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Background: Bladder cancer (BLCA) was recognized as a significant public health

challenge due to its high incidence and mortality rates. The influence of

molecular subtypes on treatment outcomes was well-acknowledged,

necessitating further exploration of their characterization and application. This

study was aimed at enhancing the understanding of BLCA by mapping its

molecular heterogeneity and developing a robust prognostic model using

single-cell and bulk RNA sequencing data. Additionally, immunological

characteristics and personalized treatment strategies were investigated

through the risk score.

Methods: Single-cell RNA sequencing (scRNA-seq) data from GSE135337 and

bulk RNA-seq data from several sources, including GSE13507, GSE31684,

GSE32894, GSE69795, and TCGA-BLCA, were utilized. Molecular subtypes,

particularly the basal-squamous (Ba/Sq) subtype associated with poor

prognosis, were identified. A prognostic model was constructed using LASSO

and Cox regression analyses focused on genes linked with the Ba/Sq subtype. this

model was validated across internal and external datasets to ensure predictive

accuracy. High- and low-risk groups based on the risk score derived from TCGA-

BLCA data were analyzed to examine their immune-related molecular profiles

and treatment responses.

Results: Six molecular subtypes were identified, with the Ba/Sq subtype being

consistently associated with poor prognosis. The prognostic model, based on

basal-squamous subtype-related genes (BSSRGs), was shown to have strong

predictive performance across diverse clinical settings with AUC values at 1, 3,

and 5 years indicating robust predictability in training, testing, and entire datasets.

Analysis of the different risk groups revealed distinct immune infiltration and

microenvironments. Generally higher tumor mutation burden (TMB) scores and

lower tumor immune dysfunction and exclusion (TIDE) scores were exhibited by

the low-risk group, suggesting varied potentials for systemic drug response

between the groups. Finally, significant differences in potential systemic drug

response rates were also observed between risk groups.
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Conclusions: The study introduced and validated a new prognostic model for

BLCA based on BSSRGs, which was proven effective in prognosis prediction. The

potential for personalized therapy, optimized by patient stratification and

immune profiling, was highlighted by our risk score, aiming to improve

treatment efficacy. This approach was promised to offer significant

advancements in managing BLCA, tailoring treatments based on detailed

molecular and immunological insights.
KEYWORDS
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1 Introduction

Within the spectrum of genitourinary malignancies, bladder

cancer (BLCA) stands out as one of the most frequently

encountered, with a noted predilection for males over females.

Most patients are diagnosed between the ages of 50 and 70 (1, 2).

Globally, BLCA ranks fourth in newly diagnosed male cancer cases

and has risen to the eighth position in terms of mortality (3). BLCA

exhibits heterogeneous clinical behaviors, stratified by the extent of

tumor invasion into bladder tissues, which broadly delineates into

non-muscle invasive bladder cancer (NMIBC) and the more

advanced muscle-invasive bladder cancer (MIBC) (4). Within it,

MIBC, constituting about 25% of cases, is characterized by high

malignancy, rapid progression, early metastasis, and a high

recurrence and mortality rate (5). Currently, for MIBC, radical

surgery following neoadjuvant therapy is recommended. However,

the efficacy of this treatment regimen has not reached an ideal level

(6). Therefore, early prediction of patient survival prognosis and

personalized adjuvant therapy, which are based on different tumor

characteristics, have important practical significance.

Recent studies have indicated significant heterogeneity in the

molecular mechanisms underlying the occurrence and development

of MIBC (7). Tumors dominated by different subtypes may lead to

different treatment outcomes and prognoses, which could be one of

the reasons for the high heterogeneity of BLCA (8). Many

classifications of bladder molecular subtypes exist, however, further

studies and applications of these subtypes are comparatively sparse

(9–12). Nevertheless, distinct differentiation patterns, carcinogenic

mechanisms, tumor microenvironments, and significant histological

and clinical relevance are exhibited by molecular subtypes, which are

crucial for addressing the heterogeneity of BLCA, predicting

treatment efficacy, and determining prognosis. The application of

tumor subtypes is worth further exploration.

The advanced use of single-cell RNA sequencing (scRNA-seq)

technology enables us to explore the heterogeneity of different

subtypes of bladder tumors at the individual cell level based on

transcriptomic changes and to establish prognostic prediction

models (13), Moreover, bulk RNA can confirm the results of single-
02
cell analyses at the overall genetic level, verifying the effectiveness of

the predictive models in larger samples, as well as to investigate the

responses of subtypes to treatment (14, 15). Therefore, by integrating

both approaches, we can not only develop tools for predicting BLCA

prognosis based on molecular subtypes, but also explore drug

sensitivity testing based on molecular subtypes, providing support

for personalized treatment.

Recent decades have seen significant advancements in a variety of

systemic cancer therapies. The emergence of immune checkpoint

inhibitors (ICIs) has brought about significant changes, becoming a

secondary treatment option for those who lose the chance of radical

resection and for patients with metastatic BLCA, especially in cases

where platinum-based chemotherapy is not suitable for first-line

treatment (16). However, A response rate of around 20% is typically

achieved by ICIs in the treatment of MIBC (17). Whether efficacy is

affected by tumor subtypes is worth further investigation.

