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Macrophages in inflammatory
skin diseases and skin tumors
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Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Macrophages, as specialized, long-lasting phagocytic cells of the innate immune

system, have garnered increasing attention due to their wide distribution and

various functions. The skin, being the largest immune organ in the human body,

presents an intriguing landscape for macrophage research, particularly regarding

their roles in inflammatory skin diseases and skin tumors. In this review, we

compile the latest research on macrophages in conditions such as atopic

dermatitis, psoriasis, systemic sclerosis, systemic lupus erythematosus, rosacea,

bullous pemphigoid, melanoma and cutaneous T-cell lymphoma. We aim to

contribute to illustrating the pathogenesis and potential new therapies for

inflammatory skin diseases and skin tumors from the perspective

of macrophages.
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1 Introduction

Macrophages are present in all tissues of adult animals (1). They have crucial roles in an

organism’s biology, including development, maintaining homeostasis, facilitating repair,

and reacting to immunological assaults from pathogens. M0 macrophages, as the unmature

and inactive form, polarize in different directions depending on the surrounding

microenvironment, and form distinguished macrophage subtypes, such as M1 and M2

phenotype (2).

M1 macrophages, also known as classically activated macrophages, can be polarized by

lipopolysaccharide (LPS) either alone or in synergism with interferon (IFN)-g. M1

macrophages are characterized by an enhanced capacity to secrete pro-inflammatory

cytokines such as interleukin (IL)-1b, IL-6, and IL-12. Phenotypically, M1 macrophages

exhibit significant levels of cluster of differentiation (CD)68, CD80 and CD86. M1

macrophages play an essential role in promoting inflammation, and display anti-

infection and anti-tumoral activity. However, they can also mediate reactive oxygen

species (ROS)-triggered tissue impairment, affecting tissue regeneration and

wound recovery.

M2 macrophages, also known as alternatively activated macrophages, are polarized by

IL-4 and IL-13. They display an anti-inflammatory cytokine profile with elevated levels of
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IL-10 and transforming growth factor (TGF)-b. Based on the

stimuli, M2 macrophages can be categorized into four subgroups,

and they vary in terms of surface markers, released molecules, and

biological roles. However, it is important to note that all M2

macrophages share the characteristic of co-express IL-10. M2

macrophages are crucial for clearing parasites, modifying tissues,

promoting angiogenesis, and contributing to allergy disorders (3, 4).

Inflammatory skin diseases are a group of diseases resulting from

immune system disorders and cause damage to skin tissue, including

atopic dermatitis, psoriasis, systemic sclerosis, systemic lupus

erythematosus, rosacea, bullous pemphigoid. Macrophages are

recognized as significant cellular contributors to persistent

inflammation across diverse tissues and illnesses (5). Concurrently,

skin tumors, comprising both benign and malignant neoplasms,

develop from the skin simultaneously. Nevus and hemangiomas are

the most common benign skin tumors, and they are not life-

threatening but impact aesthetics. Skin malignancies, including

malignant melanoma, basal cell carcinoma, and cutaneous T-cell

lymphoma, can be deadly and demand urgent attention. The function

of macrophages in the tumor microenvironment (TME) has been

extensively researched in many types of tumors, including skin

malignancies. Macrophages are crucial in controlling the body’s

immunological response and metabolism, perhaps contributing to

the development of many diseases (4, 6). This review seeks to outline

recent discoveries about the role of macrophages in different

inflammatory skin diseases and skin tumors.
2 Atopic dermatitis

The symptoms of atopic dermatitis (AD), a chronic

inflammatory skin condition, include intense itching and

recurrent superficial and spongiotic inflammation (7). A

complicated interplay between genetic and environmental

variables, including immunological response, skin barrier failure,

and pruritus, may be instrumental in the pathogenesis of AD (8).

Numerous investigations have revealed a robust correlation

between AD and macrophages.
2.1 The characteristic of macrophage in AD

Using molecular imaging approaches, 2,4-dinitrofluorobenzene

(DNCB) induced AD-like skin lesions have been observed to exhibit

infiltrated-macrophage profile (9). The difference in macrophage

polarization between skin samples from AD and psoriasis is evident.

M2 macrophages were almost exclusively detected in AD samples.

While traditionally regarded as an anti-inflammatory phenotype,

recent study suggested that M2 macrophages contribute to the

pathogenesis of AD through the secretion of CCL18, thus

promoting the continued recruitment of Th2 cells and

maintaining inflammation (10).

AD macrophages have lower toll-like receptor (TLR)-2

expression and less release of pro-inflammatory cytokines in

response to TLR-2 ligand stimulation when compared to healthy

controls. This may be a factor in AD patients’ increased vulnerability
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to Staphylococcus aureus skin infections (11). Notably, psoriasis

patients also exhibit colonization with Staphylococcus aureus. When

exposed to Staphylococcus aureus a-toxin, macrophages from AD

patients generated less C-X-C Motif Chemokine Ligand (CXCL)10

than those from psoriasis patients. Decreased secretion of CXCL10

results in reduced Th1 polarization (12).

A distinct cluster of macrophages expressing C-C Motif

Chemokine Ligand (CCL)13 and CCL18 was discovered with

single-cell RNA-sequencing in the leukocyte-infiltrated region of

the lesional skin in AD. Analysis of ligand-receptor interactions

revealed interactions between T cells, dendritic cell (DC)s,

fibroblasts, and M2 macrophages that expressed CCL13 and

CCL18. This provides a thorough understanding of the

immunological milieu in AD (13).
2.2 The pathogenic roles of the
macrophages in AD

Macrophages contribute to the development of AD through a

variety of processes. An important factor in human AD is CLDN1, a

component of epidermal tight junctions. The association between

human AD patients’ CLDN1 levels and macrophage recruitment

has been elucidated by recent research. Mice with reduced CLDN1

expression levels displayed AD-like morphological traits and

attracted more macrophages to the skin lesion (14). YKL-40 is a

crucial inflammatory marker in type II inflammation. Compared to

normal persons, AD patients’ skin had a greater level of YKL-40.

