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Allergic rhinitis (AR) is a chronic, non-infectious condition affecting the nasal

mucosa, primarily mediated mainly by IgE. Recent studies reveal that AR is

intricately associated not only with type 2 immunity but also with

neuroimmunity. Nociceptive neurons, a subset of primary sensory neurons, are

pivotal in detecting external nociceptive stimuli and modulating immune

responses. This review examines nociceptive neuron receptors and elucidates

how neuropeptides released by these neurons impact the immune system.

Additionally, we summarize the role of immune cells and inflammatory

mediators on nociceptive neurons. A comprehensive understanding of the

dynamic interplay between nociceptive neurons and the immune system

augments our understanding of the neuroimmune mechanisms underlying AR,

thereby opening novel avenues for AR treatment modalities.
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1 Introduction

Allergic rhinitis (AR) is a chronic nasal mucosa disorder mediated by immunoglobulin

E (IgE) in response to allergen exposure, eliciting a predominantly Th2-type immune

response. Key symptoms encompass a runny nose, nasal congestion, nasal itching and

sneezing. The global prevalence of AR has risen steadily in recent years, currently impacting

approximately 10-40% of the world’s population, thus ranking among the most common

chronic ailments. AR exerts a significant physical and mental burden on patients,

impacting their academic, professional and lives (1). While available treatments,

including medications and immunotherapy, can alleviate symptoms, a definitive cure for

AR remains elusive. The immune theory alone does not fully reveal the pathological

mechanism of AR. Apart from the immune system, the nervous system also plays a crucial

role in AR pathogenesis (2). The nasal mucosa boasts a complex nervous system, wherein

sensory nerves serve as afferent nerves, predominantly responding to external stimuli.

Sensory neurons within the nasal mucosa encompass nociceptive neurons, perceiving

nociceptive stimuli, and non-nociceptive neurons sensing general and special stimuli like
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temperature, touch and olfaction. Nociceptive neurons, specifically,

detect various harmful stimuli such as mechanical injury, chemicals,

inflammatory mediators and pathogens. These neurons transmit

information about noxious stimuli to the brain and release

neuropeptides from nerve endings, influencing immune cells and

modulating local immune responses (3). Conversely, mediators

released during inflammation can reciprocally regulate

nociceptive neuron function (4).

A comprehensive understanding of the role of nociceptive

neurons in AR provides deeper insights into the neuroimmune

aspects of AR pathogenesis, offering novel perspectives for AR

treatment strategies. This review delves into the anatomical

distribution and functional characteristics of nociceptive neurons

in the nasal mucosa, focusing on the interaction between

nociceptive neurons and the immune system in AR.
2 The concept of nociceptive neurons
and their anatomy in the
nasal mucosa

Sensory neurons, encompassing nociceptive and non-

nociceptive neurons, transform diverse stimuli into nerve
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impulses. Nociceptive neurons, primary sensory neurons, sense

and transmit a spectrum of noxious stimuli, influencing

inflammatory responses and maintaining bodily homeostasis. The

trigeminal nerve sends the ophthalmic (V1), maxillary (V2) and

mandibular branches forward from the trigeminal ganglion (TG).

The ophthalmic nerve sends branches via the supraorbital fissure

out of the cranium, which primarily supply the anterior and

superior portions of the nasal cavity, while the maxillary nerve

sends branches via the pterygopalatine fossa, which primarily

supply the inferior and posterior portions of the nasal cavity,

innervating the nasal mucosa’s general sensation (Figure 1).

Comprising mainly small, nociceptive neurons containing

multiple peptides, the TG forms unmyelinated, naked nerve

endings intricately distributed in nasal vessels, glands and

epithelium (5). Upon activation, nociceptive neurons transmit

signals generated by these primary afferent nerves to the central

nervous system, eliciting sensations like pain, itching and reflexes

such as coughing or sneezing and activating preganglionic

autonomic neurons , which in i t ia te sympathet ic and

parasympathetic reflexes. Thus, the activation of nociceptive

neurons produces solid sensations and induces protective reflexes.

Allergenic excitation has often been associated with increased

activation of afferent nerve endings, leading to action potential

discharges. Moreover, nociceptive neuronal afferent fibers are a type
FIGURE 1

Nociceptive neuron-immune cell interaction network in allergic rhinitis. Nociceptive neurons in the nasal mucosa mainly originate from V1 and V2 of
the trigeminal nerve. A variety of nociceptive stimuli, such as mechanical injury, chemicals, inflammatory mediators and pathogens, can activate
nociceptive neurons by acting on TRPV1, TRPA1 and other receptors. Nociceptive neurons release neuropeptides, such as SP and CGRP, to induce
the secretion of nasal glands, vasodilatation and activation of immune cells. Under the influence of allergen stimulation and neuropeptides, immune
cells such as mast cells and basophils release inflammatory mediators such as histamine and cytokines, as well as nerve growth factors to increase
the excitability of nociceptive neurons, resulting in neuroimmune circulatory pathway formation. (Created with BioRender.com).
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of afferent fibers susceptible to direct activation by allergic

mediators. Allergic mediators may overexcite nociceptive neurons

to the extent that subthreshold stimuli or even non-nociceptive

conventional stimuli may induce nociceptor-associated reflexes (6).