This study integrates scRNA-seq data and bulk RNA-seq data to

comprehensively analyze BLCA, initially identifying the subtypes of

BLCA. Subsequently, a prognostic model based on basal-squamous

subtype-related genes (BSSRGs) was constructed and verified

through internal and external validation cohorts. Lastly, molecular

and immune analyses reveal insights into BLCA biology, highlighting

potential therapeutic targets and supporting personalized treatments.
2 Materials and methods

2.1 Preparation for RNA-seq data

The scRNA-seq data for BLCA was obtained from the GSE135337

(Gene Expression Omnibus dataset), which includes seven BLCA

tissue samples and one paracancerous tissue sample (18). To

investigate gene expression signatures and potential prognostic

factors in BLCA comprehensively, bulk RNA-seq data and

accompanying clinical information were collected from multiple

datasets, including The Cancer Genome Atlas-Bladder Urothelial

Carcinoma (TCGA-BLCA), GSE13507, GSE31684, GSE32894, and
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GSE69795 (12, 19–23). Only samples with survival times exceeding

30 days were retained to ensure the reliability of the analyses, allowing

for sufficient follow-up and observation of the clinical course of the

disease. A comprehensive dataset was compiled, comprising 7 BLCA

samples from GSE135337, 391 BLCA samples from TCGA-BLCA,

165 BLCA samples from GSE13507, 93 BLCA samples from

GSE31684, 224 BLCA samples from GSE32894, and 38 BLCA

samples from GSE69795. A schematic outline of the study

workflow is depicted in Figure 1.
2.2 Processing of scRNA-seq data

The scRNA-seq data was analyzed using the R package “Seurat”

(v4.3.0) (24). The scRNA-seq data was analyzed using the R package

“Seurat” (v4.3.0) (24). The quality control of scRNA-seq data was

conducted following the methodology described in a previous study

(18). Subsequently, cell cycle effects were removed, normalization

and dimensionality reduction (1:40) were applied, and clustering

(resolution=1) and cell annotation were performed on the Seurat

objects (25). Specifically, six distinct malignant epithelial cell

subtypes—namely basal-squamous (Ba/Sq), luminal, stress,

metabolism, cell cycle, and immunity—were identified using the

“FindAllMarkers” function, which allowed for the identification of

highly variable genes in each subtype. The various differentiation

states of the malignant epithelial cell subpopulations were analyzed

using “Monocle 2” (26). The degree of transcription factor

activation across these subtypes was evaluated using “pySCENIC”

(27). Finally, communication patterns were examined using the

“CellChat” tool, which leveraged ligand-receptor information to

model communication probability. Through this analysis,

significant communication events were successfully identified (28).
2.3 Development and validation of
prognostic model

A survival analysis was conducted to investigate the impact of

different malignant epithelial cell subtypes on the prognosis of
Frontiers in Immunology 03
BLCA. Genes that displayed high variability specifically within the

basal-squamous subtype were identified and designated as BSSRGs.

Initially, a univariate Cox analysis was conducted to assess the

prognostic significance of these BSSRGs, with a significance

threshold set at P<0.05. The BLCA samples from the TCGA-

BLCA dataset were randomly divided into a training set and an

internal validation set in a 7:3 ratio for our study cohort.

Additionally, BLCA samples from external datasets, namely

GSE13507, GSE31684, GSE32894, and GSE69795, were utilized as

an external validation set to further validate the findings. Next,

LASSO analysis was employed to identify candidate BSSRGs.

Subsequently, a prognostic model based on these candidate genes

was established through multivariate Cox analysis. To evaluate the

accuracy of this model in predicting prognosis, a risk score for each

patient was calculated using the specified formula: ok
i=1biSi.

Kaplan-Meier analysis and the chi-squared test were utilized to

assess the prognostic model’s capacity to distinguish survival

disparities amongst various risk score groups. The time-

dependent receiver operating characteristic (ROC) curve was

utilized to estimate the model’s predictive ability compared to

typical clinical characteristics. To verify the applicability of this

model to patients with disparate clinical features, survival

dissimilarities between varied risk score groups within every

subgroup were compared. Univariate and multivariate Cox

analyses were performed to assess the model as an independent

indicator of prognosis. The consistency index (C-index) was utilized

to estimate the predictive power of the signature in comparison with

clinical features. A nomogram incorporating the prognostic model

and clinical features was created to predict one, three, and five-year

survival rates of BLCA patients.
2.4 Enrichment analysis and gene
mutation analysis

The molecular mechanisms and pathways associated with

different risk score groups were explored by identifying

differentially expressed genes (DEGs) between these groups, using

criteria of |logFC≥1| and FDR<0.05. Gene Ontology (GO) and
FIGURE 1

The workflow of the present study.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were

performed to further investigate these associations (P<0.05) (29,

30). Additionally, the frequency of mutations in different risk score

groups was quantified using the R package “Maftools” (31).
2.5 Assessment of tumor
immune microenvironment

A range of algorithms including TIMER, XCELL,

QUANTISEQ, MCP-COUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT were utilized to evaluate immune cell infiltration