Subsequent research indicated that the primary source of YKL-40

was dermal macrophages, indicating that macrophages may be

involved in the pathophysiology of AD (15).

Macrophages participate in the mechanism of AD itch as well.

IL-31 is a type II cytokine linked to pruritus in many dermatologic

diseases. For instance, it has been reported that CD206+ M2-like

macrophages are the primary producers of IL-31 in recessive

dystrophic epidermolysis bullosa (16). M2 macrophages are

dominant sources of IL-31 in AD as well. Moreover, AD itch is

caused by a sophisticated network of periostin, basophils, thymic

stromal lymphopoietin, and IL-31-expressing macrophages (17).

Autophagy of macrophages is essential for immunological

regulation and has been linked to the onset of AD. Compared to

wild-type mice, autophagy-related gene 5 cKO mice display deficient

autophagy activity, lower cutaneous inflammation and decreased M2

macrophage infiltration. Mechanistically, deficiency of autophagy

causes CCAAT enhancer binding protein beta to accumulate, which

in turn stimulates the production of suppressor of cytokine signaling 1/

3, ultimately suppresses the expression of the M2 marker (18).

One ha l lmark o f AD i s inflammat ion-med i a t ed

lymphangiogenesis, which is intimately related to macrophage

recruitment. Strong macrophage chemoattractant monocyte

chemoattractant protein-1 is expressed at high levels by IL-4-

stimulated keratinocyte cells. Furthermore, a notable rise in dermal

macrophages expressing vascular endothelial growth factor-C, a pro-

lymphangiogenic factor, is observed in the AD mice model (19).

Research has also been conducted regarding the role of

chemokines related to macrophages in the etiology of AD,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1430825
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1430825
particularly macrophage migration inhibitory factor (MIF). The

stratum corneum MIF levels in the skin lesions were found

substantially higher compared to unaffected regions in the same

patient. MIF provides a helpful gauge to measure the degree of AD

locally (20). There is a link between the MIF promoter 173G/C

polymorphism and a higher risk of AD (21). MIF promoter

polymorphisms, namely the C-173 allele and the C/5-CATT and

C/7-CATT haplotypes, were found to be substantially linked to a

higher risk of AD in Korean patients (22). The characteristics and

pathogenetic roles of the macrophages in AD are summarized

in Figure 1.
2.3 Treatments for AD
involving macrophages

Traditional Chinese medicine exhibited great potential in

treating AD, including Periploca forrestii Schltr saponin and

Stellariae Radix. Periploca forrestii Schltr saponin, which was

traditionally used to treat rheumatoid arthritis, exhibits

substantial potential for therapy in AD by suppressing the

expression of both M1 and M2 macrophage markers (23).

Stellariae Radix, which was previously used to treat fever and

insomnia, successfully inhibited M1 macrophage infiltration in a

DNCB-induced AD mouse model. Mechanistically, Stellariae Radix

suppressed the production of tumor necrosis factor (TNF)-a,
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CXC-10, IL-12, and IL-1b and reduced the expression of NOD-

like receptor thermal protein domain associated protein 3 (NLRP3)

in M1 macrophages (24). A new topical medication for AD, called

Nuclear Transport Checkpoint Inhibitor, inhibited the invasion of

macrophages, and decreased the proliferation of Ki-67-positive cells

(a subset of cells within the basal layer of the epidermis) (25).

Naringenin, a flavonoid derived from plants, can reduce AD

symptoms by inhibiting the M1-like macrophage phenotype, high

mobility group box-1 (HMGB1) cascade, and levels of

inflammatory cytokines. Moreover, naringenin can induce anti-

inflammatory gene expression through the transformation of the

M1 to M2 phenotype, resulting in increased levels of CD36 and IL-

10 (26). Dictamnine, a natural alkaloid isolated from the root of

Dictamnus albus, hinders DNCB-triggered AD skin inflammation

by blocking M1 macrophage differentiation and enhancing

macrophage autophagy at inflammation sites. Furthermore,

dictamnine decreases the secretion and suppresses the genetic

expression of inflammatory molecules (27). However, the curative

effect of these potential therapies was evaluated in AD-mouse

models and bone marrow-derived macrophages. In the future, we

anticipate more large-scale clinical trials to verify these outcomes.

Nemolizumab, a humanized monoclonal antibody against IL-31

receptor A, holds great promise for alleviating pruritus and

inflammation in AD patients in many clinical trials (28, 29).

Dupilumab is another humanized monoclonal antibody that has

gained approval for the treatment treating moderate-to-severe AD.
FIGURE 1

The characteristic and pathogenetic roles of the macrophages in AD. Compared to psoriasis, macrophages in AD produce lower level of CXCL10
when exposed to Staphylococcus aureus a-toxin, resulting in reduced Th1 polarization. Instead, macrophages in AD produce high levels of CCL18,
recruiting more Th2 cells to affected skin and release YKL-40, an important Th2 marker. A network comprising periostin, TSLP, basophils and
macrophage-derived IL-31 contribute to the mechanism of itch in AD. Ligand-receptor interactions data revealed the intracellular crosstalk between
CCL13, CCL18-macrohages, T cells, DCs and fibroblasts. Macrophages also get involved in the lymphangiogenesis in AD by expressing significant
level of VEGF-C. AD, atopic dermatitis; CCL, C-C Motif Chemokine Ligand; CXCL, C-X-C Motif Chemokine Ligand; DC, dendritic cell; IL, interleukin;
MCP-1, monocyte chemoattractant protein-1; TSLP, thymic stromal lymphopoietin; VEGF-C, vascular endothelial growth factor-C; YKL-40,
Chitinase 3-like 1.
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Dupilumab can specifically bind to the IL-4Ra subunit, thereby

