one standard deviation above the mean score

of all TFs (Z-statistics > 1); and (ii) they were identified as KDGs by

both the DEG and Literature lists in at least one of the 14 networks.

With this approach, we select TFs that have been identified by

multiple independent methods, thereby reducing the likelihood of

false positives without excessively eliminating potential candidates.

We obtained between 10 and 18 TFs for the different cell types.

The full list is available in Table 5. Interestingly, while the majority

of key regulators were specific to individual cell types, we found that

several TFs, such as RFX5, RELA, FOS, HIVEP1, IRF9, MITF,
Frontiers in Immunology 07
ETV7, FOSL1, FOSB, KLF2, and ELF4, were identified as key

regulators in two or more cell types.

To evaluate the agreement between the two methods we used,

namely KDA and PANDA, we examined whether TFs identified as

key drivers in one of the 14 networks exhibited higher PANDA

scores (treg ) than other TFs. Interestingly, we found that, on average,

the TFs identified by KDA in any of the tested networks had a

significantly higher regulatory score in the PANDA networks than

the genes not identified by KDA (p = 1 × 10−5, Wilcoxon Signed-

Rank Test). Figure 5 illustrates the positive relationship between the

KDA and PANDA scores, where KDG TFs identified with KDA

typically exhibit higher PANDA scores in at least one cell type.
2.5 Comparing the TF-TF co-regulation
network across cell types

While we have identified a list of key TF regulators, it remained

uncertain whether these regulators collectively controlled the same

genes and phenotypes, or whether they independently regulate

distinct targets. Clarifying the potential co-regulatory role of these

TFs might open the door to combined therapeutic strategies

targeting multiple TFs simultaneously. To investigate key RA

driver co-regulation within each cell type, we computed the

Pearson correlation between the differential edge weight tedge of

the common TGs between two TFs.

To maintain consistency across all cell types, we selected the top 30

key driver TFs ranked by their Z-statistics per tissues type, and

computed pairwise correlations between all key driver TF-TF pairs in
TABLE 3 Genes associated with RA and those identified with key driver
gene (KDG) analyses.

A. RA associated genes B. Obtained KDGs
(averg. over networks)

Lit. list DEG
list

Overlap Lit.
KDG

DEG
KDG

Overlap

259 93 10% 741 827 90%
(A) Number of genes utilized for KDA analysis in two different lists. The intersection is
calculated as A  ∩  Bj j=min( Aj j, Bj j). (B) Mean number of genes designated as KDG following
KDA in various networks from the two lists.
B

A

FIGURE 4

Identification of key driver genes (KDGs). (A) Within the Mergeomics framework (58), RA signature genes are leveraged to test the significance of
each gene node within a given network. We performed the analysis with 2 different RA signature gene sets (DEG list and Literature list) and 10
networks. (B) Number of obtained KDGs for each tested network using the DEG and Literature lists. While the overlap between the RA signature
gene sets is small, we observe a high overlap (in red) between the KDGs inferred from both lists across different cell types. KDGs for all networks are
provided in Supplementary Data 2). DC,dendritic cells; LN, lymph node; PPI, Protein-Protein interaction network.
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these subsets. Then, in each cell type, we employed a hierarchical

clustering algorithm with a correlation threshold of 0.5 to cluster these

30 TFs based on their pairwise co-regulation patterns (Figure 6A).

Significantly, monocytes exhibited a notably strong overall

correlation of their TF drivers, with an average pairwise

correlation coefficient of 0.77. This suggests a coordinated

regulation of the observed transcriptomic distinctions between

RA and OA FLS. Conversely, FLS displayed an average pairwise

correlation coefficient of 0.46, and their regulators were divided into

7 clusters with minimal correlation among them. This suggests the

co-existence of multiple independent FLS regulation clusters

targeting different genes contributing to RA pathogenesis. T cell

and B cell co-regulation clusters had an average correlation

coefficient of 0.69 and 0.56, respectively. These findings are

illustrated in Figure 6B, where distinct cluster populations across
Frontiers in Immunology 08
cell types can be observed. To quantify these disparities, we