(32–38). Differences in immune function were examined by

conducting a single-sample Gene Set Enrichment Analysis

(ssGSEA) (39). Additionally, the expression levels of various

immune checkpoint genes were investigated. Mutational analysis

was carried out to determine the number of gene mutations. Tumor

immune dysfunction and exclusion (TIDE) scores and tumor

mutation burden (TMB) scores were calculated to predict the

response to immunotherapy (40, 41).
2.6 Identification of anti-tumor medicines

The potential effectiveness of various drugs in treating BLCA

was assessed using the “oncoPredict” tool to predict drug

responsiveness (42). Promising medications for BLCA treatment

were successfully identified through this analysis by evaluating the

Genomics of Drug Sensitivity in Cancer (GDSC) database.
2.7 Western blot
and immunohistochemistry

Tissue samples were homogenized using RIPA buffer (Solarbio,

Beijing, China) supplemented with protease and phosphatase

inhibitors. Protein concentration was determined using a BCA

protein assay kit (Solarbio, Beijing, China). Equal amounts of

protein samples were loaded onto SDS-PAGE gels and separated

by electrophoresis. Proteins were transferred onto PVDF

membranes using a wet transfer system. Membranes were blocked

in blocking buffer (EpiZyme, Shanghai, China) for 1 hour at room

temperature. Membranes were incubated with SUMF2(1:4000,

Proteintech, Wuhan, China), KDELR2 (1:2000, HUABIO,

Hangzhou, China), TM4SF1 (1:1000, Youpin Biotech, Shenzhen,

china), and SCD (1:1000, ZENBIO, Chengdu, China) overnight at

4°C. After washing, membranes were incubated with HRP-

conjugated secondary antibodies for 1 hour at room temperature.

Protein bands were visualized using the Super ECL Detection

system and imaged with a chemiluminescence detection system

(Biosharp, Anhui, China).

Paraffin-embedded tissue sections (4 mm thick) were

deparaffinized in xylene and rehydrated through a graded alcohol

series. Antigen retrieval was performed using citrate buffer (pH 6.0)

in a pressure cooker. Endogenous peroxidase activity was blocked
Frontiers in Immunology 04
with 3% hydrogen peroxide for 10 minutes, and non-specific

binding was blocked with 5% normal goat serum for 1 hour.

Sections were incubated with SUMF2(1:200, Proteintech, Wuhan,

China), KDELR2 (1:200, HUABIO, Hangzhou, China), TM4SF1

(1:200, Youpin Biotech, Shenzhen, china), and SCD (1:100,

ZENBIO, Chengdu, China) overnight at 4°C. After washing,

sections were incubated with biotinylated secondary antibodies

for 30 minutes at room temperature. Signal was developed using

the DAB substrate kit (elabscience, Wuhan, China), and sections

were counterstained with hematoxylin. Sections were dehydrated,

cleared, and mounted with coverslips.
2.8 Statistical analysis

Data analysis and the creation of figures were performed using

R software, version 4.2.1, available at www.R-project.org. Statistical

significance was defined as p-value< 0.05.
3 Result

3.1 Comprehensive single-cell analysis of
BLCA samples

A comprehensive analysis of BLCA samples at the single-cell

level was conducted, with data being extracted from a scRNA-seq

dataset (GSE135337). Standards for quality control were

established to ensure data reliability (standards: minGene=200,

maxGene=10000, minUMI=500, pctMT=10, pctHB=1).

nFeature_RNA showed the number of detected genes among

samples. nCount_RNA displayed the total RNA count per cell,

highlighting differences in cellular RNA content. Percent.mt

represented the percentage of mitochondrial gene expression,

used as a quality control metric to assess cell viability. Percent.HB

indicated the percentage of hemoglobin gene expression, helping to

identify potential contamination by red blood cells (Figure 2A).

Thirty-two clusters were identified through the analysis of seven

BLCA samples (Figure 2B). These clusters were further classified

into five cell types: epithelium, myeloid/macrophage, fibroblast, T

cell, and endothelium, with epithelial cells forming the majority and

dominating the landscape (Figure 2C). The expression of

characteristic genes associated with each cell type were identified,

such as KRT8, KRT18, and EPCAM are predominantly expressed in

epithelial cells (Figure 2D). Further analysis focused on the

epithelial cells within the BLCA samples, revealing significant

diversity and identifying key molecular subtypes. The extraction

and clustering of malignant epithelial cells were carried out,

revealing twenty-eight clusters (Figure 3A). These clusters were

further classified based on gene expression patterns, which enabled

the identification of six distinct cell types: metabolism, stress,

luminal, basal-squamous, immunity, and cell cycle (Figure 3B).

The top variable genes for each cell subtype were highlighted in the

plot, with FOS, S100A8, S100A7, and KRT5 being the most

expressed in the Ba/Sq subtype (Figure 3C).
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3.2 Dynamics of epithelial cell states and
intercellular communication

Highly variable genes were systematically identified from the

gene expression profile of epithelial cells to construct a trajectory

(Figure 4A). Subsequently, pseudotime trajectory illustrated the

progression of cells along a differentiation timeline, with cells

transitioning from early to late differentiation stages (Figure 4B).