inhibiting the signal transduction of IL-4 and IL-13, and blocking

the Th2 inflammatory response. Both IL-4/13 and IL-31 pathway

contributes to AD itch. Recent findings suggest that IL-31 can induce

itching independently of IL-4 and IL-13 in vivo (30). M2

macrophages are implicated in the pathogenesis of AD pruritus

and inflammation through the secretion of IL-31 and Th2

cytokines. However, there is a lack of direct studies addressing the

impact of nemolizumab and dupilumab on immune cells, particularly

the phenotype and number of macrophages. The janus kinase (JAK)

pathway is activated in the signaling transduction of many cytokines

relevant to AD. A network meta-analysis has demonstrated that

many JAK inhibitors can ameliorate the signs and symptoms of AD,

with upadacitinib showing particular efficacy (31). It has been

documented that JAK inhibitor can reduce the infiltration of

macrophages in lesional sites in allergic contact dermatitis mouse

models (32). However, no analogous experiments have been

conducted in AD mouse models.
3 Psoriasis

Psoriasis is a prevalent chronic inflammatory skin disorder

distinguished by a significant inflammatory presence along with

enlarged and distorted blood vessels. Infiltrated macrophages in

psoriatic skin lesions are crucial in the advancement of this

unregulated skin inflammation.
3.1 The characteristic of macrophage
in psoriasis

Analyzed data from the GEO database showed a notable rise in

the level of expression of macrophage markers and inflammatory

cytokines in lesional tissues as compared to normal tissues in 58

patients with psoriasis (33). Significant variations in the

composition of innate immune cells were found between psoriatic

plaques and normal skin. There is a notable increase in the quantity

of M0 and M1 macrophages in psoriatic skin. Both the count and

proportion of macrophages underwent alterations. The abundance

of M0 macrophages was linked to the psoriasis severity degree

(34, 35). Psoriatic patients had a greater ratio of M1 to M2a

macrophage polarization compared to controls (36). The

proportion of C-C Motif Chemokine Receptor (CCR) 1+

macrophages increase in psoriasis-affected skin compared to

healthy skin, as determined by single-cell RNA sequencing and

flow cytometry data. CCR1+ macrophages exhibited elevated

expression of genes associated with inflammatory cytokines and

chemokines, such as CXCL-8, CXCL-2, and IL-1B (37).

Immune cell composition varies between the early and late

stages of psoriatic skin lesions. Neutrophils infiltrated the epidermis

in the early phase, but monocytes and monocyte-derived DCs were

mostly present in the dermis. During the late phase, there was a

temporary rise in the number of macrophages in the dermis (38).
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3.2 The pathogenic roles of the
macrophages in psoriasis

Several efforts have been undertaken to determine the function

of macrophages in the development of psoriasis. The IL-23/IL-17

immunological axis plays an important role in the initiation and

progression of psoriasis. A novel pathogenic macrophage

subpopulation, triggered by IL-23 and characterized by a unique

gene expression profile, has been discovered recently. M (IL-23)

produce significant quantities of IL-17A, IL-22, and IFN-g,
contributing to the development of psoriasis-like dermatitis in a

mouse model (39). Additionally, the IL-23/IL-17 immunological

axis is proposed to play a role in the development of psoriasis by

initiating ACT1/TRAF6/TAK1/NF-kB pathway in macrophages

(40). Two important autoantigens in psoriasis are LL-37 and

ADAMTS-Like Protein 5. It has been observed that ADAMTS-

Like Protein 5+ and LL-37+ cells are co-expressed with CD163+

macrophages in both the superficial and deep dermis (41).

Interactions between macrophages and keratinocytes play a

significant role in the development of psoriasis. Keratinocytes can

interact with macrophages via HMGB1, promoting macrophage

inflammatory polarization (42). The interaction between

macrophages and exosomes generated from vitamin D receptor-

deficient keratinocytes is crucial for the advancement of psoriasis.

Exosomes-sh vitamin D receptor markedly enhanced macrophage

proliferation and directed their polarization toward the M1

phenotype, while suppressing macrophage apoptosis (43).

Psoriasis is more prevalent and severe in men than in women. A

recent investigation has shown that the root cause is linked to

estrogen. Estradiol can inhibit the production of IL-1b by

macrophages, and IL-1b is necessary for the generation of IL-17A

in the psoriasis model. This perspective may clarify the disparity in

both the occurrence and seriousness of psoriasis between

genders (44).

Macrophages and psoriasis-related comorbidities have also

been studied. Psoriasis patients with comorbidities have elevated

levels of chitotriosidase compared to those without comorbidities.

Chitotriosidase is primarily produced by activated macrophages in

reaction to pro-inflammatory signals (45).

Macrophage-related cytokines are also linked to the development

of psoriasis. The levels of macrophage inflammatory protein (MIP)-1a,
MIP-1b, and monocyte chemoattractant protein-1 were considerably

elevated in patients with psoriasis vulgaris and positively associated

with psoriasis area and severity index score (46). While MIF levels were

elevated in the blood, MIF-positive staining in the psoriatic epidermis

was notably reduced. MIFmRNA level decreased simultaneously in the

psoriatic lesions, supporting this discovery (47). Further investigation is

required to understand the disparity inMIF levels between the psoriatic

epidermis and the circulation. The -173 GC genotype and the 6C

haplotype of MIF polymorphisms are linked to an increased risk of

plaque psoriasis in the Mexican population (48). Patients with psoriasis

showed significantly lower frequencies of genotypes -794*CATT 5/7

and 7/7, while the CATT*5/MIF-173*C haplotype was more

common (49).
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3.3 Treatments for psoriasis
involving macrophages

Shikonin is an organic matter extracted from the roots of

Lithospermum erythrorhizon. Combining Shikonin with

methotrexate has been demonstrated to hinder the advancement

of psoriasis by controlling the polarization of macrophages.