computed various diversity indices, such as dominance and

Shannon entropy (81, 82) (Methods Section 2.12), and observed

substantial differences across cell types in all metrics. This

divergence is also evident in Figures 6C, D, where the generated

TF-TF networks exhibit distinct co-regulated clusters in the case of

FLS, in contrast to monocytes, which are predominantly regulated

by a single co-regulatory cluster.
3 Discussion

RA is a common autoimmune and inflammatory disease that

affects nearly 1% of the population (3). Despite significant advances

in treatments targeting different aspects of the immune response

over the last two decades, achieving sustained disease remission

remains uncommon (83). A small percentage of patients may

achieve complete disease control on one type of therapy, yet

predicting treatment responses remains challenging. This

variability in treatment efficacy could be partly due to the diverse

genetic factors influencing the disease, with certain genes playing

more prominent roles in some patients. Additionally, variations in

the disease itself and differences in individual patients’ synovial

tissue cell composition and activation states may contribute to this

variability. A third and important missing component is the role of

central genes in regulating transcriptional networks in different

cells, along with their interaction and co-regulation. In this study,

we combined recently published RNA-Seq data with innovative

bioinformatics and analytical techniques. We identified previously

uncharacterized transcriptional networks, along with their essential

driver genes and TFs in synovial tissues and synovial cells from

RA patients.

Extensive new RNA-seq databases and studies have significantly

deepened our understanding of disease processes in RA.

Nevertheless, conventional bioinformatics workflows for data-
TABLE 5 Key transcription factors (TFs) implicated in the regulation of
RA identified in our analyses (Z-statistics > 1), ordered from highest to
lowest Z-statistics for the different cell types.

Cell
type

(# of TFs) List of TF drivers (Ranked from
highest to lowest Z-statistics)

Syn.
Tissue

(10) FOSL2, RFX5, RELA, JUNB, FOS, MYBL1,
NFKB2, ZNF274, HIVEP1, HIVEP2

Syn.
Monocyte

(11) IRF8, RFX5, IRF9, IRF2, CREB5, IRF3, XBP1,
STAT2, EOMES, BCL11A, SPI1

Syn.
Fibroblast

(18) MITF, CBFB, IKZF1, HLX, BACH1, FOS, ETV7,
RFX5, HIF1A, TGIF1, ELF4, RUNX1, NFATC1,

IRF7, CREM, FOSL1, FLI1, ELF1

Syn.
B cell

(19) STAT5B, JUND, KLF13, FOSB, FOSL1, KLF2,
PLAGL1, EGR3, CEBPD, TCF7, RELB, HBP1,

RUNX3, BATF3, RORA, STAT6, EGR2,
BHLHE40, CIC

Syn.
T cell

(15) ELF4, NR4A1, ETV6, MITF, ETS2, ETV7, MSC,
FOSB, RELA, RFX5, KLF2, REL,
ATF4, HIVEP1, VENTX, IRF9
TFs identified in more than one cell type are highlighted in bold.
TABLE 4 The top 20 KDGs identified using the KDA with both the DEG and Literature lists are presented below, and references are provided for genes
with documented literature in the context of RA.

Gene KDA†

(Lit-DEG)
Reference Gene KDA†

(Lit-DEG)
Reference

PTPN6 12 - 12 (69) CASP1 11 - 11 (70)

HLA-E 12 - 11 (71) HLA-B 12 - 10 (71)

HLA-F 12 - 11 (71) HLA-C 12 - 10 (71)

GBP1 12 - 11 (72) CD44 12 - 10 (73)

LCP2 12 - 11 (74) IFI30 12 - 10 None

GLIPR1 11 - 11 None TNFAIP8 12 - 10 (75)

HLA-A 11 - 11 (71) CCL5 12 - 10 (76)

CTSS 11 - 11 (77) PSMB8 12 - 10 (78)

SRGN 11 - 11 None TAP1 12 - 10 (79)

CTSH 11 - 11 None ICAM1 12 - 10 (80)
Genes also identified in GWAS are highlighted in bold. The complete list of the top 100 KDGs is available in Supplementary Section C. †The left (right) number corresponds to the number of
networks the TF was identified as a KDG with the literature (DEG) list (adjusted pval < 0:05).
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B

