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Yong-Bing Cao1, Li-Chao Zhang3* and Ling Li1*

1Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 2Department of Physiology and Pharmacology, China
Pharmaceutic University, Nanjing, China, 3Department of Pharmacy, Shanghai Municipal Hospital of
Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
Venous thromboembolism (VTE) poses a notable risk ofmorbidity andmortality. The

natural resolution of the venous thrombusmight be a potential alternative treatment

strategy for VTE. Monocytes/macrophages merge as pivotal cell types in the gradual

resolution of the thrombus. In this review, the vital role of macrophages in inducing

inflammatory response, augmenting neovascularization, and facilitating the

degradation of fibrin and collagen during thrombus resolution was described. The

two phenotypes of macrophages involved in thrombus resolution and their dual

functions were discussed. Macrophages expressing various factors, including

cytokines and their receptors, adhesion molecules, chemokine receptors, vascular

endothelial growth factor receptors, profibrinolytic- or antifibrinolytic-related

enzymes, and other elements, are explored for their potential to promote or

attenuate thrombus resolution. Furthermore, this review provides a

comprehensive summary of new and promising therapeutic candidate drugs

associated with monocytes/macrophages that have been demonstrated to

promote or impair thrombus resolution. However, further clinical trials are

essential to validate their efficacy in VTE therapy.
KEYWORDS

venous thromboembolism, thrombus resolution, macrophages, monocytes,
inflammation, neovascularization
Introduction

Venous thromboembolism (VTE) comprising deep vein thrombosis (DVT) and its

potential sequelae, including pulmonary embolism (PE) and post-thrombotic syndrome

(PTS), is the third most common cardiovascular disease after myocardial infarction and

stroke (1). The estimated VTE rate hovers approximately one to two individuals per 1,000

persons per year in Europe and the USA and is lower in Asia (2). The incidence of maternal
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VTE in China was estimated to be 0.13% (95% CI, 0.11–0.16),

associated with cesarean section and advanced age (3). Moreover,

approximately 15% of patients die within 1 year after being diagnosed

with VTE, and survivors often suffer from various complications (4).

Current treatments for VTE include anticoagulation therapy,

thrombolytic therapy, surgical thrombectomy, inferior vena cava

(IVC) filter placement, and others (5). However, these treatments

have some drawbacks, such as increasing the risk of bleeding, being

limited to fresh thrombus, not eliminating the occurrence of PTS, the

absence of acceleration in thrombus resolution, etc. (6). Therefore,

exploring new therapeutic strategies is essential for preventing and

treating VTE.

Recently, much attention has been drawn to promoting the

natural resolution of the venous thrombus as a potential alternative

treatment strategy for VTE (7). It was known that the process of

thrombus resolution involves a complex interaction between the

venous endothelial cells, platelets, and innate immune cells such as

neutrophils, monocytes/macrophages (Mo/MF), T cells, and mast

cells (8). Among these cells, monocytes/macrophages were found to

play a vital role in the dissolution and recanalization of blood clots

through secreting a variety of factors rather than being essential for

thrombogenesis (9, 10). To fully understand the function of Mo/

MF in thrombus resolution, intrathrombotic monocytes/

macrophages are being extensively studied (11, 12).

Therefore, the roles, major sources, and the two phenotypes of

macrophages in VTE were described. Moreover, various factors

expressed by macrophages, which could augment or repress the

resolution of the venous thrombus, were outlined. Furthermore, the

potential candidate drugs, which could promote or impair

thrombus resolution and were associated with macrophage, were

summarized. The novel strategies targeting Mo/MF may be

promising for improving the treatment of VTE.

Monocyte/macrophage recruitment
and accumulation in the thrombus
during thrombus resolution

The process of venous thrombosis (VT) is similar to local

wound healing, with an early influx of neutrophils (PMN) into

the thrombus, followed by Mo/MF (13). Recently, thrombus

formation has been confirmed as an inalienable part of innate

immunity, termed immunothrombosis (14, 15). Uncontrolled

abnormal immune thrombosis causes severe damage, leading to

thromboinflammation (14, 16). It is recognized that not only

inflammation stimulates thrombosis but also thrombosis can in

turn directly trigger inflammation, and a close, bidirectional

relationship exists between inflammation and thrombosis (15, 17).

A key link between inflammation and thrombosis is the formation

of neutrophil extracellular traps (NETs) released by activated

neutrophils, which act as scaffolds for the aggregation of

erythrocytes and platelets (11, 18–21). Moreover, the activation of

inflammasomes in neutrophils and the release of downstream

proinflammatory cytokines IL-1b and IL-18 can enhance the

recruitment and activation of platelets and monocytes (22–24).
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Inflammasome activation also promotes thromboinflammation by

inducing the release of tissue factors by monocytes and

macrophages to initiate the intrinsic pathway (22, 25).

Furthermore, the activated platelets were found to not only play

vital roles in thrombosis and hemostasis but also mediate

inflammation through direct interactions with neutrophils as well

as monocytes/macrophages in VTE (11, 18).

Up to now, monocytes and macrophages have also been shown to

possess the ability to form extracellular traps which were namedMETs

(26–28). METs released from human blood monocytes before

differentiating into macrophages have an important host defense

function which inhibits growth and dissemination of the human

pathogenic yeast Candida albicans (29). METs were formed by

macrophages exposed to the respiratory pathogen Mannheimia

haemolytica and its leukotoxin (30). The death of macrophages with

METs is called METosis, which is similar to NETosis (31). It was

demonstrated that macrophage polarization may affect METosis and

the M1-activated state is more prone to METosis after interaction with

NETs (31, 32). Altogether, the web structures may be important for

later immune cell responses and direct how the VT resolves (11). Many

important functions of NETs or macrophage/monocyte extracellular

traps in thrombus formation and resolution remain unclear.

Mo/MF are the primary effectors of immune-directed VT

resolution (11). A previous study has shown that during venous

thrombus resolution, the percentage area of thrombus covered by

monocytes steadily increased in both human venous thrombi and

experimental stenosis rat models (33). Monocytes initially appeared

around the edge of the thrombus and gradually distributed more

evenly as the resolution progressed. Moreover, monocyte content in

the thrombus increased at 25 days than at 2 days after monocytes

were injected intravenously into rats before thrombus induction

(33). In short, these results indicated that both endogenous and

exogenous supplementation of monocytes might migrate and

accumulate in the thrombus during natural resolution.