Administration of Shikonin and methotrexate in an imiquimod

(IMQ)-induced psoriasis mice model can reduce the expression of

F4/80 positive cells and decrease the mRNA levels of M1

macrophage markers (50). The PSORI-CM02 formula, a novel

Chinese medicine, has been proven to have an anti-psoriatic

effect. It can decrease macrophage infiltration, diminish M1 but

increase M2 markers in IMQ-induced psoriasis mice (51).

Etanercept, the first anti-TNF inhibitor, blocks the JAK/STAT3

pathway, decreasing the ratio of Th17/Treg and promoting M2

polarization, ultimately relieving psoriasis in mice (52). Application

of Mung bean-derived nanoparticles topically can facilitate

maintaining the balance of polarized macrophages and inhibit the

activation of the NF-kB signaling pathway, leading to a reduction in

skin inflammation (53). The pathogenetic roles of the macrophages

in psoriasis and treatments involving the M1 phenotype are

summarized in Figure 2.
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4 Systemic sclerosis

Systemic sclerosis (SSc) is a paradigmatic rheumatic disease

characterized by immune dysfunction-driven inflammation

affecting multiple organs, finally leads to fibrosis. Skin involvement

is among the most prominent manifestations of SSc. Raynaud’s

phenomenon is the most prevalent skin lesion observed in SSc

patients. Other skin lesions of SSc encompass puffy fingers, skin

thickening and induration, digital ulcers, and hyperpigmentation.

The exact cause of SSc is not well understood yet.
4.1 The characteristic of macrophage
in SSc

In the skin of patients with SSc, there is a notable increase in the

quantity of CD163+ cells located among collagen fibers when

compared to the skin of healthy individuals (54). Macrophage

signatures were found to be upregulated in early SSc patients

compared to healthy controls. M2 and M1 macrophage signatures

were present in 96% and 94% of patients, respectively. Furthermore,

M2 and M1 signatures were associated with a higher extent of skin

involvement, but also skin thickness progression rate prior to
FIGURE 2

The pathogenetic roles of macrophages in psoriasis and treatments involving M1 phenotype. Macrophages co-express with two important psoriasis
autoantigens LL-37 and ADAMTSL5. Macrophages triggered by IL-23 produce significant quantities of IL-7A, IL-22 and IFN-g. Chitotriosidase
secreted by activated macrophages is related to psoriasis-related comorbidities. Estrogen suppresses the production of IL-1b, furthermore reducing
the level of IL-17A. Keratinocytes interact with macrophages via HMGB1, and exosomes derived from VDR-deficient keratinocytes polarize
macrophages toward M1 phenotype, exaggerating the inflammation condition. Shikonin combined with methotrexate, PSORI-CM02 formula, and
Mung bean-derived nanoparticles exhibit anti-psoriatic properties by hindering M1 polarization. ADAMTSL5, ADAMTS-Like Protein 5; CD, cluster of
differentiation; CCL, C-C Motif Chemokine Ligand; CXCL, C-X-C Motif Chemokine Ligand; GM-CSF, granulocyte-macrophage colony-stimulating
factor; HMGB1, High Mobility Group Box-1; IFN, interferon; IL, interleukin; LL-37, Cathelicidin; LPS, lipopolysaccharide; MHC, major
histocompatibility complex; TNF, tumor necrosis factor; VDR, vitamin D receptor.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1430825
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1430825
biopsy, an independent predictor of mortality (55). Dual

phenotypic macrophages were recently identified in SSc disease.

SSc patients exhibited elevated proportions of peripheral cells

displaying M1, M2, and a combination of M1/M2 phenotypes in

comparison to the control group (56). The transcriptome profile of

macrophages in SSc shows increased activity in glycolysis, hypoxia,

and mTOR signaling, while exhibiting decreased activity in IFN-g
response pathways (57). Single-cell transcriptome data have

revealed three specific myeloid cell clusters in diffuse cutaneous

SSc, including one macrophage cluster. This cluster expresses Fcg
receptor IIIA at high level, indicating a transition from normal

CCR1+ and MARCO+ macrophages (58).
4.2 The pathogenic roles of the
macrophages in SSc

Macrophages in SSc exhibit a profibrotic activation profile,

meanwhile emit signaling molecules and have surface indicators

linked to both M1 and M2 macrophage activation (59). M1

macrophage is associated with the beginning of fibrosis and

accelerates its advancement in SSc. Research has shown that LPS-

induced M1 macrophage pyroptosis contributes to fibrosis in SSc via

the Cathepsin B/NLRP3/GSDMD pathway (60). In addition,

ferroptosis presents in the bleomycin (BLM)-induced SSc mice

model, where the M1 macrophage upregulates the expression of

the ferroptosis driver Acyl-CoA synthetase long chain family member

4 and enhances its susceptibility to ferroptosis (61). Besides M1

macrophage, periostin contributes to the inflammation and fibrosis of

SSc by potentially influencing M2 macrophages. Periostin-stimulated

macrophages from healthy controls showed a substantial decrease in

the proportion of M2 macrophages compared to those from SSc

patients. Periostin stimulation led to a considerable upregulation of

pro-fibrotic cytokines, chemokines, and extracellular matrix proteins

in macrophages at the mRNA level (62).