The afferent fibers of sensory neurons consist of myelinated Aa
fibers (large fibers responsible for proprioception and motor control),

Ab fibers (large fibers that transmit touch and pressure sensations),

Ad fibers (small fibers that transmit sharp pain sensations) and

unmyelinated C fibers (small fibers that transmit dull, aching pain

and some temperature sensations). Nociceptive neurons in the nasal

mucosa primarily involve myelinated Ad fibers for immediate pain

and unmyelinated C fibers for delayed-onset chronic pain (2). These

C-fiber-mediated nociceptions can be increased when subjected to

repeated chemical stimuli (7). Functionally, Ad fibers primarily

respond to nociceptive mechanical stimuli and pain and itching

sensations. Moreover, nociceptive C fibers responding to multiple

stimuli can transmit various sensations such as burning, stinging,

warmth, cold and itching. Importantly, various nociceptive stimuli

and inflammatory mediators such as capsaicin, heat, H +, K +,

mechanical stimuli, bradykinin (BK) and TNF-a can activate C-

fiber nociceptive neurons (8, 9). Studies reveal that pathogenic

organisms, such as bacteria, viruses and worms, can induce airway

inflammation by directly acting on nociceptive sensory neurons in the

trigeminal nerve (10, 11). Different types of nociceptive stimuli may

activate different subpopulations of nasal C-fiber nociceptive neurons,

inducing a protective response in the body by increasing nasal airflow

resistance (12). Following a nociceptive stimulus, peripheral

nociceptive sensory nerve endings activate and release a variety of

neuropeptides that induce plasma extravasation, promote immune

cell migration and mediate the inflammatory response, a

phenomenon which is known as neurogenic inflammation (13, 14).

Several markers of nociceptive neurons, including Sodium voltage-

gated channel alpha subunit 10 (SCN10A), Potassium channel

subfamily K member 18 (KCNK18) and MAS-related G protein-

coupled receptor D (MRGPRD), play roles in nociceptive sensation

with high TG specificity (15, 16). Notably, SCN10A is specifically

associated with inflammatory pain (17). Moreover, KCNK18 mRNA

is expressed only in human TG and is closely associated withmigraine

(18), whereas MRGPRD specifically expresses on nociceptors in

human TG and dorsal root ganglion (DRG), which are involved in

the perception and modulation of nociception (19). Expression of

SCN10A (20), KCNK18 andMRGPRD has been detected in the nasal

mucosa. However, nociceptive neurons in the nasal mucosa cannot be

quantified by subtype due to the lack of specificity of the marker genes

(21). Additionally, protein gene product 9.5 (PGP 9.5) and

microtubule-associated protein 2 (MAP2) serve as general neuronal

markers. Detection of these markers contributes to a nuanced

understanding of nociceptive neuron functional changes.
3 Role of nociceptive neuronal
receptors in AR

Nociceptive neurons express various receptors, such as

transient receptor potential (TRP) receptors, voltage-gated
Frontiers in Immunology 03
sodium channels (NaVs) and toll-like receptors, positioned at

peripheral nerve terminals. These molecular sensors empower

nociceptive neurons to detect various environmental threats,

playing a significant role in AR.
3.1 Transient receptor potential

TRP receptors, non-selective cation channel proteins that can

be activated by a variety of stimuli, are responsible for a wide range

of sensory responses including heat, cold, pain, stress, vision and

taste (22). Predominant in nociceptive neurons (23), TRP receptors

are a diverse group with six subgroups: classical transient receptor

potential (TRPC), transient receptor potential vanilloid (TRPV),

transient receptor potential ankyrin (TRPA), M-type transient

receptor potential (TRPM), polycystin-like transient receptor

potential (TRPP) and mucolipid-like transient receptor potential

(TRPML) (24). These receptors detect stimuli such as heat, cold,

acidosis, osmolarity and environmental factors, activating Ca2+

influx upon stimulation. This influx leads to neuronal

depolarization, generating action potentials that transmit

nociceptive signals to the CNS and triggers reflexes such as

coughing and sneezing (25). Sensitization and activation of TRP

receptors involve multiple protein kinases, such as protein kinase C,

protein kinase A and Ca2+/calmodulin-dependent kinase II (26, 27).

TRPV1, TRPA1 and TRPM8 are expressed in the human nasal

mucosa (28, 29). Studies on TRP receptors in AR primarily focus on

TRPV1, TRPA1and TRPM8.

TRPV1, primarily expressed on nociceptive neurons, plays a

significant role in AR pathogenesis and symptoms. In vivo,

neuronal tracer methods have demonstrated that nasal mucosal

sensory neurons respond to capsaicin and generate action

potentials; however, this effect was inhibited by a selective

inhibitor of TRPV1, thereby confirming the presence of TRPV1

on nasal mucosal sensory neurons (30). During seasonal allergen

exposure, patients with allergic rhinitis feature an increased itch

response to TRPV1 stimulation (31). Activation of TRPV1 by

nociceptive stimuli leads to the release of pro-inflammatory

mediators, manifesting as AR symptoms such as sneezing, runny

nose, itchy nose and nasal congestion (30). Capsaicin, a significant

TRPV1 agonist, activates nociceptive neurons (32). For instance, an

early clinical study found that high-dose capsaicin stimulation of

the nasal mucosa in patients with AR promoted nasal glandular

secretion and plasma extravasation (33). Additionally, TRPV1+

peptidergic nerve fibers and mucin-5 subtype B (MUC5B)+

submucosal glands are anatomically adjacent. Studies have

demonstrated that MUC5B levels were increased in nasal lavage

fluids after nasal stimulation with capsaicin, suggesting that TRPV1

activation on sensory nerve fibers is likely to promote MUC5B

release from submucosal glands (34). Thus, targeting TRPV1

emerges as a potential strategy for AR treatment. However, the

prolonged application of capsaicin leads to the desensitization of

nociceptive neurons (35) and the alleviation of neurogenic

inflammation in AR, possibly by blocking the axon reflex and

neuropeptides secreted by nociceptive neurons, thereby
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preventing them from responding to further stimuli (8, 36). The