It was demonstrated that the increase of macrophage numbers or

monocyte recruitment into the thrombus could improve VT

resolution and recanalization (34). The number of macrophages

was shown to start increasing and peaking at 7 days after IVC

ligation and then gradually decreasing until the experimental

deadline of 21 days (35). Similarly, it was reported that the

macrophage content in the thrombus of mice was the highest on

day 14 compared to day 1 and day 28 after IVC stenosis (36). Flow

cytometry analysis also showed that the proportion of

CD45+CD11b+Gr-1− monocytes in the thrombus reached its peak

on day 10 after IVC stenosis and declined after that (37). Moreover,

substantial macrophages, heterogeneously distributed along the

length of the thrombi, were found to be infiltrated into the murine

thigh and jugular VT induced by FeCl3 on day 4, and the intensity of

macrophages in the thrombus on day 4 was correlated with the

reduction of thrombus length and area from day 4 to day 6 (38).

Taken together, the number of monocytes/macrophages recruited

and infiltrated in the thrombus increases throughout thrombus

resolution, with a peak at the early and mid-term stages and then

gradually decreasing with thrombolysis. Thrombotic macrophage

content could predict the subsequent extent of DVT resolution in vivo.
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Major sources of monocytes/
macrophages in the thrombus

Previous studies have implied that the majority of infiltrating

monocytes in thrombi primarily originated from the circulation

rather than resident cells in surrounding tissues (39).

Impaired thrombus resolution in uPA−/− mice transplanted with

uPA−/− bone marrow was rescued by transplantation with WT bone

marrow and cells expressing LacZ from the donor bone marrow

presented in the thrombus after transplantation, indicating that the

cells recruited into the thrombus were derived from the bone marrow

(36). Later, Obi et al. found that the principal source of interleukin-6

(IL-6) in the thrombus was anti-inflammatory Ly6CLow Mo/MF (a

subpopulation of Ly6C+ Mo/MF) and the impaired VT resolution

was reversed by adoptive transfer of bonemarrow-derived monocytes

(BMDMs) fromWTmice into IL-6−/−mice, indirectly indicating that

monocytes derived from BMDMmight play an important role in the

middle stage of thrombus resolution (40).

Furthermore, Kimball et al. found that impaired VT resolution

could be restored by the adoptive transfer of anti-inflammatory

CD11b+Ly6CLo Mo/MFs from the blood and spleen, indicating that

circulating CD11b+Ly6CLo Mo/MFs were vital for normal VT

resolution (10). Moreover, bone marrow-derived endothelial

progenitor cells were found to be recruited into the thrombus

during resolution and promoted neovascularization (41). The cells

expressing a mixed macrophage and endothelial phenotype might

represent a population of plastic stem cells that play a part in

orchestrating thrombus recanalization.

Taken together, the origin of intrathrombotic Mo/MF seems to

be from the bone marrow or circulation. However, the dedication of

tissue-resident macrophages or cells derived from the “splenic

reservoir” in dissolving the thrombus is still unclear.
Phenotypic changes of macrophages
during thrombus formation
and resolution

Currently, accumulative studies have found the vital role of

macrophage phenotypes in thrombus resolution and vein wall

remodeling. According to cell surface antigens, macrophages are

divided into two phenotypes: classically activated or proinflammatory

(M1 type or M1-like) macrophages with CD11b+Ly6CHigh, CCR22+,

and CX3CR1+ antigen expression; and alternatively activated or anti-

inflammatory macrophages (M2 type or M2-like) with

CD11b+Ly6CLow, CCR2−, and CX3CR12+ antigen expression. M1-

type macrophages express a defined set of proinflammatory

cytokines such as IL-1b, IL-6, IL-12, inducible nitric oxide synthase

(iNOS), and CCR2 (42). However, M2 type macrophages express IL-

10, arginase 1 (Arg-1), and CD206, with profibrinolytic and

inflammation-resolving activity (43).

An initial study showed that M2-like macrophages

predominantly in the experimental VT model might impair
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thrombus resolution (44). However, later research demonstrated

that infiltrating monocyte/macrophages derived from the blood

could differentiate into inflammatory (CD11b+Ly6CHigh) or pro-

resolving (CD11b+Ly6CLow) subtypes and the pro-resolving

CD11b+Ly6CLow Mo/MFs were vital for normal VT resolution

(10). Recently, it was found that the inflammatory Ly6CHigh

monocytes could enhance thrombus formation, and reducing

inflammatory monocyte numbers could inhibit established

thrombus growth and promote resolution (37, 45).

Moreover, current studies have shown that macrophage

polarization can cause changes in macrophage function, including

different migratory behaviors or alterations in extracellular matrix

remodeling (46–48). It was reported that proinflammatory

polarization of macrophages could boost NET degradation

through enhanced macropinocytosis and inhibition of

macropinocytosis led to increased thrombus NET burden and

reduced thrombus resolution in mice with IVC stenosis (49).

Taken together, M1 macrophages mainly enhance thrombus

formation, and M2-type macrophages mainly promote thrombus

resolution (Figure 1). Therefore, altering the M1/M2 macrophage

balance may accelerate thrombus resolution and allow the

development of novel therapies to treat venous thrombus and to

prevent PTS.
Monocytes/macrophages augment
neovascularization, profibrinolysis,
and collagenolysis during
thrombus resolution

Mo/MF are multifunctional leukocytes concerned with VT

resolution. These leukocytes are involved in clearing necrotic cells

and matrix debris, promoting neovascularization and profibrinolysis,

and degrading the extracellular matrix (Figure 1).
Monocytes/macrophages
promote neovascularization

Thrombus neovascularization has been demonstrated to be

another key event during thrombus resolution and recanalization.

Macrophages predominate in the mid and later stages of resolution

and are likely to be the most prominent effector cells in this

procedure. Intrathrombotic macrophages express and release

proangiogenic factors, chemokines, and cytokines, such as IL-8,

VEGF, basic fibroblast growth factor (bFGF), and placental growth

factor (PLGF), which stimulate capillary formation and

neovascularization and modulate the recruitment of immune cells

including monocytes/macrophages (50, 51).