Macrophages and fibroblasts contribute to the development of

SSc by reciprocally activating each other. Macrophages show

enhanced secretion of proinflammatory cytokines when stimulated

with exosomes generated from fibroblasts of SSc patients. Collagen

and fibronectin synthesis is greatly activated in fibroblasts when

receiving signals from SSc exosome-stimulated macrophages (63).

Co-culture investigations in Transwell experiments also

demonstrated that SSc macrophages induce fibroblast activation

(59). A self-assembled skin equivalent system was created to

investigate the communication between macrophages and

fibroblasts in SSc. The outcome provides more evidence supporting

the mutual activation that relies partially on TGF-b (64). Depleting B

cells has been suggested as a novel strategy for treating SSc, given that

B cells can inhibit the differentiation of profibrotic macrophages. The

extent of profibrotic macrophage activation induced by B cells is

correlated with the fibrosis severity (65).

SSc-interstitial lung disease (ILD) is a complication associated

with high morbidity and mortality. Immunohistochemistry analysis

showed an accumulation of CD68+ and mannose-R+ macrophages

in the lungs of SSc patients. Furthermore, single-cell RNA
Frontiers in Immunology 06
sequencing investigation of tissue-resident CD14+ pulmonary

macrophages in SSc-ILD patients has shown an active profibrotic

signature and increased Fibronectin 1 expression (66). Elevated

levels of mixed M1/M2 macrophages in the circulation are linked to

SSc-ILD, systolic pulmonary artery pressure, and the presence of

anti-topoisomerase antibodies, which are established predictors of

lung involvement in SSc (67). The upregulation of CCL18 and

CD163 in the lungs of patients with SSc-ILD strongly implicates the

pathogenetic roles of activated macrophages in this complication.

Levels of CCL18 and CD163 are positively correlated with FibMax,

an indicator for accessing lung fibrosis progression (68).

Levels of Serum MIF were considerably higher in both limited

and diffuse SSc groups compared to healthy controls (69, 70).

Microvascular endothelial cells and fibroblasts showed increased

production of MIF when exposed to SSc serum, indicating the

cellular source of MIF (70). MIF has the potential to serve as

biomarkers and prognostic variables for pulmonary arterial

hypertension (PAH) secondary to SSc. Patients with PAH related

to SSc had elevated levels of MIF in their circulation compared to

SSc patients without PAH. Patients with a higher New York Heart

Association class exhibited higher levels of MIF (71). The MIF 7C

haplotype is linked to an increased risk of SSc in the southern

Mexican population and is correlated with increased MIF mRNA

levels. MIF is associated with a proinflammatory response in SSc, as

it correlates positively with the Th1 and Th17 cytokine profile (72).

Except for MIF, Citrullinated vimentin, a biomarker of macrophage

activation, was elevated in early diffuse-SSc compared to late

diffuse-SSc (73). The characteristic and pathogenetic roles of the

macrophages in SSc are summarized in Figure 3.
4.3 Treatments for SSc
involving macrophages

Imatinib is a tyrosine kinase inhibitor typically used in the

treatment of chronic myeloid leukemia. Notably, imatinib-loaded

gold nanoparticles have demonstrated great efficacy in reducing IL-

8 secretion, cell viability, and M2 polarization in alveolar

macrophages (74). Nintedanib, another tyrosine kinase inhibitor,

has shown promising antifibrotic effects in a SSc animal model. The

underlying mechanism is associated with impaired M2 polarization

of monocytes and reduced numbers of M2 macrophages (75). As

for pulmonary fibrosis, an intractable problem in SSc patients,

Zhang et al. proposed methyl-CpG-binding domain 2 (MBD2) as

a novel therapeutic target. Depletion of MBD2 has been shown to

prevent pulmonary fibrosis in a BLM-treated mouse model and to

reduce the infiltration of M2 macrophage in the lungs of BLM-

treated mice. MBD2 suppresses the SHIP expression and enhances

PI3K/Akt signaling, thereby promoting the macrophage M2

phenotype (76). Ruxolitinib, a JAK inhibitor, exhibited anti-

fibrosis properties in a BLM-SSc mouse model. In vitro

experiments have revealed that ruxolitinib enhances macrophage

efferocytosis when exposed to IFN, and reduced TGF-b- activated
marker in fibroblasts derived from SSc-related pulmonary fibrosis

tissues (77).
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5 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a prototypical

autoimmune disease characterized by complex pathophysiology

and genetic susceptibility. The disease is defined by the

involvement of multiple systems and organs, recurring flare-ups

and remissions, and the emergence of various autoantibodies in the

body. Untreated SLE can lead to permanent harm to organs and

finally lead to death. Skin lesions are frequently observed in the

majority of SLE patients. Nearly half of SLE presents with acute

cutaneous lupus erythematosus, characterized by a butterfly-shaped

rash over the cheeks and nose. Additionally, SLE patients may

exhibit subacute and chronic cutaneous lupus erythematosus.

Photosensitivity, alopecia, and oral mucosal ulcers are also

frequently observed in SLE patients.
5.1 The pathogenic roles of the
macrophages in SLE

Some scientists have suggested that M1 and M2 macrophages

have distinct functions in the development of SLE. M1macrophages

exacerbate SLE, whereas M2 macrophages seem to alleviate its

effects (78). The involvement of M2 macrophages in SLE is still a

topic of debate. Other researchers observed a rise in the presence of

CD163+ M2 macrophages in SLE skin and elevated soluble (s)

CD163 levels in SLE patient blood specimens. Increased systemic

and local CD163 expression indicates that M2 macrophages may

contribute to the development of SLE as well (79). Furthermore, M2
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macrophages have been suggested to play a role in the development

of lupus nephritis. Urine sCD163 is highly associated with the

current activity index of renal pathology and several particular

pathological characteristics. M2 macrophages are a significant

source of increased urine sCD163 levels, indicating its potential

for predicting renal pathology (80).