efficacy of capsaicin in AR treatment remains unclear, possibly

influenced by dosage, treatment duration and AR pathogenesis

complexity. Azelastine hydrochloride (AZE) is an intranasal

antihistamine and fluticasone propionate (FP) is an intranasal

corticosteroid commonly used to relieve the symptoms of allergic

rhinitis (37). In vitro, studies have demonstrated that repeated

application of AZE + FP significantly induces desensitization of

TRPV1+ sensory neurons and that this desensitization may be due

to strong Ca2+ influx and inability to translocate neurotrophic

factors as a result of neuronal excitation (38). Additionally, the

selective TRPV1 antagonist SB-705498 was demonstrated to

alleviate AR by blocking TRPV1 in a guinea pig model (30).

Similarly, in patients with AR, nasal irrigation of SB-705498

improved capsaicin-induced nasal symptoms. It is also worth

mentioning that applications of this TRPV1 antagonist had no

effects on symptom score in allergen-challenged patients with

allergic rhinitis. Additional studies should then be conducted to

investigate the role of TRPV1 as a drug target in allergic rhinitis

using longer-acting drug formulations. The sex-related differences

concerning AR are still unclear. However, studies have shown that

the incidence of AR is higher in females (39). A clinical study

demonstrates that allergic rhinitis in adulthood may be associated

with elevated levels of estrogen early in ontogenetic development

(40). Recent research highlights the influence of estrogen on TRPV1

expression levels. Estrogen stimulates prolactin, promoting

phosphorylation of TRPV1 and lowering its activation threshold

(41). This effect of estrogen on TRP potentially contributes to the

development of allergic diseases in mature women.

In addition to TRPV1, TRPA1 on nociceptive neurons also exerts

a significant influence on AR. In the upper airway, TRPA1 is

primarily expressed on nociceptive C fibers and responds to

various external chemicals (alcohols, H2O2, NO, ozone and LPS),

intense cold sensations and endogenous substances produced during

tissue injury. Many TRPA1+ nociceptive neurons co-express TRPV1

and can be activated or sensitized by an elevation in intracellular Ca2+

(42). Blocking TRPA1 in trigeminal sensory neurons reduces the

inflammatory response to allergen provocation and decreases the

activity of nociceptive neurons (43). TRPA1 knockout mice exhibit

decreased allergen-induced immune cell infiltration, lower

pro-inflammatory cytokine expression levels and reduced

hyperresponsiveness to nociceptive stimuli (44). Administration of

a TRPA1 inhibitor significantly curtails the upregulation in

the number of TRPA1+ nociceptive neurons in AR mice.

Consequently, this downregulates airway Substance P (SP) levels,

blocks the TRPA1-SP inflammatory pathway and improves Th2-type

inflammation and nose-swabbing behaviors. Moreover,

downregulating TRPA1 significantly reduced leukocyte counts and

IL-8 levels in alveolar lavage fluid, inhibited lower airway remodeling

and fibrosis and attenuated airway hyperresponsiveness (45).

Therefore, targeting TRPA1 emerges as a potential therapeutic

strategy to alleviate AR inflammation and nasal hyperreactivity

(NHR). Additionally, TRPA1 is proposed as the primary oxidant

sensor in nasal nociceptive neurons, wherein oxidants induce

TRPA1-dependent Ca2+ influx, activating nasal nociceptive neurons

and exacerbating AR (46).
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TRPM8, expressed mainly on nociceptive sensory neurons,

functions as a receptor sensitive to cold and menthol stimuli,

earning it the nickname “cold receptor” and “menthol receptor”.

Morphological experiments have demonstrated that TRPM8,

expressed on trigeminal afferent fibers, is predominantly located

in the perivascular area of the nasal mucosa. This potentially

mediates neurovascular reflexes and is associated with runny nose

symptoms (28, 43, 47). NHR is prevalent in all chronic upper airway

inflammatory phenotypes, including AR. A recent study found that

the expression of TRPM8 in nasal mucosa, a neuronal marker,

correlates with NHR in AR patients (48). Persistent cough is a

common symptom of upper airway diseases, including AR.

Menthol, muscimol or camphor are main TRPM8 agonists. In

animal models of NHR, nasal administration of camphor and

muscimol reduced the number of coughs induced by citric acid or

capsaicin. Furthermore, the intranasal application of menthol

reduced the sensation of airway irritation, modulated the cough

threshold and reduced the number of coughs (49). These findings

suggest that TRPM8 agonists may increase the cough threshold and

alleviate cough symptoms in AR by acting on TRPM8 in the

nociceptive neurons of the nasal mucosa. In conclusion, TRPM8

plays a significant role in neuroimmunity in allergic diseases, but

further exploration is needed to understand the involvement of

nociceptive neuronal TRPM8 in AR.
3.2 Other receptors

In addition to TRP, nociceptive neurons express various

receptors that contribute to the pathogenesis of AR. Voltage-

gated sodium channels (NaVs), a family of ionotropic receptors

abundant in nociceptive neurons, encompass nine members

(NaV1.1-1.9 9) playing crucial roles in transmitting signals related

to chronic pain and pruritus (50). Nav1.7, Nav1.8 and Nav1.9 are

mainly expressed in sensory neurons, including nociceptors (51).