VEGF is a growth factor with potent proangiogenic activity

(52). VEGF concentration in the thrombus was found to be

increased between 1 day and 7 days, and VEGF was distributed

in monocytes/macrophages, endothelial cells, and spindle-shaped
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cells in the thrombus (53, 54). Similarly, adenovirus VEGF-

transfected macrophage injection promoted thrombus resolution

and enhanced vein lumen recanalization (55). Moreover, the

antiangiogenic drug 2-methoxyestradiol attenuated the resolution

of the venous thrombus, accompanied by a decrease in VEGF and

PLGF levels, as well as neutrophil and macrophage contents in the

vein of thrombosis (56). Hence, the potential prothrombotic effects

of antiangiogenic drugs ought to be carefully thought over when

treating patients with VTE.

bFGF, a growth factor known for its potent stimulation of cell

proliferation, differentiation, growth, survival, and angiogenesis

during development, has recently garnered attention for its

therapeutic potential in wound healing, cardiovascular disease,

and nervous system disorders (57, 58). bFGF content in the

thrombus was found to be positively linearly correlated with time

and gradually increased by more than 300-fold on day 28 in a

stenosis rat model. Interestingly, the bFGF content in the adjacent

vena cava wall and the serum bFGF level remained unchanged over

time. The bFGF was found to be expressed in mononuclear cells,
Frontiers in Immunology 04
spindle-shaped cells, and extracellular matrix (53). These results

implied that bFGF expressed, at least partially by monocytes, in

organizing the thrombus might be involved in thrombus resolution.

However, the role and potential mechanism of bFGF in thrombus

resolution need further research.

Taken together, monocytes/macrophages play a pivotal role by

expressing and releasing factors such as angiogenic growth factors,

cytokines, and chemokines to enhance intrathrombotic

neovascularization, which conversely recruit and activate monocytes/

macrophages during thrombus resolution.
The phagocytosis and proteolysis of
monocytes/macrophages

It was demonstrated that intrathrombotic macrophages could

engulf necrotic tissue, clear cellular debris, and release proteolytic

enzymes such as matrix metalloproteinases-2 (MMP-2), matrix

metalloproteinases-9 (MMP-9), urokinase-type plasminogen
FIGURE 1

Monocytes/macrophages in the resolution of the venous thrombus. The period from day 1 to day 3 after modeling or thrombosis was considered the thrombus
formation period. The early stage of thrombus resolution was considered from day 4 to day 7 after thrombosis. The middle and late stages of thrombus
resolution were considered from day 8 after thrombosis. During thrombus resolution, macrophages transform from M1 type to M2 type and participate in
thrombus resolution by clearing necrotic cells and matrix debris and promoting neovascularization, profibrinolysis, and collagenolysis. M1-type macrophages
infiltrate into the thrombus during thrombus formation and play a major role in the early stage of thrombus resolution, while M2-type macrophages play a vital
role in the middle and late stages of thrombus resolution. CCR2, C-C chemokine receptor 2; IL-6, interleukin-6; MMPs, matrix metalloproteinases; PAI-1,
plasminogen activator inhibitor-1; PAI-2, plasminogen activator inhibitor-2; PECAM-1, platelet endothelial cell adhesion molecule 1; TNF-a, tumor necrosis
factor-a; TNF-Rp55, tumor necrosis factor receptor p55; TLR4, Toll-like receptor 4; TLR9, Toll-like receptor 9; tPA, tissue-type plasminogen activator; uPA,
urokinase-type plasminogen activator; VEGF, vascular endothelial growth factor.
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activator (uPA), and tissue-type plasminogen activator (tPA), to

dissolve the surrounding matrix and fibrin, thereby promoting

thrombolysis and recanalization (54, 59).

It was demonstrated that NETs could be degraded by

macrophages via phagocytosis (32, 60, 61). The blocking of

macropinocytosis in the stenosis mice model inhibited thrombus

resolution and increased the NET content in the thrombus (49). F4/

80 (a macrophage marker) was found to be co-localized with MMP-

2, MMP-9, and uPA in the thrombus (59). Macrophages transfected

with adenovirus uPA (ad-uPA) were shown to raise fibrinolytic

activity, and upregulating uPA by systemic administration of

transfected cells could promote thrombosis resolution in mice

(62). In brief, macrophages promote thrombus resolution through

phagocytosis or by releasing a pro-fibrinolysis enzyme (uPA) or

matrix-degrading enzymes (MMP-2 and MMP-9).
Various factors associated with
monocytes/macrophages affect
thrombus resolution

It is worth noting that several inflammatory factors or their

receptors [IL-6, interferon-g (IFN-g), tumor necrosis factor receptor

p55 (TNF-Rp55a), Toll-like receptor 4 (TLR4), TLR9], chemokine

receptor (CCR2), adhesion molecule (platelet endothelial cell

adhesion molecule 1 (PECAM-1)], VEGFR2, plasmins [uPA, tPA,

plasminogen activator inhibitor type 1 (PAI-1), plasminogen

activator inhibitor type 2 (PAI-2), MMP-2, MMP-9], and one

gene (P53) are involved in thrombus resolution and associated

with monocytes/macrophages (Table 1).
Cytokines and their receptors

Interleukin-6
IL-6 is a pleiotropic proinflammatory cytokine that is not only a

key modulator in homeostasis and inflammation but also involved in

the pathogenesis of various diseases (76). IL-6 in the thrombus was

gradually increased after IVC ligation and mainly located in F4/80-

positive macrophages. IL-6 derived from macrophages was involved

in VT resolution and IL-6 deficiency delayed thrombus resolution

(59). However, whether IL-6 promotes VT resolution through the

Stat3 signaling pathway in vivo needs further research. Recently,

Ly6Clow (CD11b+CD3−CD19−Ter119−NK1.1−) Mo/MF were further

found to be the predominant leukocyte source of IL-6. Consistent

with a previous study, IL-6 deficiency impaired VT resolution

through dysregulation of MMP-9 (40). Therefore, enhancing

monocyte IL-6 signaling may provide a potential target to improve

thrombus resolution without affecting anticoagulant function.
Interleukin-1b
IL-1b is one of the most prominent inflammatory mediators leading

to fever and immune activation by binding to IL-1 receptor 1 (77).