C

D

A

FIGURE 6

TF-TF RA co-regulation network in each cell type. (A) Pairwise TF-TF co-regulation heatmap in FLS, quantified in terms of the Pearson correlation
between the differential edge weight tedge to their common target genes (Method 2.11). A hierarchical clustering approach is used to group them

into clusters (depicted with a blue square). (B) The resulting clusters are visualized as a bar plot, with populations from each cluster depicted in
distinct colors. (C) The networks are characterized by the average correlation of their edges, their number of clusters, and other diversity metrics
(Shanon Entropy, dominance). These metrics are plotted next to each other for each cell type. For visual clarity, some metrics were normalized by
their maximum values. (D) Networks show the main TFs involved in FLS and monocyte RA regulation. Edges indicate correlations exceeding the
median co-regulatory scores (Methods Section 2.11). Node sizes are proportional to the node degree times TF’s regulatory score, (treg). Node colors

indicate the different co-regulatory clusters. Networks and pairwise correlation matrices are provided for all cell types in Supplementary Figure S10.
BA

FIGURE 5

Relationship between key driver analysis (KDA) and PANDA network-based TF analysis. (A) Average PANDA score of TFs identified as key driver genes
and not identified by the KDA analysis for each tissue type. (B) Max PANDA score (defined as the maximum PANDA score across all cell types) for
both key driver TFs and non-key drivers. The gray line represents the expected score if all TFs were randomly scored, and the error bars correspond

to the 95% confidence intervals, defined as std
ffiffiffiffi
N

p
.
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driven discovery, including GWAS, DEG analyses, and cohort-

averaged GRNs, are not without challenges. For example, many

GWAS loci are situated outside protein-coding regions, which

complicates their functional interpretation (84). Additionally,

DEGs can identify many genes that are not causally associated

with the disease (85), and GRNs inferred from heterogeneous

samples fail to discriminate cell type-specific regulatory

mechanisms. Gene regulatory mechanisms vary significantly

across cell types in both health and disease. Elucidating cell type-

specific pathogenic mechanisms associated with major diseases can

significantly facilitate the development of novel therapeutics, with

the potential to target specific networks, pathways and cell types,

with reduced risk for side effects. However, the identification of cell

type-specific regulatory processes remains a challenge (84). In this

context, we have developed a novel computational pipeline to

identify key drivers underlying RA pathogenesis in synovial

tissues. A key aspect of our analysis pipeline is the inference of

sample-specific GRNs, as opposed to the more commonly used

cohort-specific GRNs. This approach offers significant advantages:

it reveals the regulatory mechanisms associated with individual

samples and facilitates the use of statistical techniques to compare

network properties across samples and phenotypic groups (86). Our

approach also enabled us to rank TFs based on their contribution to

phenotypic disease differences.

In the context of RA, our analysis revealed that conventional

DEG analyses of synovial tissues were heavily confounded by the

heterogeneous cellular composition across tissues. Indeed, we

discovered that 60% of the variability in gene expression could be

attributed to varying cell type proportions rather than actual

differences in tissue gene regulation. Interestingly, biopsies from

early and established RA had similar gene expression signatures and

cellularity, suggesting that similar cell types and processes regulate

disease all through the different stages of progression and, therefore,

therapies can be effective throughout the disease course. Among the

overrepresented cell types in RA tissues compared with control

samples were DC, CD4+ memory T cells and B cells. Conversely,

NKT cells emerged as the most statistically significant

underrepresented cell type.

The observed reduced numbers of NKT cells in synovial tissues

of RA patients suggested either impaired differentiation or impaired

tissue migration or chemotaxis. Numbers of NKT cells were

previously reported to be decreased in the peripheral blood of RA

patients (87). NKT cells typically accumulate in the liver and move

into tissues in response to chemotactic factors such as CCL5,

CXCL16 and others, which are known to be expressed in the RA

synovial tissues (88). NKT cells express an invariant TCR that

recognizes glycolipids presented by CD1d (89). Synthetic versions

of these glycolipids have been used to successfully treat arthritis in

rodent models (90, 91). Additionally, recently discovered and

naturally-occurring glycolipids produced by Bacteroides fragilis

were shown to induce the differentiation and activation of NKT

cells (92, 93). Interestingly, Bacteroides fragilis is a bacterial species

commonly depleted in the intestinal microbiome of RA patients,

raising the possibility of a connection between the intestinal

microbiome and the reduced numbers of NKT cells in synovial

tissues and blood of RA patients (94). Functionally, NKT cells can
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produce IL-10 to suppress immune responses, and also can inhibit

autoreactive B cells (95), which are expanded in RA synovial tissues

and have central in disease. Therefore, the reduced NKT numbers

could favor an expansion of the autoimmune and inflammatory

response in the synovial tissues (96).