Neuronal hypersensitivity is when a neuron responds in an

abnormally strong manner to normal or mild stimuli and causes

pain or discomfort. These channels, specifically Nav1.7-1.9, are

implicated in neural action potentials and are associated with

neuronal hypersensitivity. In AR, there is an observed increase in

the number of Nav1.7-1.9+ nerve fibers (20). Inflammatory

mediators linked to AR, such as NGF and nitric oxide (NO),

upregulate the expression of Nav1.7-1.9+ nerve fibers (43).

Notably, inhibiting Nav1.8+ nociceptive neurons with QX-314, a

charged sodium channel inhibitor that enters via large-pore ion

channels to specifically block nociceptors, significantly reduced

allergic airway inflammation induced by OVA or dust mites (52).

However, the specific role of NaV1.7 and Nav1.9 in allergic rhinitis

remains to be investigated.

Toll-like receptors (TLRs), crucial pattern recognition receptors

in neuroimmunity, are expressed by nociceptive neurons. This

includes TLR2, which recognizes bacterial lipoproteins, TLR4,

which recognizes lipopolysaccharides (LPS), and TLR5, which

recognizes flagellin (25). Synthetic bacterial lipopeptides, which

act as TLR2 agonists, have been demonstrated to ameliorate

allergic airway inflammation by modulating the Th1 and Th2
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responses (53). LPS, a classical TLR4 agonist, has been

demonstrated to directly activate nociceptors through TLR4,

resulting in TRPV1 sensitization, calcium influx and calcitonin

gene-related peptide (CGRP) release (54, 55). Furthermore, LPS has

been demonstrated to mediate allergic rhinitis through the TLR4/

MyD88 pathway (56). Flagellin from gram-negative bacteria can

bind to TLR5 on nociceptive neurons that mediate neuropathic pain

(57). Evidence supports the co-localization of TLRs and TRP

receptors on nociceptive neurons, indicating interactions such as

TLR4 and TRPV1 (58), TLR7 and TRPA1 (59). TLR activation

sensitizes TRP receptors, leading to the release of SP (54) and

potentially exacerbating nasal neurogenic inflammation.

Additionally, binding of related ligands to TLR7 promotes SP

release from nociceptive neurons and mediates nasal neurogenic

inflammation (60), potentially through the myeloid differentiation

factor 88 (MyD88) pathway (61). Stimulation with the TLR7

agonist R-837 and the TLR7/8 agonist R-848 resulted in a rapid

release of SP from sensory neurons (60).

Nociceptive neurons also express the Fc receptor (FcR) (62, 63), a

class of cell surface proteins that bind specifically to the Fc segment of

immunoglobulins, playing a crucial role in antibody-dependent

immune responses. Allergen-IgE immune complexes (ICs) act on

nociceptive neurons expressing FceRI, promoting Ca2+ influx

through the FceRI-TRPC3 axis. This activation induced SP release,

initiating Th2 cell activity, leading to the production of IL-5 and IL-13

and consequently triggering allergic airway inflammation (64).

Mas-related G protein-coupled receptors (MRGPRs),

predominantly expressed on sensory neurons and immune cells,

act as innate sensors mediating nociceptive sensations of pain and

itch (65, 66). MRGPRX1, the first human MRGPR identified, is

expressed predominantly on primary sensory neurons and

represents a promising target for itch relief and pain suppression

(67). Der p1, a cysteine protease and major allergen of house dust

mites, induces the release of the pro-inflammatory cytokine IL-6, in

part through activation of MRGPRX1, suggesting that MRGPRX1 is

potentially involved in neuroinflammatory mechanisms in AR and

allergic asthma. Thus, MRGPRX1 antagonists may hold therapeutic

value in treating AR and allergic asthma (68).

Histamine, a pivotal mediator in AR (69) that mediates

vasodilation, triggers responses through four histamine receptor

(HR) subtypes identified in neurons: H1R, H2R, H3R and H4R.

H1R is the principal functional receptor mediating histamine-

induced responses in DRG neurons, leading to chronic itching

and scratching behavior (70). Activation of H2R can induce airway

mucus production, vascular permeability, and secretion of gastric

acid. H3R plays an important role in neuro-inflammatory diseases.