A previous study reported that serum IL-1b level and IL-1b mRNA

expression increased in thrombus tissue at 24 h in a stasis rat model (78).
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TABLE 1 Continued

tent
us

Mechanisms References

↑ Thrombus volumes and lengths, cross-sectional area, collagen; ↓ vessel formation (69)

↑ Thrombus weights, cross-sectional areas and volumes of the thrombi; ↓
microvessel density

(70)

Unchanged thrombus sizes; ↑ IFN-g, PAI-1, active MMP-2 and MMP-14; ↓ PMN,
plasmin activity, collagen type IV and fibrinogen in the thrombus

(71)

↑ Thrombi size; transplanting WT bone marrow restores thrombus resolution in
uPA−/− mice

(36)

Unchanged thrombus sizes (36)

↓ Thrombus weight, MMP-2 and MMP-9 activities (72)

↑ Thrombus weight, procollagen I and IIIa gene expression; ↓ vein wall collagen
content, intimal fibrosis, MCP-1, MMP-2 and MMP-9 activity, and TIMP-1 level

(73)

↓ thrombus weight, PAI-1 levels; ↑ uPA activity, CXCL2 levels and neutrophil content (72)

↑ Thrombi size; ↓ PAI-1 levels in the thrombus (71)

↑ Thrombus weights; ↓ vein wall compliance, extracellular matrix and
collagen deposition

(74)

↑ Thrombus weights, collagen deposition and IL-6 expression; ↓ MMP-2 expression;
repressed macrophage polarization toward an M2-like phenotype

(75)

tor 2; CXCL2, C-X-C motif ligand 2; DVT, deep vein thrombosis; HMGB1, high mobility group protein B1; IFN-g, interferon-g; IL-
etalloproteinase-9; Mo/MF, monocytes/macrophages; PAI-1, plasminogen activator inhibitor-1; PAI-2, plasminogen activator
TNF-a, tumor necrosis factor-a; TNF-Rp55, tumor necrosis factor receptor p55; TIMP-1, tissue inhibitor of metalloproteinase 1;
r; VEGF, vascular endothelial growth factor; WT, wild type.
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Category
Various
factor

Gene deletion DVT model
Thrombus
resolution
status

Mo/MF con
in thromb

Adhesion
molecule

PECAM-
1/CD31

Gene deletion Stenosis Impaired Decrease

Growth
factor
receptors

VEGFR-2/
KDR/Flk-1

Endothelial cell-
specific deletion

Stenosis Impaired Decrease

Plasmin uPA Gene deletion Stasis Unaffected
(early stage)

Decrease

uPA Gene deletion Stenosis Impaired (mid and
late stages)

Decrease

tPA Gene deletion Stenosis Unaffected No change

PAI-1 Gene deletion Stasis Promote Increase

PAI-1 Overexpression Stasis Impaired Decrease

PAI-2 Gene deletion Stasis Promote Decrease

MMP-2 Gene deletion Stasis Impaired
(early stage)

Decrease

MMP-9 Gene deletion Stasis Impaired Decrease

Others p53 Gene deletion or
myeloid-
specific deletion

Stasis Impaired No change

↑, increase or enhance; ↓, decrease or inhibit.
bFGF, basic fibroblast growth factor; BMDM, bone marrow-derived monocyte; Cit-H3, citrullinated histones; CCR2, C-C chemokine recep
1b, interleukin-1b; IL-6, interleukin-6; MCP-1, monocyte chemotactic factor-1; MMP-2, matrix metalloproteinase-2; MMP-9, matrix
inhibitor-2; PECAM-1, platelet endothelial cell adhesion molecule 1; PMN, polymorphonuclear cell; a-SMA, alpha smooth muscle actin
TLR4, Toll-like receptor 4; TLR9, Toll-like receptor 9; tPA, tissue-type plasminogen activator; uPA, urokinase-type plasminogen activat
m
;
o
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However, it was not shown which cells in the thrombus IL-1b originates

from (78). It was found that IL-1b neutralizing antibodies attenuated

inflammasome activation and reduced stasis-induced thrombosis under

hypoxic conditions and IL-1bmRNA expression increased in peripheral

blood mononuclear cells from patients with altitude-induced venous

thrombosis, indicating that IL-1b played a compelling role in thrombus

formation (79). Moreover, the Canakinumab Anti-inflammatory

Thrombosis Outcome Study has demonstrated the beneficial effect of

anti-inflammatory therapy targeting IL-1b on a recurrent cardiovascular

event (22, 80). Additionally, venous thrombosis in CD39-deficient mice

was reduced by IL-1b blockade with a neutralizing IL-1b antibody or

with an inhibitor of the IL-1 receptor (81). Thus, the strategies for

targeting the blockade of IL-1b in VTE should be considered in the

future. However, the role of IL-1b during thrombus resolution has not

been reported yet.

Interferon-g
IFN-g, a pleiotropic cytokine, serves as a central coordinator of

the immune response with antiviral, antiproliferative, proapoptotic,

antiangiogenic, antitumor, and immunomodulatory properties

(82). IFN-g is mainly produced by T cells, natural killer cells,

macrophages, and mucosal epithelial cells (83).

Intrathrombotic IFN-g levels were found to be gradually

increased after IVC ligation, and IFN-g expression was mainly

distributed in F4/80-positive macrophages in the thrombus,

indicating that IFN-g in the thrombus was produced mainly by

infiltrating macrophages. IFN-g derived from macrophages was

involved in VT resolution and IFN-g deficiency enhanced

thrombus resolution possibly through upregulating MMP-9 and

VEGF expression (54). Therefore, IFN-g may become a molecular

target for developing new drugs to promote thrombus resolution in

patients with VT. Nevertheless, the mechanism of IFN-g produced
by macrophages in dissolving blood clots needs further exploration.

Tumor necrosis factor receptor p55
TNF-a, a well-known proinflammatory cytokine, was mainly

generated by activated macrophages, T lymphocytes, and natural

killer cells. The biological functions of TNF-a are mediated by its

two main receptors: type 1 receptors (TNFR1, also known as

TNFRSF1A, CD120a, and p55) and type 2 receptors (TNFR2,

also known as TNFRSF1B, CD120b, and p75) (84). The mRNA

levels of TNF-a and TNF-Rp55 in the thrombus gradually

increased after IVC ligation, and TNF-a and TNF-Rp55 were

mainly expressed in F4/80-positive macrophages (85). The TNF-

a–TNF-Rp55 axis might increase the expression of uPA, MMP-2,

and MMP-9 in intrathrombotic macrophages, thus improving

thrombus resolution in mice (64).

Toll-like receptor 4
TLR4, a member of the Toll-like receptor family, initiates the

innate immunity response and mediates inflammatory responses by

recognizing exogenous pathogen-associated (PAMPs) and
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endogenous danger-associated molecular patterns (DAMPs) (86).

It was found that TLR4 deficiency impaired VT resolution, together

with reduced neutrophil and macrophage infiltration into the

thrombus and lower MCP-1, MMP-9, VEGF, IFNb, and MCP-5

expression in the thrombus (65). However, the role of macrophages

in TLR4 deficiency damaging thrombolysis needs further research.
Toll-like receptor 9
TLR9, an intracellular TLR, is located in endosomal

compartments and is implicated in immunity, inflammation, and

several autoimmune diseases (87).