Another interesting cell population that emerged from our

analysis were eosinophils, which were almost absent in RA tissues

compared to OA and healthy controls. Interestingly, eosinophils

with a regulatory phenotype were recently reported in the synovial

tissues of RA patients in remission (97), suggesting that their

presence may help control disease. Likewise, eosinophil activation

can suppress inflammation in arthritis in rodent models (98).

To elucidate the potential role of the RA-associated candidate

genes identified in our analyses, we utilized previously published

cell type-specific gene regulatory networks (56). Namely, we

identified genes associated with published RA signatures and used

them in the key driver analysis (KDA) (57) framework. To increase

the robustness of the method, we ran the analysis using two

independent sets of RA-associated signatures with low overlap.

The first gene set was compiled from online databases, including

GWAS, knowledge-based and drug targets databases. The second

gene set was developed with a DEG meta-analysis. Interestingly,

numerous major regulators were consistently identified across

diverse cell types and tissues. Several of these genes have been

previously documented in the literature, highlighting the robustness

of our methodology.

Our analyses identified new TF implicated in the regulation of

RA synovial tissue gene expression, and more precisely implicating

TF in cell specific gene regulatory networks (GRNs). As expected,

regulatory interactions showed significant variability across cell

types. Both the gene expression profiles and the regulatory edge

weights of the cell type-specific GRNs showed minimal correlation.

Certain cell types, such as FLS and B cells, were governed by

multiple independent co-regulatory clusters, while the TF drivers

in monocytes collectively controlled the regulatory distinctions

between RA and OA. For example, CEBPZ was implicated in

monocyte networks, SCRT1 in global synovial tissue and T cell

networks, and RFX5 in global synovial tissue and monocyte cell

GRNs. Most of the TF were specific to a cell type with IRF4 and

IRF9 for monocyte, RORC and HOXA1 for FLS, JUN and STAT5B

for B cells and ELF4 and HAND1 for T cell networks. Global

synovial tissue and cell specific key drivers such as ELF4, FOSL1,

FOSL2, HIVEP1, IRF9, KLF2, MITF, and RFX5 and were identified,

several for the first time in RA. We also identified a major TF-TF

co-regulation in the synovial tissue and synovial cells from RA

patients, highlighting the complexities involved in cell regulation. It

is conceivable that such networks and their dominant role in disease

pathogenesis vary from patient to patient, which might help explain

highly variable patient response to different treatments. But our

analyses point to the likely relevant central target driving each

network and may help point to new target for treatment.

Several of the KDG and TF have not been previously implicated

in RA pathogenesis and their discovery opens new possibilities for

studies and drug targeting. For example, SCRT1 (scratch family

transcriptional repressor 1), is a recently discovered TF that has

been implicated in pancreatic islet cell proliferation (99) and cancer
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proliferation and metastasis (100). To our knowledge this is the first

time that SCRT1 is implicated in the regulation of an inflammatory

and autoimmune disease. RFX5 (regulatory factor X5) was only

recently implicated in the regulation of synovial macrophage

metabolism and survival (101). Our findings suggest that this TF

has a major role not only on monocyte regulatory networks but also

in the synovial tissues in general. We also detected homeobox genes

(NKX2-1, NK2 homeobox 1, and HOXA1) among the top KDG in

RA FLS, including an overrepresentation of HOX genes pathway

genes. MITF (melanocyte inducing transcription factor) is another

new FLS and T-cell KDG identified in this study. MITF was

previously implicated in osteoclast differentiation and function

(102) and also recently shown to mediate T-cell maturation (103).

However, this is the first time that MITF is implicated in FLS and T-

cell transcriptomic networks.

In conclusion, we used a robust and innovative combination of

computational strategies to identify KDG, TF and GRNs in RA

synovial tissues and synovial cells. While many have already been

validated in previous publications, experimental validation of the

newly identified KDGs and TFs would further strengthen the

robustness and reliability of our findings. Incorporating

experimental validation, such as functional assays or gene

knockout studies, could provide more conclusive evidence of the

roles of these genes in RA. These discoveries open new possibilities

for experimental validation and discovery in cells or in vivo studies

(104). For example, we identified BACH1 among the strongest TF

regulators in RA FLS and we recently validated its role in RA (104).