Furthermore, H4R has been demonstrated to be involved in allergy

and inflammation (71). RNA-Seq has confirmed the presence of

histamine receptors in TG neurons and that they are predominantly

H1R and H3R (16). Studies have demonstrated that histamine can

mediate the hypersensitivity response by inducing Ca2+ influx

through interactions with H1R and TRPV1 on sensory neurons

(72). Furthermore, nasal neurons release secretoneurin (SN) in

response to histamine, promoting inflammatory cell recruitment

in AR (73). Further investigation is required to elucidate the role of

neuronal HR, in particular H2R, H3R and H4R, in allergic rhinitis.
Frontiers in Immunology 05
4 Role of neuropeptide release from
nociceptive neurons in the AR

Nociceptive stimuli activating receptors on nociceptive neurons

induce depolarization and release of neuropeptides. These

neuropeptides contribute to several pathological processes,

including nociceptive transmission, neuronal survival, immune

regulation, and the initiation of allergic and neurogenic

inflammation. Elevated levels of neuropeptides such as SP and

CGRP are observed in the airways of patients with allergic airway

inflammation. Ablation or silencing of nociceptive neurons reduces

neuropeptide expression and mitigates allergic airway inflammation

(25, 52, 74). Neuropeptides act on blood vessels, smooth muscle and

various immune cell populations, including dendritic cells (DCs),

macrophages, MCs and innate lymphoid cells (11, 75–77), leading

to oedema, vasodilatation, smooth muscle contraction and immune

cell recruitment and activation. Moreover, the action of

neuropeptides is limited by enzymatic degradation. Neutral

endopeptidases on epithelial cell surfaces, glands and

endothelium, play a significant role in limiting the extent and

duration of neurogenic inflammation by breaking down

neuropeptides (78). The role of neuropeptides in AR is shown

in Table 1.
4.1 SP

SP, a tachykinin family neuropeptide primarily secreted by

nociceptive neuronal C fibers (78), functions by promoting

vasodilation, increasing vascular permeability and stimulating

secretion from nasal glands. Emerging evidence indicates SP’s

immunomodulatory functions influence immune cells like B cells,

neutrophils and DCs. SP receptors include mainly neurokinin-1

receptors (NK1-R) and MRGPRX2/B2. NK1R mediates the

inflammatory response of the immune system and is expressed

on basophils, eosinophils, neutrophils and others (94). MRGPRX2/

B2, expressed mainly on mast cells but also on basophils,

eosinophils and other cells (95). SP release from nociceptive

neurons promotes the polarization of B cells into germinal center

B cells, the release of antibody-secreting cells and the release of IgG

and IgE. Nociceptive neurons and B cells participate in a feed-

forward pro-inflammatory loop that amplifies adaptive immune

responses (96). In addition to B cells, SP induces neutrophil

chemotaxis and neutrophil-neuron cluster formation (25). After

the release of SP from allergen-activated TRPV1+ nociceptive

neurons, it modulates MRGPRA1 on CD301b+ DCs to induce cell

migration and initiate adaptive type 2 immunity (97). Nociceptive

sensory neurons also influence the inflammatory response in the

AR by releasing SP that acts on NK1-R on basophils (79).

Additionally, the released SP influences the symptoms of sneezing

and nasal congestion present in AR. H3R, present on C fibers in the

peripheral endings of sensory nerves, regulates SP release through

ATP-sensitive K+ channels. Studies demonstrate that the H3R

agonist Sch 50971 acts on the H3R to block SP release, thereby

alleviating sneezing and nasal swabbing symptoms of AR (80). SP-
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induced exacerbation of nasal congestion is also mediated by direct

activation of neurokinin receptors independent of MCs activation.

However, during allergic reactions, SP interacts with MCs to

enhance inflammatory mediators in response to allergen-

stimulated nasal responses (81), which may be related to

MRGPRX2/B2. In addition to the classical receptor NK-1R, SP

activates human mast cells to release a variety of pro-inflammatory
Frontiers in Immunology 06
cytokines and chemokines through the activation of MRGPRX2

(98). SP activates MRGPRX2 on mast cells, induces histamine

release and can lead to allergic airway inflammation (82).

However, the specific mechanisms by which MRGPRX2 affects

allergic rhinitis remain to be elucidated. Furthermore, the TRPV1-

SP axis plays a vital role in the pathogenesis of AR. SP co-localizes

with TRPV1 on trigeminal nerve-nociceptive neurons in the mouse

nasal mucosa. Activation of TRPV1 on nociceptive neurons triggers

SP-mediated neurogenic inflammation (83). Intranasal needling as

a nociceptive stimulus to the nasal mucosa activates TRPV1,

causing nasal mucosal sensory nerve fibers to secrete large

amounts of SP. Interestingly, as the intensity of needling

increases, there is a decrease in TRPV1 activity, a depletion of SP

and a dulling and degeneration of nerve fibers (84). Thus, these

findings suggest that intranasal needling could provide a potential

treatment avenue for AR by decreasing TRPV1 activity,

consequently reducing the density and number of SP nerve fibers.
4.2 CGRP

CGRP, primarily released from activated trigeminal afferent

fibers, acts as a nociceptive mediator when reaching pathological

concentrations (42). CGRP-containing nerve fibers are abundant in

the human nasal mucosa, mainly localized around blood vessels and

glands (99). CGRP is comprised of two isoforms, alpha and beta.