TLR9+ cells were found to be distributed in the intraluminal

tissue of human chronic post-thrombotic veins and co-localized

with CD68-positive cells in the thrombus (66). TLR9 signaling in

macrophages plays a vital role in later VT resolution and is related

to necrosis clearance, without affecting later vein wall fibrosis (66).

TLR9 deletion damaged early VT resolution, independent from

MyD88 but partially dependent on the NOTCH ligand delta-like 4

(DLL4) (67). However, how TLR9 affects the PMN and macrophage

influx into thrombus remains unclear.
Chemokines and their receptors

Cysteine-cysteine chemokine receptor
Cysteine-cysteine (CC) chemokine receptor (CCR2), is the

receptor for C-C chemokine ligand 2 (CCL2), also known as

monocyte chemoattractant protein-1 (MCP1). CCR2 and its

ligand CCL2 regulate the recruitment and activation of

monocyte/macrophage chemotaxis in various inflammatory

diseases (88, 89). CCR2 deletion was found to inhibit thrombus

resolution and monocyte recruitment (34). Similarly, CCR2

deficiency impaired early thrombus resolution with fewer

thrombus monocytes, partly due to reduced MMP-9 activity (68).

In brief, CCR2 activation was important for the regulation of

monocyte recruitment into the thrombus and represented a

potential target for enhancing thrombus resolution.
Platelet endothelial cell adhesion molecule 1
PECAM-1, also known as CD31, is a 130-kDa transmembrane

glycoprotein expressed by cells interacting at the blood vessel interface

and functions as a cell adhesion molecule with proangiogenic and

proinflammatory activities (90, 91). PECAM-1 is known to participate

in leukocyte migration and angiogenesis, which are the critical parts of

resolving the venous thrombus (92). PECAM-1 deficiency delayed venous

thrombus resolution with less macrophage invasion, and plasma-soluble

PECAM-1 might possess a predictive value for PTS after acute DVT (69).

However, the data were limited by the relatively small sample size and the

use of a PECAM-1 deficiency mice model compared to secondary

PECAM-1 deficiency in humans. Therefore, the cellular sources of

PECAM-1 and its predictive value are worthy of further study.
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Growth factors

VEGF-R2/kinase insert domain protein receptor
VEGF-R2/kinase insert domain protein receptor (VEGF-R2/

KDR/Flk-1), a type III transmembrane kinase receptor, is

predominantly expressed in vascular endothelial cells and plays a

major role in angiogenesis (93). It was reported that VEGF-R2 and

VEFGA expressions were lower in white chronic thromboembolic

pulmonary hypertension (CTEPH) thrombi compared with those

in organizing DVT and organizing thrombi from aortic aneurysms

(70). Furthermore, VEGF-R2-specific deletion in endothelial cells

was found to delay thrombus resolution with lowering macrophage

counts probably through ablation of thrombus vascularization (70).

Given that the VEGF-R2 gene in monocytes was not targeted by

gene deletion, it was possible that angiogenesis might arise first,

then allow monocytes to recruit into the thrombus during

thrombus resolution.
Enzymes related to fibrinolysis and
collagen degradation

Tissue-type and urokinase-type
plasminogen activators

tPA and uPA are serine proteases with a key role in catalyzing

the conversion of the inactive zymogen plasminogen into activated

protease plasmin, which degrade fibrin and multiple components of

extracellular matrix (ECM) turnover and basement membrane,

including collagen, vitronectin, laminin, fibronectin, and

proteoglycans (94).

Previous studies have shown that both tPA and uPA activities in

the thrombus were increased during thrombolysis and expressed by

infiltrating monocytes (95, 96). Early thrombolysis was found to be

independent of uPA and leukocyte infiltration but related to

increased IFN-g and MMP-14 levels and MMP-2 activity (71).

The mid and late stages of VT resolution were modulated by uPA

but were unaffected by tPA deletion (36). The effect of uPA

deficiency on thrombus resolution was related to delayed

recruitment of monocytes into the thrombus, and bone marrow-

derived cells might play a vital role in thrombus resolution (36).

In a word, the resolution of the venous thrombus was

dependent on uPA rather than tPA, and the effect of uPA

promoting thrombus resolution may be associated with

infiltrating monocytes in the thrombus.

Plasminogen activator inhibitor types 1 and 2
PAI-1, a member of the serine protease inhibitor (serpin)

superfamily, is a key physiological inhibitor of both uPA and tPA.

PAI-2, also known as serpinB2, originally identified as an inhibitor

of uPA, is also a serine protease inhibitor that has the ability to

inhibit many extracellular proteases, but it has a lower efficacy on

tPA and uPA compared to PAI-1.

PAI-1 deficiency was found to not only stimulate thrombus

resolution but also mitigate thrombus formation which is associated
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with the increase at the early stage and the decrease of MMP-2 and

MMP-9 activity at the later stage (72). Moreover, macrophage

percentage was also increased at the early stage isolated from

whole clots with the vein wall (72). PAI-1 overexpression

attenuated vein wall fibrosis after DVT, probably by decreasing

macrophage infiltration (73).

PAI-2 deficiency was found to enhance thrombolysis without

impacting thrombus formation, and this enhancement was linked

to the increased uPA activity and decreased PAI-1 levels, without

affecting MMP-2 and MMP-9 activities (72). Moreover, PAI-2

deficiency enhanced early neutrophil recruitment through

elevating the neutrophil chemoattractant CXCL2 levels, with a

decrease of macrophage number (72). The results indicated that

PAI-2 might be a potential therapeutic target for accelerating

thrombus resolution.

Taken together, there are not only similarities but also differences

between PAI-1 and PAI-2 in VT formation and resolution.
Matrix metalloproteinase-2 and matrix
metalloproteinase-9

MMP-2 and MMP-9 (also known as gelatinases), two members

of MMPs belonging to the gelatinase family, degrade ECM.

Their involvement spans various biological processes, including

alterations in cell–cell and cell–ECM interactions, cleavage of

cell surface proteins, and extracellular environment protein

cleavage (97).

MMP-9 expression and activity in the vein wall and thrombus

were elevated in mice on days 2 to 3 after IVC ligation. MMP-9

deletion impaired thrombus resolution and MMP-9 derived from

bone marrow played a role in thrombus resolution which was linked

to collagen deposition and macrophage recruitment (74).

However, early thrombus resolution was dependent on MMP-2,

which affects intrathrombotic monocyte influx and collagen

deposition (71). However, the role and mechanism of MMP-2 in

intrathrombotic monocyte influx and activation in early thrombus

resolution need further study.