Our KDG and TF discoveries generate new clues to

understanding RA pathogenesis, and potential new targets

towards developing different types of cells-specific treatment, such

as targeting the FLS to maximize disease control in a patient with

partial response to an anti-TNF and JAK inhibitor therapy. They

may also facility the characterization of individual cell subset

predominance in a patient and guide individual’s therapy.

Additionally, our findings should help understand the role that

cellularity and the multiple pathways involved in cell regulation and

co-regulations have in disease, and potentially in patient response to

treatment. Unfortunately, RNA-Seq profiles of several other

important cell types that significantly contribute to the

heterogeneity of synovial tissues, such as NKT cells, DCs,

eosinophils, or pericytes, were unavailable, and thus their GRNs

could not be constructed. As such, integrating data from additional

cell types could provide a more comprehensive understanding of

the regulatory networks involved in RA pathogenesis, and further

identify candidate genes for further analyses and consideration for

therapeutic development (16).
4 Methods

4.1 Gene expression data
and normalization

We used two public datasets. The first one, a bulk RNA-Seq

study of synovial biopsies (GSE89408) (26, 105), comprises gene
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expression profiles spanning over 25k genes across 28 healthy

samples, 152 RA, and 22 OA patients. The second dataset is a

bulk RNA-Seq study of synovial tissues including 18 RA patients

with RA 13 OA patients used as controls from the Accelerating

Medicines Partnership (AMP) Phase I project (15). The first dataset

is relatively bigger than the second and other publicly accessible

synovial tissue studies. Moreover, it has the advantage of including

both healthy and OA control groups. Also, focusing on a single big

dataset, rather than combining several smaller ones, removes the

batch effect bias.

All data underwent scaling normalization (106) to remove

potential biases of other experimental artifacts across samples.

The underlying assumption is that any sample-specific bias, such

as variations in capture or amplification efficiency, uniformly scales

the expected mean count for each gene. As the size factor for each

sample represents the estimated relative bias in that sample,

dividing its counts by its size factor should mitigate this bias.
4.2 Estimation of cellular compositions in
synovial tissues

The cell compositions in synovial tissues were estimated with

xCell (38), a machine learning framework trained using the profiles

of 64 immune and stroma cell datasets. xCell takes the gene

expression count as input and generates enrichment scores.

Briefly, the xCell score measures the enrichment of genes specific

to each cell type and is further adjusts for correlations among

closely related cell types. The resulting enrichment scores are

normalized to unity to enable consistent comparisons

across samples.

As an alternative method, we used CIBERSORT (40), which

deconvolute directly the cellular composition of the tissues from a

signature matrix comprised of barcode genes that are enriched in

each cell-type of interest (Supplementary Figure S2). To run

CIBERSORT, We used the web-tool CIBERSORx (https://

cibersortx.stanford.edu/runcibersortx.php) with a pre-loaded

signature matrix comprising 22 immune cells.
4.3 Correction for cellular composition in
synovial tissues

Our analysis revealed that cellular composition variation in

synovial tissues accounted for a significant portion (61%) of gene

expression variability. To differentiate gene expression variability

arising from actual molecular state changes in cells from those due

to compositional shifts, we adjusted the gene expression profiles for

these covariates. To prevent over-correction, we corrected only the

18 cell types that exhibited significant differences in both RA vs

normal and RA vs OA comparisons [Student’s t-test with p< 0.05

after Benjamini-Hochberg correction (31)].

For each gene k in sample s, we performed a linear regression

analysis using the proportion of cell types ci on that sample s as

covariates, i.e.   xci,s. Mathematically, this is expressed as Equation 1:
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Ynew
ks = Yks − b0,k +o

ci
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bci,k   xci,s

" #
, (1)

where the b s are regression coefficients derived using a least-

square fit. We then used the residuals from this regression, (Yks), as

the actual gene expression value in our analyses (107). Namely, we

utilized these adjusted gene expressions for differential gene

expression (DEG) analysis and to assemble the RA synovial network.
4.4 Differentially expressed genes

After correcting the gene expression data for cell composition,

we defined differentially expressed genes (DEGs) as genes with a p-

value below 0.05 in a t-test comparing the RA and control groups,

after applying the Benjamini & Hochberg method (31) to control

the False Discovery Rate (FDR) at 0.05. This approach ensures that,

on average, only 5% of the identified DEGs are false positives,

offering a robust balance against multiple testing errors.