CGRPa is primarily expressed in the central and peripheral nervous

systems, while CGRPb is predominantly expressed in the enteric

nervous system (100). CGRP receptors, predominantly on blood

vessels, especially arterioles (78), contribute to potent vasodilatory

effects (85). Increases in CGRP+ neurons are observed in airway

inflammatory responses (101). Moreover, CGRP has been

demonstrated to stimulate the activation of the cAMP - PKA axis

and inhibit pro-inflammatory cytokine production through inducible

cAMP early repressor (ICER)-dependent transcriptional repression

(102). Additionally, CGRP, a critical negative regulator of the group 2

innate lymphoid cell (ILC2) response in vivo, can effectively suppress

airway inflammation (86). A recent study has demonstrated that this

inhibition is primarily mediated by this isoform of CGRPb (103). In

sensitized mice, allergen provocation induced eosinophilic airway

inflammation and allergic airway hyperresponsiveness, resulting in a

significant reduction of CGRP in neuroepithelial cell bodies and

submucosal plexus, whereas CGRP administration into sensitized

mice normalized airway hyperresponsiveness (87). Recent clinical

evidence supports the use of noninhaled intranasal delivery of 100%

CO2 for treatment of allergic rhinitis (104). CGRP also co-localized

with TRPV1+ nociceptive neurons, and intranasal delivery of 100%

CO2 inhibited the activating effect of capsaicin on nociceptive

neurons and reduced CGRP release, ameliorating AR symptoms

(105). Thus, CGRP may exert both pro-inflammatory and anti-

inflammatory effects. CGRP mediates neurogenic inflammation,

dilates blood vessels and obstructs the nasal passages, causing nasal

congestion and blocked nose. However, it may also act as an anti-

inflammatory mediator to inhibit pro-inflammatory cytokine

production and negatively regulate ILC2, suppressing airway

inflammation and alleviating allergic airway hyperresponsiveness.
TABLE 1 The role of neuropeptides in allergic rhinitis.

Neuropeptide Effect Target Cite

SP

promoting migration
of human basophils

NK-1R in basophils (79)

Sch 50971 blocking
substance P release:
inhibiting nose

rubbing behaviors
and sneezing

— (80)

promoting
nasal congestion;

direct neurokinin
receptor activation
independently of
mast cell activation

(81, 82)substance P-mast
cell interaction:
promoting the

mediator response to
nasal

allergen challenge

substance P-mast
cell interaction
(MRGPRX2 in

mast cell)

promoting plasma
extravasation and
glandular secretion

— (83, 84)

CGRP

promoting
Vasodilation

CGRPR in
blood vessels

(85)

downregulation of
type 2 cytokines

and ILC2s
CGRPR in ILC2s (86)

inhibiting AHR — (87)

VIP
stimulating ILC2s
and TH2 cells

VPAC2R in ILC2s
and TH2 cells

(52)

GAL

GALR2 antagonist:
inhibiting nose

rubbing behaviors
and sneezing

GALR2 in B cells (88)

TAFA4

inhibiting the
antigen-related mast

cell activation
— (89)

inducing antigen-
specific Tr1 cells;
improving AIT’s

therapeutic efficacy

FPR1 in DCs (90)

NMB mediating sneezing

central NMBR+

neurons in the
sneeze-evoking

region of
the brainstem

(91)

NMU
activating ILC2s to

produce type
2 cytokines

NMUR1 in ILC2s (92, 93)
The symbol “–” indicates that the specific target is not stated in the corresponding reference.
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Nevertheless, the CGRP release from nociceptive neurons in AR is a

complex mechanism, warranting further study.
4.3 Others: VIP, GAL, TAFA4, NMB, NMU

Apart from the central neuropeptides, SP and CGRP, several

other neuropeptides also contribute to the pathogenesis of AR. A

vasoactive intestinal polypeptide (VIP), primarily derived from

parasympathetic nerves, has recently been identified as

originating from Nav1.8+ nociceptive neurons in both the central

and peripheral nervous system (11, 52). It plays a role in

vasodilation. The nasal mucosal tissue of patients with AR

exhibits significantly more VIP-positive nerve fibers than controls

(99, 106). In allergic airway inflammation, IL-5 stimulates

nociceptive neurons to release VIP, which further activates ILC2

and Th2 cells via VPAC2R, intensifying the airway inflammatory

response (52). Galanin (GAL) is a widely expressed neuropeptide

and plays essential roles in nociception perception, synaptic

transmission and inflammatory responses (107). A study

demonstrated that nose-swabbing behavior and sneezing were

significantly reduced in AR mice after using a galanin receptor 2

(GALR2) inhibitor, indicating a potential role of GAL-GALR2

signaling in AR development (88). Derived from the C-fiber

mechanically nociceptive receptors, TAFA chemokine-like family

member 4 (TAFA4) is a neuropeptide that has immunomodulatory

functions. It downregulates the expression of mast cell FceRI by
activating the PTEN-PU.1 pathway and reduces allergic mediators

such as mast cell protease 1 (MCPT-1) and eosinophil peroxidase

(EPX), as well as Th2 cytokine (IL-4, IL-5, IL-13) levels to alleviate

AR symptoms (89). TAFA4 also induces the release of IL-10 from

DCs by activating the FPR1-MyD88-AKT signaling pathway,

attenuating the inflammatory response, and relieving allergic

symptoms in AR mice. Additionally, TAFA4 can be used to

enhance the therapeutic effect of allergen-specific immunotherapy

(AIT) on AR by inducing the expression of antigen-specific Type 1

regulatory T (Tr1) cells (90). Neuromedin B (NMB) regulates the

perception of nociception in sensory neurons. Recent studies have

reported that allergy-induced sneezing behavior is closely related to

NMB. Nociceptive neurons in the nasal mucosa receive external

stimuli, consequently releasing NMB and triggering sneezing.