Macrophages release ROS and inflammatory cytokines, which

aggravate the inflammatory condition and tissue damage in SLE.

Anti- dsDNA antibodies are crucial in the advancement of SLE. Anti-

dsDNA antibodies can trigger NLRP3 inflammasome activation by

binding to TLR-4 on macrophages, resulting in elevated

mitochondrial ROS generation (81). Myeloid-derived suppressor

cells may aggravate the IMQ-induced lupus model by enhancing

TLR-7 pathway activation in macrophages. Mechanically, Myeloid-

derived suppressor cells derived S100 Calcium Binding Protein A 8/9

increased IFN-g secretion by macrophages, which then stimulated

TLR-7 pathway activation in an autocrine manner (82). Activated

lymphocyte-derived DNA induces macrophages to polarize toward

M2b. M2b macrophages are distinguished by their production of

inflammatory cytokines and their role in promoting inflammation

condition, which is crucial in the progression of SLE (83). Activated

lymphocyte-derived DNA-stimulated macrophages exhibit

heightened glycolysis, reduced pentose phosphate pathway activity,

and increased glycogenesis in glucose metabolism. The reduced

pentose phosphate pathway activity ultimately resulted in increased

levels of ROS (84).

Macrophages also play a role in the development of SLE by

efferocytosis. Efferocytosis is the phagocytic elimination of

apoptotic cells, and individuals with SLE show impairments in
FIGURE 3

The characteristic and pathogenetic roles of the macrophages in SSc. Macrophages and fibroblasts mutually activate each other and contribute to
the pathology in SSc. B cells promote the differentiation of profibrotic macrophages, and is indispensable for the progression of SSc. Periostin
induces higher ratio of M2 macrophage and upregulates the mRNA level of pro-fibrotic cytokines, chemokines, and ECM proteins. M1 macrophage
facilitates fibrosis by pyroptosis and ferroptosis. CD14+ tissue resident pulmonary macrophages in SSc-ILD patients’ lungs show an active profibrotic
signature. Elevated levels of mixed M1/M2 phenotype macrophages are observed in the circulation of SSc-ILD patients. ACSL4, Acyl-CoA synthetase
long chain family member4; CD, cluster of differentiation; ECM, extracellular matrix; GSDMD, Gasdermin D; LPS, lipopolysaccharide; NLRP3, NOD-
like receptor thermal protein domain associated protein 3; SSc-ILD, systemic sclerosis-interstitial lung disease.
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this process (85). The diminished efferocytosis is not an inherent

defect but rather dependent on serum, linked to lower levels of C1q,

C4, and C3 (86). Genes related to inflammation, autophagy, and

signaling are upregulated in macrophages engulfing apoptotic cells

from SLE patients (87). Efferocytosis capability differs between male

and female mice. Female mice had a more pronounced impairment

in macrophage efferocytosis compared to male mice, which could be

reversed by administering male microbiota (85). SLE patients have

been shown to exhibit elevated levels of urokinase-type

plasminogen activator receptor expression. TLR-7 controls

urokinase-type plasminogen activator receptor expression through

ERK/c-JNK signaling and hinders macrophage efferocytosis (88).

Tyro3 is a receptor that plays a role in identifying apoptotic cells in

the process of efferocytosis. Autoantibodies targeting Tyro3 have

been linked to increased disease activity in SLE and can hinder the

ability of macrophage efferocytosis (89). Efferocytosis activity can be

restored by co-culturing with human umbilical cord-derived

mesenchymal stem cells. This reversal effect has been observed in

vitro experiments and in SLE patients who underwent umbilical

cord-derived mesenchymal stem cells transplantation (90). Bone

marrow-derived mesenchymal stem cells release exosomes

including miR-16 and miR-21, subsequently stimulate the anti-

inflammatory transformation of macrophages. Furthermore, these

macrophages exhibit enhanced efferocytosis ability and can be used

to alleviate lupus nephritis (91).
5.2 Treatments for SLE
involving macrophages

Azithromycin, a macrolide antibiotic, has emerged as a novel

medication for SLE. In vitro experiments using macrophages that

mimic the SLE phenotype have shown a reduction in M1 markers

and an increase in M2 markers after azithromycin application, and

this effect is dependent on Akt phosphorylation (92). Diffuse

alveolar hemorrhage (DAH) is a potentially fatal complication of

SLE. Serp-1, a rabbit myxomavirus-encoded serpin, has been shown

to prevent the occurrence of SLE-associated DAH in a mouse model

by modulating macrophage function. According to Zhuang et al.,

Serp-1 inhibits DAH by enhancing LXR-regulated M2 macrophage

polarization and IL-10 production by KLH4 regulation (93).

Additionally, PAM3, a TLR2/1 agonist, has shown promise in the

treatment of SLE. It not only induces the differentiation of

monocytes into an immunosuppressive M2 phenotype in vitro

but also reduces disease severity in a lupus-prone mouse

model (94).
6 Rosacea

Rosacea is a long-lasting inflammatory skin disorder identified by

erythema and pustules. Macrophage infiltration is considered a

frequently overlooked characteristic present in all kinds of rosacea

(95). A large amount of CD68+ macrophages have been found to

infiltrate the rosacea lesions (95, 96). Immune infiltration analysis also

suggests that M1 macrophages play a significant role in rosacea (97).
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6.1 The pathogenic roles of the
macrophages in rosacea

Macrophages have been documented as participants in the

deterioration mechanisms of rosacea. Guanylate Binding Protein

5 has been recognized as a crucial regulator of rosacea by promoting

M1 macrophage polarization through the NF-kB signaling

pathways (98). Elevated levels of the antimicrobial peptide LL-37

are commonly linked to the development of rosacea. LL-37 can

enter macrophages’ cytoplasm via P2X7 receptor-mediated

endocytosis and enhance NLRP3-mediated inflammasome

activation in macrophages (99). ADAM-like metalloprotease

Decysin-1 is considered to be associated with inflammation.