Because the DEG analysis relies on an error-prone cell

composition correction of the synovial tissues, we combined our

DEGs with several meta-analyses (12, 13, 60, 61) from synovial

tissues to increase the DEG analysis robustness. Genes that were

identified in at least two of the lists above (either our DEGs or from

one of the meta-studies) were kept as the gene DEG list (93 genes).
4.5 Pathway enrichment analysis

Pathway enrichment analysis was conducted using the Python

library GSEApy (108). The pathways were sourced from GO (46),

KEGG (47), and Reactome (48), and ranked by adjusted p-value.

Given that all TFs are DNA-binding proteins, we removed any terms

associated with RNA and DNA transcription, as these processes are

ubiquitous and therefore not likely to be specific to RA.
4.6 Correlation of gene expression across
cell types

For a given gene   g ∈ G, we performed a Student t-test to

compare the difference in expression values between RA and the

control group within a specific cell typeC. From this test, we obtained

its t-statistic, denoted as texpr(g ,C). Next, we calculate the correlation of

this score across cell type pairs (C1, C2), as follows (Equation 2):

Correlation(C1,C2)

= Pearson   texpr(g,C1)
� �

g∈G, texpr(g,C2)
� �

g∈G

� �
(2)
4.7 Genes associated with the susceptibility
to RA

We performed an extensive literature review to aggregate

known genes associated with RA from different contexts. Recent
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GWAS data, highlighting genetic risk factors for RA, were collected

from publicly available studies (10, 62) and the GWASdb SNP-

Disease Associations database (63). Various genes associated with

RA were obtained from publicly-available databases DISEASES

(65), DisGeNet (64) and the Comparative Toxicogenomics

Database (CTD) (66). Briefly, the CTD score, ranging from 0 to

100, measures the deviation of a gene’s connectivity in the CTD

chemical-RA network from that of a random network. (see http://

ctdbase.org/help/diseaseGeneDetailHelp.jsp for additional details).

Among the ∼25k genes in the database, only 175 (less than 1%) had

a CTD score higher than 50. We collected drug targets either

already on the market or undergoing clinical trial (67) as well as

from the DrugBank database (68) (https://go.drugbank.com/

categories/DBCAT003604). Genes that were identified in at

least two of the lists or databases were kept as the gene literature

list (259 genes).
4.8 Networks and key driver analysis

The networks of different tissues & cell types were downloaded from

the GIANT database (56) https://hb.flatironinstitute.org/download. In

addition, the precomputed networks Bayesian_Multitissue and PPIwere

used directly on the Mergeomics (109) web service (http://

mergeomics.research.idre.ucla.edu/samplefiles.php. To remove

potential biases associated with network sizes, we only considered the

top 1.5 million edges in terms of regulatory scores for each network.

Each of these networks was used to run a key driver analysis

(KDA) associated with a list of RA-associated genes. We performed

KDA with the Mergeomics R library (57) with a search depth and

edge weight set to 1 and 0.5, respectively. In brief, each node (gene)

in the network was tested independently. Mergeomics computed

the number of edges connecting the node to any gene listed as RA-

associated. A node was designated as a key driver if its linkage count

exceeded the average number of links to the RA list by more than

one standard deviation. In practice, Mergeomics adjusts this

number accounting for the regulatory weight associated with each

of these links.
4.9 Gene regulatory networks in synovial
tissues and cell types

We inferred GRNs with PANDA (44). PANDA combines gene

expression profiles of synovial tissues (and cell types) with prior

knowledge about TF binding motifs (a list of target genes for each

TF) and TF-TF interactions (86, 110). TF-TF interactions and TF

motifs were inferred from the StringDB (43) and CIS-BP database

(42), respectively. They were downloaded directly from the

GRAND database (111) (https://grand.networkmedicine.org/).