Furthermore, the NMB activates NMBR+ neurons in the

brainstem that mediate the sneeze reflex, which ultimately

projects to the caudal ventral respiratory group (cVRG) and leads

to sneezing (91). NMU, a highly conserved multifunctional

neuropeptide, is often considered to be secreted by cholinergic

neurons (108). However, some studies have found that sensory

neurons innervating the airways express NMU (109). A recent

study has demonstrated that sensory neuron-derived NMU plays a

role in the pathogenesis of allergic airway inflammation, acting via

the NMU/NMUR1 axis to activate ILC2 (92). Furthermore, it has

been demonstrated that NMU induces the activation of peripheral

ILC2 through the ERK pathway in allergic rhinitis (93). In addition

to NMUR1, NMU directly induces degranulation of skin mast cells,

presumably via MRGPRX2. The role of NMU-MRGPRX2/
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MrgprB2 signaling in mast cells in allergic rhinitis may be a

promising avenue for further investigation (110).
5 Immune system activates
nociceptive neurons

Nociceptive neurons sense nociceptive stimuli and release

neuropeptides that affect the immune system. Immune cells and

inflammatory mediators can increase the sensitivity of nociceptive

neurons to nasal stimuli, mediating depolarization or directly

activating nociceptive neurons, thereby lowering the threshold for

action potential generation (11, 111). In AR, the modulatory effects

of inflammatory responses on nociceptive neurons have been

observed. Recent studies show that patients with AR exhibit

higher trigeminal nerve sensitivity compared to healthy controls,

potentially linked to inflammatory changes in AR (112). The role of

the immune system on nociceptive neurons is shown in Table 2.
5.1 Immune cells and inflammatory
mediators activate nociceptive neurons

Immune cells release inflammatory mediators to alter the

sensitivity of nociceptive neurons and participate in the regulation

of itching and pain (24). For example, MCs and basophils, activated

during nasal allergen deposition in patients with AR, release

histamine. Histamine activates the H1R on trigeminal neuron C

fibers, which transmits the sensation of itching (113). In addition to

H1R, histamine also exacerbates certain symptoms of AR, such as

sneezing, by acting on neuronal H3R in the caudal part of the

nucleus caudalis of the dorsal trigeminal spinal cord in the

brainstem (114). Furthermore, histamine, through the activation

of nasal sensory nerve endings and upward conduction to the CNS,

triggers the activation of brain regions related to psychoemotional

changes and even neurological symptoms in patients with AR (115).

Leukotriene D4 (LTD4), a nasal mucosal vasodilator (126), secreted

mainly by basophils. LTD4 has been demonstrated to directly

increase the excitability of guinea pig trigeminal neurons via

cysteinyl leukotriene receptor 1 (CysLTR1) (118). Furthermore, it

has been demonstrated that Leukotriene C4 (LTC4), released by

basophils, acts on CysLTR2 on sensory neurons to mediate acute

pruritus (127). Nevertheless, CysLTR2 expression has not been

identified on nasal nociceptive neurons (118). The precise role of

basophil-derived LTC4-CysLTR2 in allergic rhinitis remains to be

elucidated. Prostaglandins and tryptase released by MCs can also

activate and sensitize nociceptive neurons. Studies also report that

the binding of tryptase, released by MCs, with proteinase-activated

receptor 2 (PAR2) on airway-nociceptive neurons leads to the

release of SP and CGRP and promotes airway neurogenic

inflammation (117). Tryptase also break down kininogen in the

blood, producing the inflammatory mediator kinin (128). Similarly,

BK acts directly on vascular bradykinin receptors to promote

vascular permeability, and it also stimulates nociceptive sensory

nerves and transmits nociceptive signals to preganglionic
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autonomic neurons in the brainstem, thereby eliciting

parasympathetic reflexes and inducing glandular secretion.

Notably, a significant increase in responsiveness to BK has been

reported in patients with severe AR (85). PGD2, a major

cyclooxygenase metabolite, acts on prostaglandin D2 receptor 1

(DP1), lowering the action potential threshold of small-diameter

neurons to modulate neuronal excitation induced by various

stimuli. Furthermore, the activation of PGD2-DP1 receptor

signaling leads to a significant increase in histamine-induced

action potentials and depolarizations, thereby exacerbating

rhinitis symptoms in guinea pigs (116). Moreover, PGD2 dilate

vessels in the nasal mucosa, resulting in nasal congestion (126). It

has also been shown that prostanoids such as Prostaglandin E2

(PGE2) and Leukotriene B4 (LTB4) do not directly stimulate

nociceptive neurons but rather make neurons more susceptible to

depolarization by altering the threshold for depolarization (8).

In addition to MCs and basophils, many other immune cells

and related inflammatory mediators are involved in activating

nociceptive neurons. A close relationship exists between plasma

cells and nociceptive neurons. After OVA sensitization, plasma cells

have been reported to secrete IgE to form immune complexes with

OVA, which regulates the excitability of nociceptive neurons and

enhances allergic airway inflammation (64). In response to

inflammation, neutrophils produce direct-acting mediators, such

as PGE2, which contribute to hypernociception (129). Furthermore,

activated eosinophil products also increase afferent nerve

excitability at sites of allergic inflammation. Eosinophils, isolated

from the peripheral blood of patients with AR, were found to

activate DRG neurons cultured in vitro (130).