The epithelial cells were effectively stratified into five distinct states

through cells progress during differentiation (Figure 4C).

Concurrently, the differential distribution of each epithelial cell

subtype in pseudotime analysis was clearly depicted (Figure 4D).

Furthermore, the activation patterns of transcription factors within
Frontiers in Immunology 05
each subtype of epithelial cells have been thoroughly investigated.

Expression of genes such as FOSB, GATA2, and JUN had been

observed to increase in the stress subtype, while a noticeable decrease

had been observed in the luminal and cell cycle subtypes (Figure 4E).

An intercellular communication network among different subtypes of

epithelial cells was established, quantifying the number of

interactions, the metabolism subtype demonstrated a high number

of interactions with other subtypes, indicating its central role in

cellular communication (Figure 5A). Stronger interactions were

observed between the metabolism subtype and other subtypes, such

as cell cycle and stress subtypes (Figure 5B). Additionally, the

communication between various molecular subtypes was primarily

mediated through ligand-receptor interactions involving MDK-
B C

D

A

FIGURE 2

Processing of scRNA data. (A) Violin plot shows the distribution of several parameters across seven BLCA samples from the scRNA database
GSE135337. (B) tSNE plot shows all the single cells in seven BLCA samples can be classified into thirty-two clusters. (C) tSNE plot categorizing the
thirty-two clusters into five main cell types: Epithelium, Myeloid/Macrophage, Fibroblast, T cell, and Endothelium. (D) Bubble chart highlighting the
characteristic genes associated with different cell types. The size of the bubbles represents the percentage of cells expressing the gene, and the
color intensity indicates the average expression level.
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SDC1, MDK-NCL, and MDK-SDC4. Communication from other

subtypes to Ba/Sq was predominantly conveyed through these three

interactions. In contrast, communication from Ba/Sq to other

subtypes was characterized by a relatively weak probability,

primarily involving PTN-SDC1. This detailed mapping of ligand-

receptor interactions underscores the complex communication

network within BLCA, providing valuable insights into potential

therapeutic targets and strategies for disrupting tumor-promoting

signals (Figure 5C).
3.3 Prognostic model development
for BLCA

Kaplan-Meier analysis was utilized to evaluate the impact of six

molecular subtypes on the prognosis of BLCA. A significant

statistical difference was observed between the basal-squamous

score group and the metabolism score group, while stress, cell

cycle, luminal and immunity scores showed no significant

difference. Patients in the low score group of basal-squamous

(HR=1.48, P=0.01) and the high score group of metabolism

(HR=0.65, P=0.006) showed better survival outcomes (Figure 6A).

Subsequently, univariate Cox analysis identified thirty-eight genes

significantly associated with prognosis, with twenty-two genes

HR>1 (Figure 6B). LASSO analysis illustrated the trajectories and
Frontiers in Immunology 06
distributions for each independent variable with respect to lambda.

The optimal lambda value was identified to balance model

complexity and predictive performance (Figure 6C). BSSRGs were

identified by multivariate Cox analysis, including C6orf62, CXADR,

KDELR2, SCD, SDC4, SUMF2, TM4SF1, UXT, WTAP,

ZFC3H1 (Figures 6D).

The model was first trained and tuned using the training set,

and then its performance was evaluated internally and validated

using the testing set. Additionally, the model was also validated

using the entire dataset to further assess its performance and

generalization ability. Within these assessments, the training set,

testing set, and all datasets were categorized into high- and low-risk

groups based on risk score. It was found that significant statistical

differences in outcomes were evident in each set, with a notably

worse prognosis in the training set (HR=3.4, P<0.001), the testing

set (HR=2.45, P=0.001), and the all set (HR=3.11, P<0.001) among

patients with high-risk score (Figure 7A). The model’s robustness

was further demonstrated in four external validation sets,

consistently yielding statistically significant results. Notably,

unfavorable prognoses in GSE13507 (HR=1.99, P=0.003),

GSE31684 (HR=1.66, P=0.039), GSE32894 (HR=7.26, P=0.002),

GSE69895 (HR=inf, P=0.028) were exhibited by patients with

high-risk score (Figure 7B).

ROC curves were used to assess the predictive accuracy of the

constructed prognostic model, yielding AUC values for 1-, 3-, and
B

C

A

FIGURE 3

Characterization of epithelium diversity and molecular subtypes. (A) tSNE plot suggests epithelial cell can be classified into twenty-eight clusters.
(B) tSNE plot identifying six molecular subtypes of epithelial cells from the twenty-eight clusters: metabolism, stress, luminal, basal-squamous,
immunity, and cell cycle. (C) Bubble chart highlighting the highly variable genes associated with different molecular subtypes of epithelial cells. The
size of the bubbles represents the percentage of cells expressing the gene, while the color intensity indicates the average expression level.
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5-year overall survivals in the training set: 0.732, 0.749, and 0.787

(Figure 8A). In the testing set, corresponding AUC values were

0.744, 0.684, and 0.742 (Figure 8B), while in the entire dataset, they

were 0.737, 0.725, and 0.759, respectively (Figure 8C). To further

validate the predictive capacity of the risk score in conjunction with

other clinical features, comprehensive assessments were conducted.