PANDA employs message passing to merge a prior network

(derived from mapping TF motifs onto the genome) with protein-

protein interaction and gene expression datasets, iteratively refining

edge weights in the networks. Applied to our data, PANDA

produced directed networks of TFs to their target genes (TGs),

comprising 644 TFs and 18992 genes, resulting in 12230848 edges.
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Here, each edge between a TF and its TG is associated with a weight,

which represents the probability of a regulatory interaction between

the TF and the TG. The weight values, after undergoing a Z-

transformation, typically range between -4 and 4. These indicate the

number of standard deviations below (for negative Z-scores) or

above (for positive Z-scores) the average weight of the network.

Then, we used LIONESS (45) to estimate an individual gene

regulatory network for each individual sample in our RNA-Seq data

(see Supplementary Table S2 for the sample count per cell type).

LIONESS estimates sample-specific networks by sequentially

leaving each sample out, calculating a network (with PANDA)

with and without that sample, and using linear interpolation to

estimate the network for the left-out sample. All networks were

inferred with the python library netZooPy (https://github.com/

netZoo/netZooPy).
4.10 Analysis of TFs RA regulatory activity
in gene regulatory networks

We leveraged this collection of networks to test whether the

weights of these regulatory edges differ significantly between RA and

control samples, and to identify the TFs that may potentially be

driving these regulatory differences. A Student’s t-test was used to

estimate: (i) the differential gene expression between RA and the

control group, denoted as texpr; and (ii) the differential weight of the

regulatory edges between RA and the control group, denoted as tedge.

We define RA differentially expressed genes (DEGs) as the ones

having a texpr
�� �� > 1.

Note that the t-score represents the difference between the mean

values of the two groups being compared, divided by the standard

error of the difference. A positive (respectively negative) score

indicates situations where the mean of the RA group is larger

(respectively smaller) than the mean of the control group. The

larger the absolute value of the t-score, the more statistically

significant the difference is relative to the variability of the data.

Hence, we quantified the regulatory importance of TFs as the

absolute values of the differential weights of the regulatory edges,

tedge
�� ��(Equation 3), averaged over RA DEGs. The hypothesis behind

this choice is that TFs whose edge weights for DEGs are also

differentiated between RA and control should be the main drivers of

these observed regulatory differences. To prevent evaluating TFs on

genes they typically do not target, we only considered the RA-

associated TGs listed in the prior knowledge about TF regulon [CIS-

BP database (42)]. Defining G as the network’s gene set, the above

definition can be formalized as follows (Equation 3):

RA DEGsf g = texpr(gene)
�� �� > 1,   gene   ∈  G

� �
,

TF targetsf g  = is _ regulon   (TF, gene) = true,   gene   ∈  Gf g,

T = RA DEGsf g ∩ TF targetsf g,

TFscore = 1
Tj j o

gene  ∈  T
tedge(TF, gene)
�� �� :

(3)

We expect that TFs with the highest scores are the most likely to

contribute to RA regulation.
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4.11 TF-TF co-regulation network

We quantified the co-regulation between TFs by evaluating the

correlation of their common TGs’ differential edge weights. Let G be

the set of all genes in the network, then Equation 4:

Co − regulation(TFi,TFj)

= Correlation   tedge(TFi, gene), tedge(TFj, gene), gene ∈ G
� �� 	

(4)

4.12 Clustering and diversity analysis

First, we computed for each cell type aTF-TFdistancematrix, defined as

one minus the absolute value of the pairwise correlation matrix. Then, in

each TF-TF co-regulation network, we clustered TFs into co-regulation

groups with a hierarchical agglomerative clustering (HAC) (112). The

clustering criterion was defined as the Ward’s minimum variance method

(113), with a distance threshold of 0.5. Ward’s method minimizes the total

within-cluster variance, which means at every step, the algorithm finds the

pair of clusters that leads to a minimum increase in total within-cluster

variance after merging, until the intra-cluster distance is above the threshold.

Then, we characterized these clusters with diversity metrics such as

richness (the number of clusters), Shannon entropy and dominance

(82). Dominance is defined as the fractional abundance of the most

abundant cluster, while the Shannon entropy (H) provides a measure

of the overall diversity within the system by considering the frequencies

of all clusters, each weighted by the logarithm of its frequency.

Denoting S the number of clusters, and pi the fraction of population

of cluster i, H is defined as Equation 5 (114).

H =o
S

i=1
− pilog (pi) : (5)
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