In brief, gene deletion of both MMP-2 and MMP-9, which have

collagenolytic and elastolytic activity, impeded thrombus resolution

possibly through collagen deposition and monocyte/macrophage

infiltration into the thrombus.
Others

p53
The tumor suppressor p53, as a genome guardian, plays a vital

role in cell cycle control, senescence, DNA repair, apoptosis, and

cellular stress responses through a variety of transcriptional and

non-transcriptional activities (98). Interestingly, global deletion of

p53, or p53 deficiency in myeloid cells, or the p53 inhibitor pifithrin

was found to damage thrombus resolution via repressing

intrathrombotic macrophage polarization toward an M2-like

phenotype (75).
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Diet-induced type 2 diabetes mellitus
Diabetic mice received a high-fat diet containing 45% kcal of fat

for 10 weeks. The diet-induced type 2 diabetes was found to impair

DVT resolution through increasing macrophage content and

altering inflammatory, fibrinolytic, and MMP responses (99).
Potential candidate drugs associated
with monocytes/macrophages affect
thrombus resolution

Up to now, only a limited number of inflammatory factors,

chemotactic factors, associated antibodies, or compounds, which

correlate with monocytes/macrophages, have been shown to

enhance or attenuate VT resolution (Table 2).
Potential candidate drugs promoting
thrombus resolution

Recombinant TNF-a, anti-TNF-a mAb,
or etanercept

Recombinant TNF-a was found to improve thrombus

resolution and accelerate blood flow recovery without affecting

coagulation functions (prothrombin time and activated partial

thromboplastin time). The anti-TNF-a antibody or etanercept

had the opposite effect on thrombus resolution (64). However,

neither TNF-a treatment nor inhibiting TNF-a with anti-TNF-a
mAb or etanercept affected macrophage infiltration in the vein walls

(64). Large-scale clinical trials must be conducted to verify its

effectiveness and safety.

Recombinant IL-6 and anti-IL-6 antibody
IL-6 was shown to be mainly expressed by intrathrombotic

macrophages (59). The anti-IL-6 antibody inhibited thrombus

resolution, while recombinant murine IL-6 promoted thrombus

resolution and accelerated blood flow recovery without affecting PT

and APTT. Thus, IL-6 might have therapeutic potential in

promoting thrombus resolution without affecting coagulation

activities (59). However, excessive or long-term administration of

IL-6 might cause various pathological disorders. Therefore, the

dosage and withdrawal time of IL-6 treatment for patients with

VT need large-scale clinical trials.

Recombinant IL-8
IL-8 was preliminarily identified as a chemotactic for

neutrophils involved in acute inflammation and then discovered

also to be chemotactic for endothelial cells playing a critical role in

angiogenesis (113). Administration of recombinant human IL-8

(rhIL-8) was reported to enhance thrombus resolution possibly via

neovascularity and inflammation (100). However, intrathrombotic

macrophage content has not been detected. Therefore, the effect of

IL-8 on macrophage content and function during thrombus

resolution remains unclear.
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TABLE 2 Continued

Mechanisms References

g and fibrosis scores; ↑ PMN extravasation in the vein wall (104)

pening; ↓ vein wall inflammation (105)

e and neovessels in thrombi, monocytes in peripheral blood (106)

t and volume; ↑ vein recanalization, neovascularization; ↑ HIF1a, VEGF, and
in the thrombus and neutrophil number in the thrombus and vein wall

(107, 108)

t, intrathrombotic collagen area, IL-6 levels in the thrombi; promoted
zation toward an M2-like phenotype

(75)

venous wall injury, platelet aggregation, clot stability, thrombus PAI-1, TF,
lexes, inflammation markers, collagen and vein wall thickness

(109)

eg shift in the blood and splenic monocyte, accelerating intrathrombic monocyte
lot growth

(45)

macrophage recruitment; ↑ proresolving monocytes in the thrombus, the
in an early apoptosis state

(110)

and collagen content; ↓ recovery of blood flow (63)

uPA expression in the thrombus; ↓ monocyte transmigration through the
nolayer

(111)

t; ↓ vein recanalization and neutrophil content, HIF1a, VEGF, and PLGF levels (56, 112)

e; ↓ neovascularization, collagen content (112)

and diameter; ↑ NET burden in the thrombus; ↓ macropinocytosis (49)

/CCL2, monocyte chemotactic protein 1; 2ME, 2-methoxyestradiol; MIP-1a, macrophage inflammatory protein-
ydroxylase domain; PLGF, placental growth factor; PMN, polymorphonuclear leukocyte; PT, prothrombin time;
uscle actin; TAT, thrombin-antithrombin; TF, tissue factor; uPA, urokinase-type plasminogen activator; VEGF,
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Category Potential candidate drug DVT model Mo/MF content

Promoted thrombus resolution

PAI-1 inhibitor Tiplaxtinin Stenosis No change in the vein wall ↓ Intimal thickeni

P-selectin inhibitor PSI-421 Stasis Not determined ↑ Percent vein reo

Colony-
stimulating factor

rhG-CSF Stenosis Increase ↑ Organization ra

PHD inhibitor L-mimosine Stenosis Increase ↓ Thrombus weigh
VEGFR expression

p53 agonist Quinacrine Stasis No change ↓ Thrombus weigh
macrophage polar

Lipid-
lowering drugs

Atorvastatin or rosuvastatin Stasis or ferric
chloride-induced

Decrease ↓ Thrombus mass
plasma TAT comp

Nur77 agonist Cytosporone B Stenosis No change ↑ Ly6Chi to Ly6Cn

differentiation; ↓ c

Resolvin D4 Proresolving mediators Stenosis Decrease ↓ Neutrophil and
percentage of cells

Impaired thrombus resolution

MMP-2/9 inhibitor MMP-2/9 inhibitor Stasis Not determined ↑ Thrombus mass

Synthetic fibrin-
derived Bb15-
42 peptide

FX06 Stenosis Decrease ↓ Microvessels and
endothelial cell m

Metabolite of
17b-estradiol

2ME Stenosis Decrease ↑ Thrombus weigh

Tyrosine
kinase inhibitor

Axitinib Stenosis Decrease ↑ Thrombus volum

Antidepressant Imipramine Stenosis No change ↑ Thrombus lengt

↑, increase or enhance; ↓, decrease or inhibit.
APTT, activated partial thromboplastin time; DVT, deep vein thrombosis; FX-06, fibrin-derived peptide Bb15-42; HIF1a, hypoxia-inducible factor 1a; MCP1
1a; Mo/MF, monocytes/macrophages; MPO, myeloperoxidase; NETs, neutrophil extracellular traps; PAI-1, plasminogen activator inhibitor-1; PHD, prolyl
rhG-CSF, recombinant human granulocyte colony-stimulating factor; rhIL-8, recombinant human IL-8; rIL-6, recombinant murine IL-6; SMA, smooth m
vascular endothelial growth factor; VEGFR, VEGF receptor; WT, wild type.
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Recombinant monocyte chemotactic protein 1
MCP1/CCL2, a member of the C-C chemokine family, is a

potent chemotactic factor that regulates the migration and

infiltration of monocytes/macrophages (114, 115).