The risk score exhibited the highest predictive accuracy with an

AUC of 0.787, outperforming other clinical factors such as age

(AUC = 0.643), T stage (AUC = 0.571), N stage (AUC = 0.662), and

overall stage (AUC = 0.759) in training Set (Figure 8D). Similar

performances of risk score were also found in testing set (AUC =
Frontiers in Immunology 07
0.742) (Figure 8E) and entire set (AUC = 0.759) (Figure 8F). The

risk score demonstrated superior prognostic capability compared to

factors such as age, gender, T stage, N stage, M stage and tumor

grading was demonstrated by the risk score across all datasets.

The effectiveness of the prognostic model across patients with

diverse clinical features, including diverse age (>65 and ≤65),

genders (female and male), pathological stages (I-III), T stages (1-

2 and 3-4), and lymphatic metastasis statuses (N0 and N1-3) was

validated. It was demonstrated that better survival outcomes were

associated with patients with low-risk score (Figure 9A). The

prognostic significance of age (p<0.01), T stage (p<0.01), N stage
B

C D

E

A

FIGURE 4

Comprehensive analysis of cell differentiation dynamics. (A) Selecting high dispersion genes for trajectory construction by monocle. (B) Pseudotime
analysis depicting different stages of cell differentiation. (C) Plot showing the state of cells during the differentiation process, analyzed by pseudotime
trajectory analysis. (D) Plot illustrating the progression of each epithelial cell subtype along the differentiation trajectory. (E) Heatmap demonstrating
transcription factor activation across different molecular subtypes, with the color intensity indicating the level of expression.
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(p<0.01), M stage (p<0.01), tumor stage (p<0.01), and risk score

(p<0.01) (Figure 9B) was confirmed by univariate Cox analyses. The

risk score (p<0.01) was evaluated as an independent indicator

among different clinical signatures by multivariate Cox analysis

(Figure 9C). The prediction accuracy of the risk score and clinical

signatures (age, gender, stage, grade) was assessed over time using

the C-index. The risk score demonstrated better performance in
Frontiers in Immunology 08
predicting survival prognosis compared to other clinical factors.

(Figure 10A). A nomogram that incorporates clinical characteristics

(grade, age, M stage, T stage, gender, N stage, clinical stage) and risk

score was created to predict 1-year, 3-year, and 5-year survival rates

for BLCA patients (Figure 10C). Additionally, the calibration curve

showed strong consistency between predicted survival and actual

outcomes (Figure 10B).
B

C

A

FIGURE 5

Communication patterns among molecular subtypes. (A) Diagram depicting the number of interactions among different molecular subtypes.
(B) Diagram showing the interaction weights/strengths among the subtypes. (C) Bubble chart visualizing significant communicated ligand-receptor
pairs among molecular subtypes. The size of the bubbles represents the p-value, with smaller bubbles indicating more significant interactions, and
the color intensity represents the communication probability, with higher values indicating stronger communication.
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3.4 Risk score stratification predicts
immunotherapy response in TCGA-BLCA

Differential expression analysis was conducted on TCGA-BLCA

samples based on risk score, followed by GO and KEGG analyses on

the differentially expressed genes. The main Biological Process terms

identified in GO included GO:0030199: extracellular matrix
Frontiers in Immunology 09
structural constituent, GO:0043062: extracellular structure

organization, GO:0045229: external encapsulating structure

organization (Figure 11A). The KEGG pathways were primarily

enriched in HSA04151: PI3K-Akt signaling pathway, hsa04512:

ECM-receptor interaction, hsa04510: Focal adhesion (Figure 11B).

Mutation frequencies were quantified in two groups, presenting the

top 20 mutated genes. The top mutated genes in the low-risk group
B C

D

A

FIGURE 6

Development of the prognostic model. (A) Survival analysis evaluating the impact of six molecular subtypes (Basal-squamous, Metabolism, Stress,
Cell cycle, Luminal, and Immunity) on the prognosis of BLCA, depicted through Kaplan-Meier survival curves. The p-values and hazard ratios with
95% confidence intervals are indicated. (B) Forest plot displaying the results of univariate Cox analysis to evaluate BSSRGs with prognostic
significance. (C) LASSO analysis illustrating the trajectories and distributions for each independent variable regarding lambda. (D) A forest plot
generated from multivariate Cox analysis was used to identify BSSRGs.
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included TP53, TTN, KMT2D,MUC16, and KDM6A, with mutation

rates of 46%, 45%, 23%, 23%, and 22%, respectively (Figure 11C). The

top mutated genes in the high-risk group also included TP53, TTN,

KMT2D, and MUC16, but with higher mutation rates of 52%, 42%,

30%, and 27%, respectively (Figure 11D).

Potential immunotherapy strategies were explored following this.