Recent studies show that ADAM-like metalloprotease Decysin-1

may contribute to inflammation in rosacea by influencing the M1

polarization of macrophages (100).
6.2 Treatments for rosacea
involving macrophages

Carvedilol, a nonselective beta-adrenoceptor antagonist, is an

effective treatment for rosacea. In vitro studies have shown that

carvedilol can reduce TLR-2 expression in macrophages, leading to

decreased kallikrein related peptidase 5 secretion and LL-37

expression (101). Paeoniflorin, a monoterpenoid glycoside with

various pharmacological activities, can alleviate rosacea-like

inflammatory response by inducing suppressor of cytokine

signaling 3 expression and suppressing the LPS-induced

upregulation of TLR-2 and LL-37 via the ASK1-p38 cascade in

macrophages (96). Artemisinin, the most effective antimalarial

drug, decreases the presence of macrophages and immune cells in

mice rosacea lesions, furthermore suppresses the production of

chemokines associated with immune cells (102).
7 Bullous pemphigoid

Bullous pemphigoid (BP) is a deadly autoimmune

dermatological disorder marked by initial red lesions and the

subsequent formation of subepidermal blisters. The pathology of

BP is linked to autoantibodies that target two hemidesmosomal

proteins: BP180 and BP230.
7.1 The pathogenic roles of the
macrophages in BP

There is a significant occurrence of CD163+ tissue-associated

macrophages in BP. The increased levels of sCD163 in the serum of

patients with BP compared to healthy individuals confirmed the

activation of CD163+ tissue-associated macrophages. Chen et al.

demonstrated that mice with macrophage deficiency were resistant

to blister formation induced by pathogenic antibodies. In contrast,

mice lacking T cells or B cells did not exhibit this resistance,

indicating that macrophages, rather than T and B lymphocytes,
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play a pivotal role in the development of subepidermal blisters in

experimental BP. Macrophages can facilitate the infiltration of

neutrophils, a key step of experimental BP formation, and this

mechanism relies on the activation or degranulation of mast cells

(103). BP M2 macrophages showed a notable increase in both

mRNA expression and production of CCL18 when exposed to IL-4

or IL-13 (104). Nuclear receptor related 1 belongs to the orphan

nuclear receptor family and can regulate inflammation in both

directions. Nuclear receptor related 1 is highly expressed in a

specific group of cutaneous macrophages in patients with BP.

This particular subgroup of macrophages in skin lesions is

distinguished by elevated TNF levels and reduced expression of

the anti-inflammatory marker CD163L1 (105).
7.2 Treatments for BP
involving macrophages

Minocycline, a conventional medication for BP, has been shown

to reduce the production of Th2 chemokines by M2 macrophages,

thereby preventing the recruitment of Th2 cells and eosinophils to

lesional skin in BP. While both CCL18 and CCL22 are Th2

chemokines implicated in BP, minocycline selectively suppresses

the production of CCL18. The precise mechanism behind this

selective effect remains to be elucidated (106). Dipeptidyl

peptidase-4 inhibitors are associated with a higher incidence of

BP. However, the concurrent use of lisinopril, a medication used to

treat hypertension and heart failure, may counteract this risk.

Lisinopril is capable of inhibiting the upregulation of matrix

metalloproteinase and angiotensin-converting enzyme-2 in

macrophages, thus exerting a mitigating effect on dipeptidyl

peptidase-4 inhibitor-induced BP (107). T-cell immunoglobulin

and mucin domain-3 is a well-recognized immune checkpoint

molecule. Elevated levels of T-cell immunoglobulin and mucin

domain 3 in macrophages within the affected skin of BP patients

suggest its potential as a target for future immunotherapeutic

interventions (108).
8 Melanoma

Melanomas are malignant tumors originating from melanocytes

that can appear on any part of the body. Tumor-associated

macrophages (TAMs) and other innate immune cells are crucial in

chronic inflammatory processes that support tumor growth and

advancement. M1 macrophages have immunostimulatory, anti-

tumorigenic, and anti-angiogenic properties, while M2 macrophages

support tumor growth and angiogenesis.
8.1 The characteristic of macrophage
in melanoma

Studies have shown that invasive melanomas have a greater

quantity of CD68+ and CD163+ TAMs in comparison to benign

nevi (109). TAMs in melanoma are a diverse and constantly changing
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group, with a subset of unpolarized CD68+/CD163–/iNOS–

macrophages consistently existing (110). Different stages of

melanomas display distinct macrophage constituents. During the

initial phase of malignant melanoma, the number of M1 intratumoral

macrophages is lower than that of the M2 population. As the disease

advanced, M1 macrophage recruitment was quickly and increasingly

surpassed by an upsurge in M2 TAMs (111).Macrophages’ function

differs based on their location. Stromal macrophages have a unique

transcriptional profile compared to those found in tumor nests, as

they are reprogrammed to take on DC activity (112). The quantity

and composition of macrophages are associated with the outcome of

melanoma. High numbers of CD68+ macrophages inside tumor cell

nests are linked to recurrence, while a low proportion of CD163+

macrophages in the tumor stroma is related to recurrence and, in

initial melanomas, also with poor overall survival (109). The state of

macrophage polarization is linked to the level of lymphocytic

infiltration in melanoma, which also impacts the prognosis (110).
8.2 The pathogenic roles of the
macrophages in melanoma

Increasing evidence has revealed that macrophages are implicated

in melanoma migration. CD163+ macrophages found within the

tumors are associated with the development of metastases (113).