Monocytes and macrophages also play an essential role in the

nociceptive sensation of allergic diseases. These cells also act directly

on nociceptive neurons by releasing inflammatory mediators such as
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tumor Necrosis Factor a (TNF-a), enhancing neuronal excitability

by modulating receptors such as TRPA1, TRPV1 and Nav1.7-1.9

affecting nociceptive neurons (24, 74, 131). TNF-a plays an

important role in allergic diseases as a pro-inflammatory cytokine.

TG neuronal cell bodies are surrounded by a specialized type of glial

cells called satellite glial cells, which communicate directly through

gap junctions and are involved in sensitizing TG-nociceptive

neurons. Notably, TNF-a expression levels are elevated in the nasal

secretions of patients with AR (132). TNF-a increases the levels of

connexin 26 and activates p38 mitogen-activated protein kinase in

the TG, augmenting the gap junction activity, promoting neuron-

satellite glial cell communication and reducing the activation

threshold required for nociceptive neurons (124). TNF-a activates

TRPV1+ DRG neurons, sensitizing them to TRPV1 activators,

leading to airway hyperresponsiveness (9). Th2 cytokines, such as

IL-4, are also associated with neuronal hyperresponsiveness in

allergic inflammation. In a mouse model of allergic airway

inflammation, immune cells were found to act on nociceptive

neurons by releasing IL-4 and IL-13, altering the transcriptome of

nociceptive neurons during type 2 inflammation, overexpressing

neuronal sensitivity-related genes and enhancing the sensitivity of

nociceptive neurons to nociceptive stimuli (125).
5.2 Role of neurotrophic factors in
nociceptive neurons

The neurotrophic factor family comprises NGF, brain-derived

neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and

neurotrophin-4/5 (NT-4/5). Various immune cells, such as MCs,

eosinophils and macrophages, release these neurotrophic factors.

Neurotrophic factors are essential for neuronal development,
TABLE 2 The role of the immune system on nociceptive neurons.

Inflammatory
mediator

Immune cells that release
inflammatory mediators

Target Effect Cite

histamine mast cell;basophil
HR:

H1R, H3R
promoting nasal pruritus; promoting sneezing;

Brain activation provocation
(113–115)

PGD2 mast cell DP1 reducing activation threshold of nasal sensory neurons (116)

tryptase mast cell PAR2
upregulating neurogenic inflammation;

upregulating Bradykinin
(85, 117)

Leukotriene D4 basophil CysLTR1 increasing the excitability of nasal nociceptive sensory neurones (118)

NGF eosinophil;mast cell;basophil TrkA;p75

increasing expression of voltage-gated sodium channels (NaV1.7,
NaV1.8 and NaV1.9);

promoting BDNF release, synergistically sensitising nociceptive
neurons;

increasing nasal sensitivity, airway reactivity, and
neuronal hypersensitivity

(20,
119–122)

NT-3 eosinophil TrkC affect the nasal mucosa locally (123)

TNF-a macrophage;monocyte TNFR
reducing activation threshold of nociceptive neurons;

increasing AHR
(9, 124)

IL-4 Th2 IL-4R increasing the sensitivity of nociceptive neurons (125)

IgE plasma cells FceR1
activating nociceptive neurons;initiating and amplifying allergic

airway inflammation
(64)
fro
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modulating excitability in mature neurons and playing a role in

neurogenic inflammation (7, 120). Some studies suggest that early-

life allergic inflammation may lead to persistent abnormalities in

nociceptive neural circuits, impacting sensitivity to external stimuli

during a critical development ‘window period’ (6).

NGF, which is critical for the development of nociceptive C

fibers, induces biochemical and structural changes in nerves,

influencing the expression of sensory neuropeptides and TRPV1,

and contributing to hyperresponsiveness. NGF receptors, TrkA and

p75, are present on sensory nerves in the human nasal mucosa. In

patients with AR, baseline NGF levels in nasal lavage fluid are

significantly higher than in healthy controls. After allergen

stimulation, NGF levels and the number of NGF-positive nerve

bundles increase rapidly in patients with AR. NGF acts on receptors

in nociceptive neurons, affecting structural and biochemical

processes, with NGF expression in the nasal epithelium positively

correlating with neuronal marker PGP 9.5 and C-fiber density,

demonstrating the effect of NGF on neuronal plasticity (121, 122).

NGF also promoted BDNF release, synergistically sensitizing

nociceptive neurons (120). Elevated NGF levels in AR contribute

to increased expression of voltage-gated sodium channels (NaV1.7,

NaV1.8 and NaV1.9), resulting in hypersensitivity (20).

Additionally, local production of NT-3 in nasal mucosa may

show their effects on the local site without joining the systemic

circulation in AR patients, playing a role in AR neuronal

inflammation (123). This effect may be attributed to the specific

binding of NT-3 to TrkC receptors (133).
6 Conclusion

This review focuses on the pivotal role of nociceptive neurons in

the nasal mucosa in AR pathogenesis (Figure 1). Nasal mucosal

nociceptive neurons release neuropeptides, initiating a

neuroimmune loop where immune cells release cytokines and

other substances, which in turn, affect nociceptive neurons.

Peripheral sensitization in AR may result from this intricate

interaction. Nerve blockade therapy has shown efficacy in treating
Frontiers in Immunology 09
patients with AR insensitive to conventional treatments and

immunotherapy (134, 135). Further exploration of the interaction

between immune cells, inflammatory mediators and nociceptive

neurons is crucial for developing neuro-targeted treatment of AR.
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