Macrophages, myeloid dendritic cells, and neutrophils were found to be

positively correlated with the risk score through Spearman correlation

analysis (Figure 12A). Substantial differences in immune function were

identified by ssGSEA, with especially pronounced variances observed in

CCR, parainflammation, and T cell co-suppression, along with higher

scores noted in the high-risk group for check-point, MHC-class-I, HLA,

etc. (Figure 12B). Furthermore, the expression of immune checkpoint

genes were compared between high-risk and low-risk groups. High-risk

groups exhibited significantly higher expression of several immune

checkpoint genes, including CD274, CD276, and CD44. Conversely, it
Frontiers in Immunology 10
was found that the expression levels of LGALS9, TNFRSF14, and

TNFRSF25 were higher in the low-risk group compared to the high-

risk group (Figure 13A).

TMB results indicated that the TMB scores of the low-risk

group were generally higher than those of the high-risk group

(Figure 13B). High TMB scores suggested a higher mutation burden

in tumors, making the cancer cells more recognizable and

attackable by the immune system. Kaplan-Meier analysis showed

that the prognosis was better in the group with high TMB scores

than in the group with low TMB scores (Figure 13C). The best

survival prognosis was observed with a combination of high-TMB

and low-risk, while the worst prognosis was associated with a

combination of low-TMB and high-risk (Figure 13D).TIDE

results demonstrated that the scores were lower in the low-risk

group than in the high-risk group (Figure 13E), suggesting that

patients in the low-risk group were more likely to be sensitive to
B

A

FIGURE 7

Validation of prognostic models via Kaplan-Meier analysis. (A) Kaplan-Meier survival analysis of the prognostic model signatures in the training set,
testing set, and all TCGA dataset. (B) Kaplan-Meier survival analysis of the prognostic model signatures in the external validation sets (GSE13507,
GSE31684, GSE32894, GSE69795). The survival curves demonstrate significant differences in survival probability between the high-risk and low-risk
score groups across different external datasets, with p-values, hazard ratios, and 95% confidence intervals provided.
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immunotherapy. Survival analysis indicated that the survival

prognosis with low-TIDE was better than with high-TIDE

(Figure 13F). The best survival prognosis was associated with a

combination of low-TIDE and low-risk, and the worst was with a

combination of high-TIDE and high-risk (Figure 13G).

The analysis was extended to calculate the IC50 values of

various systemic agents. The responsiveness to various systemic
Frontiers in Immunology 11
drugs was predicted and compared between high-risk and low-risk

groups by analyzing the IC50 values. Interestingly, most drugs, like

gemcitabine, oxaliplatin and rapamycin, showed increased efficacy

in the low-risk group. Notably, inhibitors of PI3K and PI3Kb, such
as Tasilisib and Pictilisib, displayed superior effectiveness and

sensitivity in the high-risk group, attributed to their notably lower

IC50 values (Figures 14A, B).
B

C

D

E

F

A

FIGURE 8

Assessing and comparing predictive accuracy of prognostic models. (A-C) ROC curves assessing the predictive accuracy of the prognostic model for
1-, 3-, and 5-year overall survival in the training set, testing set, and all TCGA datasets. The area under the curve (AUC) values are indicated for each
time point. (D-F) ROC curves comparing the predictive capacity of the risk score to clinical factors in the training set, testing set, and all TCGA
datasets. The AUC values for each factor are provided.
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3.5 Differential expression of
prognostic genes

To investigate the expression of signature genes in the prognostic

model, immunohistochemical staining and Western blot analysis on

bladder cancer tissues and adjacent paracancerous tissues were

performed. Immunohistochemical staining revealed that SCD,
Frontiers in Immunology 12
SUMF2, and KDEL2R were significantly more expressed in bladder

cancer tissues compared to paracancerous tissues, while TM4SF1

exhibited higher expression in paracancerous tissues than in tumor

tissues (Figure 15A). Western blot analysis further confirmed the

differential expression of these proteins. Bladder cancer tissues from

three different patients (#1, #2, and #3) exhibitedmarkedly higher levels

of SCD, SUMF2, and KDEL2R compared to the corresponding
B C

A

FIGURE 9

Validation and Evaluation of Prognostic Model Performance. (A) Kaplan-Meier survival analyses across various clinical features (age, gender, tumor
stage, T stage, N stage, M stage) to validate the effectiveness of the prognostic model. The survival curves illustrate significant differences in survival
probability between high-risk and low-risk groups within each clinical feature category, with p-values indicated for each subgroup. (B) Univariate
Cox analysis assessing the prognostic significance of age, gender, T stage, N stage, M stage, tumor stage, grade, and risk score. (C) Multivariate Cox
analysis evaluating the prognostic model as an independent indicator among different clinical signatures, with hazard ratios and p-values indicated.
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paracancerous tissues (Figure 15B). Conversely, TM4SF1 expression

was higher in paracancerous tissues than in tumor tissues. GAPDHwas

used as a loading control to ensure equal protein loading across the

samples. Quantitative analysis of the Western blot data visually

confirmed the differential expression patterns observed, with higher

levels of SCD, SUMF2, and KDEL2R in tumor tissues, and higher levels

of TM4SF1 in paracancerous tissues (Figure 15C).
4 Discussion

BLCA, recognized as a common urological tumor, received

significant attention for its treatment regimens (43). Although
Frontiers in Immunology 13
current adjuvant therapies effectively improved treatment outcomes

for patients with BLCA, the pursuit of personalized treatment for each

patient remains a primary focus for researchers (44). With the

advancements in scRNA-seq and bulk-RNA seq, various subtypes of

bladder tumors were identified over the years. However, the practical

application of these subtypes in personalized treatments was not fully

explored. Consequently, this study aimed to develop a prognostic

model specifically for BLCA subtypes and to further investigated

tailored treatment strategies informed by these subtypes.