It was demonstrated that thrombus MCP1 levels were elevated

during thrombus resolution and recombinant rat MCP1

administration improved the organization and resolution of the

thrombus possibly through chemotaxis and recruitment of

monocytes into the vessel wall (101). However, another study

showed that recombinant MCP1 promoted thrombus resolution

and increased thrombus recanalization, without affecting

macrophage recruitment (34). Therefore, whether MCP1 promoting

thrombus resolution was dependent on monocyte/macrophage

recruitment remains to be clarified.

Recombinant VEGF and VEGF receptor inhibitor
VEGF, a potent proangiogenic factor, plays a major role in

vasculogenesis during the embryonic period and then in various

physiological (such as the menstrual cycle, pregnancy, and wound

healing and repair) and pathological angiogenesis (such as tumor

growth and metastasis, macular degeneration, diabetic retinopathy,

rheumatoid arthritis, myocardial ischemia, and preeclampsia) (116).

Recombinant human VEGF injected directly into the thrombus

was shown to be a useful adjunct to conventional anticoagulation in

dissolving VT with the increase of monocyte migration into the

center of the thrombus (102). Axitinib, a tyrosine kinase inhibitor, is a

potent, selective inhibitor of VEGF receptors 1, 2, and 3 (117). It was

found to inhibit VT resolution with macrophage accumulation (112).

Thus, when dealing with tumor patients with venous

thromboembolism, the potential of antiangiogenic drugs to prolong

venous occlusion should be considered.

Anti-factor XI antibody
Coagulation factor XI (FXI) was found to contribute to

pathologic thrombus formation (118). A previous study has

reported that anti-mouse FXI monoclonal antibody could reduce

macrophage accumulation and accelerate the early stages of DVT

resolution in mice (103). However, further studies are needed to

explore how reduced FXI levels affect monocyte differentiation to

macrophages and monocyte recruitment into the thrombus and

whether accelerated thrombus resolution in this model is associated

with the alteration in macrophage phenotype and function.

Anti-IFN-g antibody
IFN-gmainly produced by infiltrating macrophages was found to

impede thrombus resolution (63). It was found that the anti-IFN-g
antibody might serve as an effective therapeutic drug for accelerating

thrombus resolution without affecting coagulation function (54).

Recombinant human granulocyte colony-
stimulating factor

Due to its ability to mobilize bone marrow cells into peripheral

blood, recombinant human granulocyte colony-stimulating factor

(rhG-CSF), a hematopoietic growth factor, is widely used to treat

various human diseases (119). rhG-CSF was also shown to enhance
Frontiers in Immunology 11
VT resolution and recanalization through mobilizing mononuclear

cells into the peripheral blood and promoting macrophage

accumulation in thrombi (106). Therefore, rhG-CSF might be

used for patients with VT, particularly for patients who are

contraindicated by anticoagulation and thrombolytic therapy.

However, how rhG-CSF induces macrophage accumulation in

thrombi remains unclear.

The PAI-1 inhibitor tiplaxtinin
Oral or subcutaneous delivery of the PAI-1 inhibitor, tiplaxtinin

(PAI-039), was reported to reduce thrombus weight, increase blood

flow velocity, decrease both intimal thickening and fibrosis scores,

and increase PMN extravasation in the vein wall of a rat stenosis

model. However, PAI-1 inhibition was shown to have a non-

significant decrease in monocyte extravasation in the vein wall (104).

The P-selectin inhibitor PSI-421
PSI-421, a small molecule inhibitor of P-selectin, was found to

have greater percent vein reopening and less vein wall inflammation

in a baboon model of stasis-induced DVT (105). However, it was

unclear whether PSI-421 inhibits the inflammatory response of the

vein wall through regulating macrophage infiltration or function.

The prolyl hydroxylase domain inhibitor
L-mimosine

L-mimosine, an iron chelator and a prolyl hydroxylase domain

(PHD) inhibitor, is also a hypoxia mimetic agent and used to increase

the levels of hypoxia-inducible factor 1a (HIF1a) and induce

angiogenesis both in vitro and in vivo (120, 121). L-mimosine

upregulating HIF1a expression could be used to enhance thrombus

resolution and recanalization whichmight be related to inflammatory

cells including macrophages and neutrophils entering the thrombus

via the vein wall (107, 108). However, the selective pan PHD

inhibitors, AKB-4924 and JNJ-42041935, were found to increase

intrathrombotic neovascularization without affecting thrombus

resolution and macrophage accumulation in the thrombus (122).

Therefore, the effect of PHD inhibitors on thrombus resolution still

needs further clarification.

The P53 agonist quinacrine
Quinacrine, as an antimalarial drug, has been used for

tapeworm infections, giardiasis, lupus erythematosus, intrauterine

sterilization, Creutzfeldt-Jakob disease, and cancer (123).

Quinacrine was also found to inhibit RNA virus replication and

may be useful as an adjuvant antiviral compound against severe

acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection

(124). Recently, quinacrine was shown to enhance venous thrombus

resolution in formed thrombi through altering macrophage

polarization and fibrosis (75). Therefore, the short-term use of

quinacrine for patients with DVT to minimize the side effects of

anticoagulants may provide a clinically feasible option.

The Nur77 agonist cytosporone B
Cytosporone B, a Nur77 agonist, was shown to repress clot growth

and promote resolution because it could enforce monocyte conversion
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in blood as well as accelerate intrathrombic monocyte differentiation

(45). Thus, Nur77 agonists might be ideal candidates for therapeutic

intervention in inflammatory monocyte activities of patients with DVT

to avoid thrombus growth and speed up the resolution.