Although various classifications of subtypes in BLCA were

categorized by different researchers, they often involved basal-like

and luminal types as foundational categories (45). The Ba/Sq

subtype was more commonly observed in females and was
B

C

A

FIGURE 10

Evaluation and integration of the prognostic nomogram. (A) The plot displaying the prediction accuracy for both the risk score and various clinical
signatures (age, gender, tumor stage, T stage, N stage, M stage, grade). The C-index over time is shown for each variable. (B) The calibration curve
used to assess the predictive accuracy of the nomogram, comparing the predicted OS at 1-, 3-, and 5-year intervals with the observed OS. (C) A
nomogram integrating the prognostic model with clinical variables such as grade, age, M stage, T stage, gender, N stage, clinical stage, and risk
score. The nomogram provides a total points score to predict the probability of 1-, 3-, and 5-year overall survival. *P<0.05, ***P<0.001.
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frequently associated with higher stages of BLCA (stages pT3–4)

(46). This subtype was characterized by heightened expression of

basal and stem-like markers, including CD44, KRT5, KRT6A,

KRT14, as well as squamous differentiation markers such as

TGM1, DSC3, and PI340. These characteristics suggested

similarities between the Ba/Sq subtype and basal-like breast

cancers, as well as squamous cell carcinomas of the head, neck,

and lungs (9). Kamoun et al. (47) established a classification for

MIBC, where Ba/Sq accounts for the largest proportion, at 35%,

with a median survival of 1.2 years. The subtype also exhibited a

lower rate of complete pathological response in patients with locally

advanced BLCA compared to other subtypes. The Ba/Sq subtype

was associated with poorer overall survival and lower rates of

complete pathological response in locally advanced BLCA

patients compared with luminal and stroma-rich tumors (48).

Moreover, the Ba/Sq subtype was characterized by a greater

degree of clonal expansion than the luminal subtypes (49). Ba/Sq

tumors displayed higher infiltration of B Cell Receptor and T Cell
Frontiers in Immunology 14
Receptor compared to Luminal papillary tumors. Moreover,

increased TCR richness and diversity were significantly associated

with improved survival in the Ba/Sq subtypes (49).

Six molecular subtypes of BLCA were identified; notably, the

high score of the Ba/Sq subtype was found to be significantly

associated with a poor prognosis. whereas the high score of the

metabolism subtype was significantly associated with a good

prognosis. The metabolism subtype reflected the coordinated

expression of a set of genes that influence various aspects of

tumor biology. These genes, while grouped under the

“metabolism” label, may not directly relate to cellular metabolic

processes. The result may related to the specific expression patterns

of these genes, where different levels of expression could

significantly impact the prognosis of bladder cancer patients.

Some may impact tumor growth, invasion capabilities, and

responses to therapy, thereby contributing to an improved

prognosis (50). Some may affect the tumor microenvironment,

including the infiltration and activity of immune cells. This
B

C D

A

FIGURE 11

Enrichment analyses and mutation profiles in TCGA-BLCA based on risk score groups. (A) The GO enrichment results for TCGA-BLCA based on risk
score groups. (B) KEGG pathway enrichment analysis for TCGA-BLCA based on risk score groups. (C) The top 20 mutated genes in the low-risk
group of TCGA-BLCA. (D) The top 20 mutated genes in the high-risk group of TCGA-BLCA.
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influence could enhance the anti-tumor immune response and

contribute to better clinical outcomes (51).

Patients classified within the high-risk score group were

typically found to exhibit poorer prognoses, making it pertinent

to explore potential differences in immunotherapy responses

among various risk groups. It was observed that macrophages,

myeloid dendritic cells, and neutrophils showed positive
Frontiers in Immunology 15
correlations with the risk score. The Ba/Sq subtype of BLCA was

characterized by poor treatment responsiveness and heightened

immune cell infiltration, which was further compounded by

higher PD-L1 expression on both tumors and immune cells

compared to luminal and stroma-rich subtypes. This expression

profile, which included elevated levels of PD-1 protein, suggested a

distinct immunological environment that could potentially
B

A

FIGURE 12

Assessment of the tumor immune microenvironment. (A) Immune cell infiltration was assessed using various software tools (XCELL, TIMER,
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, CIBERSORT) to enhance evaluation accuracy. (B) ssGSEA was conducted to identify immune
function differences between high- and low-risk groups. *P<0.05, **P<0.01, and ***P<0.001.
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influence the efficacy of targeted therapies (48, 52). Consequently,

the tumor microenvironment and immune correlations of BLCA

based on the risk score were further investigated. In the high-risk

score group, elevated expression levels of immune functional

genes such as CCR, parainflammation, and T cell co-inhibition,

as well as mutations in CD274, CD276, and HAVCR2, were found.