Resolvin D4
Resolvin D4 (RvD4), a specialized proresolving mediator, was

derived from essential polyunsaturated fatty acid and enriched at the

natural onset of thrombus resolution (110, 125). It was shown that

repetitive delivery of resolvin D4 reduced the thrombus size and

enhanced thrombus resolution through reducing neutrophil and

macrophage recruitment, elevating more proresolving monocytes in

the thrombus, and increasing the percentage of cells in an early

apoptosis state in mice on day 8 after IVC stenosis induction (110).
Potential candidate drugs attenuating
thrombus resolution

The lipid-lowering drug statins
Statins, 3-hydoxy-3-methyl-glutaryl coenzyme A inhibitors, not

only reduce cholesterol and cardiovascular risk but also exhibit

pleiotropic effects independent of their lipid-lowering properties

(126). It was demonstrated that statins could improve the resolution

of established VT probably through promoting profibrinolysis,

anticoagulation, antiplatelet, and antivein wall injury and

reducing macrophage levels (109). Therefore, statins may be a

viable therapeutic strategy to improve DVT resolution, especially

in patients who cannot receive anticoagulant therapy.

MMP-9 inhibitor
MMP-9, a zinc-dependent endopeptidase, is one of the most

complex forms of MMPs, which belongs to the gelatinase family.

MMP-9 is capable of degrading extracellular matrix components (127).

MMP-9 was found to be expressed in intrathrombotic macrophages

(54). MMP-2/9 inhibitors impaired thrombus resolution without

affecting VEGF expression (54). Thus, it is worthy of further study

whether the suppressing effect of MMP-9 inhibitor on thrombus

resolution is related to intrathrombotic macrophage.

Synthetic fibrin-derived Bb15-42 peptide
The fibrin fragment Bb15-42 (FX06), a naturally occurring highly

charged 28 AA peptide, competes with E-fragments which were

fibrin degradation products after digestion by plasmin to bind to

vascular endothelial cadherin. Bb15-42 was found to play a role in

myocardium, kidney, and liver ischemia–reperfusion injury and

severe COVID-19-associated acute respiratory distress syndrome

(ARDS), owing to its anti-inflammatory properties and ability to

protect the endothelial cell barrier (128).

The peptide Bb15-42 was found to attenuate thrombus resolution

probably through impeding monocyte endothelial transmigration,

reducing macrophage numbers, microvessels, and uPA expression in

the thrombus (111). Moreover, high levels of the fibrin fragment

Bb15-42 were found in the red thrombus and plasma of patients with
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CTEPH (129). Therefore, fibrin fragments suppressing thrombolysis

should be taken seriously in the treatment of CTEPH.

2-Methoxyestradiol
2-Methoxyestradiol (2ME), a natural metabolite of 17b-

estradiol, is a potent antitumor and antiangiogenic compound

(130). It was found that 2ME attenuated venous thrombus

resolution by inhibiting the angiogenic response to thrombosis in

the surrounding vein, accompanied by a decrease in the content of

macrophages and neutrophils and the levels of HIF1a, VEGF, and
PLGF (56, 112). Therefore, the potential prothrombotic effect of

2ME ought to be contemplated while treating cancer patients with

venous thromboembolism.

Imipramine
Imipramine, a classic tricyclic antidepressant that inhibits the

reuptake of norepinephrine and serotonin, is currently undergoing

clinical trial and animal experiments to evaluate its anti-invasive and

antimetastatic effects in the treatment of localized colorectal cancer,

triple-negative breast cancer, and oral squamous cell carcinoma (131,

132). It was reported that imipramine increased NET burden in the

thrombi by inhibiting macropinocytosis rather than reducing the

number of macrophages infiltrating the thrombus, leading to

impaired thrombus resolution 7 days after IVC ligation (49).
Conclusion and future perspectives

Monocytes/macrophages infiltrating into the thrombus are the

major effector cells at the middle and late stages of thrombus

resolution. Polarization into M2 macrophages may play a more

important role during thrombus resolution. They express and

release various proangiogenic factors and profiber and collagen

lytic enzymes, which play a role in promoting neovascularization

and fibrin and collagen degradation during thrombus resolution.

Moreover, multiple factors using gene deletion were demonstrated

to promote or impair thrombus resolution, and their effects were

associated with monocytes/macrophages in the thrombus and the

adjacent vein walls. However, the function of intrathrombotic

monocytes/macrophages during thrombus resolution remains to

be fully elucidated. So far, some potential candidate drugs linked to

monocytes/macrophages have been found to promote or impair

thrombus resolution, providing an alternative therapeutic strategy

for patients with DVT. However, there is still a long way to go

before these candidates are translated into clinical applications.
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Arg-1 arginase 1

APTT activated partial thromboplastin time

ARDS acute respiratory distress syndrome

bFGF basic fibroblast growth factor

CCR2 C-C chemokine receptor 2

Cit-H3 citrullinated histones

CTEPH chronic thromboembolic pulmonary hypertension

DAMPs danger-associated molecular patterns

DVT deep vein thrombosis

ECM extracellular matrix

FXI coagulation factor XI

HIF1a hypoxia-inducible factor 1a

iNOS inducible nitric oxide synthase

IVC inferior vena cava

IFN-g interferon-g

IL-1b interleukin-1b

IL-6 interleukin-6

IL-8 interleukin-8

M1-like proinflammatory phenotype macrophage

M2-like anti-inflammatory phenotype macrophage

MCP1/CCL2 monocyte chemotactic protein 1/C-C chemokine ligand 2

METs monocyte/macrophage extracellular traps

MIP-1a/CCL3 macrophage inflammatory protein-1alpha

MMP-2 matrix metalloproteinase-2

MMP-9 matrix metalloproteinase-9

Mo/MF monocyte/macrophage

NETs neutrophil extracellular traps

2ME 2-methoxyestradiol

PAMPs pathogen-associated molecular patterns

PAI-1 plasminogen activator inhibitor-1

PECAM-1 platelet endothelial cell adhesion molecule 1

PHD prolyl hydroxylase domain

PLGF placental growth factor

PMNs polymorphonuclear leukocytes

PE pulmonary embolism

PT prothrombin time

PTS post-thrombotic syndrome

rhG-CSF recombinant human granulocyte colony-stimulating factor
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rIL-6 recombinant murine IL-6

SMA smooth muscle actin

TLR4 Toll-like receptor 4

TLR9 Toll-like receptor 9

tPA tissue-type plasminogen activator

VEGF vascular endothelial growth factor

VEGFR-2/
KDR/Flk-1

vascular endothelial growth factor receptor 2/kinase insert
domain protein receptor

VTE venous thromboembolism

uPA urokinase-type plasminogen activator
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