Although higher immunocompetence was observed in the high-

risk group, it also implied elevated immunosuppression. However,

further investigation into prognosis differences revealed that the

low-risk score group exhibited a high TMB score, while the high-

risk score group displayed a high TIDE score. A high TMB score
Frontiers in Immunology 16
was indicative of enhanced tumor recognition and elimination

by the immune system, potentially leading to improved

immunotherapy responsiveness (53). Conversely, a high TIDE

score suggested resistance to immunotherapy, indicative of poorer

treatment outcomes and prognosis (54). Thus, patients within

the low-risk score group were potentially more responsive

to immunotherapy.

Apart from immunotherapy, chemotherapy was shown to

exhibit therapeutic effectiveness. The basal subtype, inherently

aggressive, was observed to have high sensitivity to cisplatin-

based combination chemotherapy (55). The benefit derived from
B C D

E F G

A

FIGURE 13

Immune profiling and prognostic analyses. (A) Comparison of immune checkpoint gene expression between high-risk and low-risk groups. (B) A plot
displaying TMB scores in both high- and low-risk groups. (C) Kaplan-Meier analysis comparing prognosis between groups with high and low TMB
scores. (D) Kaplan-Meier analysis evaluating survival based on combinations of high/low TMB scores with high/low risk groups. (E) A plot depicting
TIDE scores in both high- and low-risk groups. (F) Kaplan-Meier analysis comparing prognosis between groups with high and low TIDE scores.
(G) Kaplan-Meier analysis assessing survival based on combinations of high/low TIDE scores with high/low risk groups. *P<0.05, **P<0.01,
and ***P<0.001.
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neoadjuvant chemotherapy (NAC) appeared to be influenced by

molecular subtypes, with basal-like tumors exhibiting improved

survival rates following NAC (23). This observation suggested a

potential therapeutic avenue for this subtype, as the greatest

enhancement in overall survival was noted in basal-like tumors

compared to surgery alone. Consequently, it has been

recommended that patients with basal-like tumors be prioritized

for NAC (56). Furthermore, increased expression of certain genes,

such as ITIH5, was associated with enhanced sensitivity to

chemotherapy in squamous cell carcinoma lines (57). In our

analysis, gemcitabine and oxaliplatin were found to have lower

IC50 values in the low-risk score group, suggesting that patients in

this group could achieve better outcomes with gemcitabine and

oxaliplatin treatment. This enhanced response could lead to more

effective tumor reduction and potentially longer survival.

Although we conducted drug screening using only computer

experimental methods, further validation by basic and clinical

experiments was lacking. Firstly, computer simulations might not

have fully mimicked the complex biological environment in the

human body, so the IC50 values derived might have deviated from

the actual situation. Secondly, IC50 values only reflected the effects

of drugs on cells, whereas in actual treatment, factors such as drug

absorption, distribution, metabolism, and excretion might also have
Frontiers in Immunology 17
impacted the therapeutic effect, and these factors usually could not

have been fully considered in computer simulations. Therefore,

IC50 values derived from computer experiments alone needed to be

combined with clinical trial data and clinical observations to guide

clinical treatment more accurately.

The model comprises ten genes, among which four genes

exhibit a HR greater than 1: SCD, TM4SF1, and SUMF2. KDELR2,

a key driver of non-small cell lung cancer invasion and metastasis,

can be effectively targeted by inhibiting matrix metalloproteases to

suppress invasion, presenting a potential treatment strategy for

non-small cell lung cancer (58). Increased SCD activity, which led

to the synthesis of more monounsaturated fatty acids, was

associated with potentially promoting cancer cell growth and

infi l tration. Inhibition of SCD activity was shown to

significantly impede the proliferation and invasion ability of

BLCA cells (59). Although research on SUMF2 in cancer

remains l imited, i t was found to bind to IL-13 and

independently inhibit IL-13 secretion in bronchial smooth

muscle cells (60). Interestingly, our experimental findings

revealed elevated TM4SF1 expression in paracancerous tissues,

which contrasts with previous reports associating higher TM4SF1

levels with cancerous tissues (61). This discrepancy could stem

from differences in sample characteristics, tissue preparation
B

A

FIGURE 14

(A, B) Prediction of drug responsiveness in high and low-risk groups to various systemic drugs. The IC50 values for different drugs are compared
between the high-risk and low-risk groups. Statistical significance is indicated by *P<0.05, **P<0.01, and ***P<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1430792
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1430792
methods, or analytical techniques utilized across studies. Future

investigations could focus on validating these findings using larger

and more diverse patient cohorts.

While this article yielded promising results, its limitation was

identified in the need for further validation. Despite favorable

outcomes were demonstrated by the prognostic model in both

internal and external validation datasets, additional validation in

independent cohorts or clinical trials was deemed essential to confirm

its reliability and clinical utility. Moreover, the study primarily

focused on molecular signatures and immune correlations of

molecular subtypes, necessitating further experimental validation to

assess the actual therapeutic efficacy of identified targets or

immunotherapy strategies.
5 Conclusion

A new prognostic model based on the BSSRGs was identified

and validated, demonstrating robust performance in predicting

prognosis for BLCA patients. The risk score emphasized the

potential of personalized therapy, guided by patient stratification

and immune profiles, to enhance treatment efficacy.
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