Angiogenesis is a crucial step in the preparation of lymph nodes for

melanoma metastasis. Exosomes from melanoma cells stimulate the

generation of granulocyte-macrophage colony stimulating factor in

pre-metastatic lymph nodes. Granulocyte-macrophage colony

stimulating factor could activate hypoxia-inducible factor (HIF)-1a
in M1 macrophages and HIF-2a in M2 macrophages. HIF-1a
stimulates new blood vessel formation, whereas HIF-2a contributes

to the structural normalization of newly formed blood vessels (114).

TAMs promoted endothelial cell movement, tube creation, and

tumor development through TAM-derived adrenomedullin.

Adrenomedullin possess endocrine and paracrine activities

simultaneously. The paracrine effect is mediated by the endothelial

NOS signaling pathway, while the autocrine effect induces

macrophages to polarize toward the M2 phenotype (115).

Tumor cells and TAMs interactions are crucial for initiating

tumor cell motility. TAMs can transmit cytoplasmic modules to

tumor cells, enhancing tumor cell motility and dissemination (116).

Another hypothesis for metastasis mentions the fusion of

macrophages with tumor cells (MTFs). After being injected

subcutaneously into nude mice, cultivated MTFs spread and

formed metastatic tumors at remote locations. The cultivated

MTFs consistently displayed pan-macrophage markers, M2

polarization markers, and melanocyte-specific markers (117).

HMGB1 has a significant role in the growth and spread of

murine melanoma. HMGB1 is secreted by melanoma tumor cells

as a consequence of hypoxia, and could increase M2-like TAMs

accumulation and an create an IL-10-rich TME (118). CD34-

melanoma-initiating cells rely on M2 macrophages for their

survival and growth. This discovery provides additional

confirmation that macrophages play a role in the distant spread

of melanoma (119).
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8.3 Treatments for melanoma
involving macrophages

Transitioning the polarization state of TAMs from the tumor-

favoring M2 phenotype to the anti-tumor M1 phenotype is a

promising strategy in oncotherapy. Chemotherapy occupies an

important component position in combination treatments of

melanoma. Doxorubicin-loaded polysaccharide hydrogels have

demonstrated effective polarization of TAMs toward the M1

phenotype (120).

In addition to traditional chemotherapy drugs, researchers are now

exploring new methods by regulating macrophage polarization to treat

melanoma. TLR-7/8 agonists, such as resiquimod (RES) and

telratolimod, can induce the polarization of macrophages toward the

M1 phenotype. Bexarotene (BEX), a highly affinity selective retinoid X

receptor, can reduceM2 polarization. A dual macrophage polarizer was

created by mixing BEX with RES to enhance the M1 phenotype while

inhibit the M2 phenotype. This combination exhibited incomparable

inhibitory effects on B16F10 cells (121). Tumor-associated adipocyte

exhibits a transformed pro-tumorigenic characteristic which can attract

monocytes and stimulate their transformation into the M2 phenotype.

Telratolimod is encapsulated within the lipid droplets of adipocytes and

is intended to be discharged at the tumor site. Injecting drug-loaded

adipocytes boosted tumor-inhibiting M1 macrophages in primary and

distant tumors, halting tumor growth in a melanoma model (122).

These innovative treatments have demonstrated anti-tumor effects in

animal and cell models, but they have not yet been implemented in

clinical practice.
9 Cutaneous T-cell lymphoma

Cutaneous T-cell lymphoma (CTCL) is a rare kind of

lymphoma originating in the skin, and consists of a collection of

subtypes with different clinical manifestations, histological features,

and prognosis. Mycosis fungoides (MF) and Sézary syndrome (SS)

are the two main types of CTCL (123). While CTCL may progress

slowly in its initial stages, it can result in considerable morbidity and

mortality as it proceeds (124).
9.1 The characteristic of macrophage
in CTCL

A prominent subtype of M2 TAM expressing PD-1 has been

found in CTCL TME, and playing an immunosuppressive role.

Lenalidomide is an immunomodulatory drug typically used in

treating hematological malignancies. Anti–PD-L1 combined with

lenalidomide induces functional changes in TAMs, thereby

enhancing phagocytic activity and impairing migration of M2-like

TAMs and augmenting T cell proliferation to improve antitumor

immunity. Combining anti-PD-L1 and lenalidomide treatment

induces a functional transition from a PD-1+ M2 phenotype

toward a proinflammatory M1 phenotype in vitro. Meanwhile,

this transformation enhances phagocytic activity by blocking NF-

kB and JAK/STAT (125).
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The polarization state of macrophages in CTCL TME is not

static. Granulomatous MF shows a transition of macrophage

polarization from M1 in the initial phases to M2 in the later

stages (126). The quantity of macrophages varies depending on

the tumor stage, with a notably greater amount of CD68+

macrophages in the tumor-stage compared to early-stage

folliculotropic MF (127).

Granulomatous slack skin is a very uncommon type of CTCL

distinguished by a high quantity of macrophages. Macrophages in

granulomatous slack skin are divided into three distinct

subpopulations with unique transcript characteristics (128):
• The CD163+/CD206+ cluster displays a TAM M2-like

phenotype and expresses markers involved in T-cell

interaction and tumor progression.

• The apolipoprotein C1+/APOE+ cluster has a non-M1 or -M2

phenotype and may be associated with lipid metabolism.

• The CD11c+/lysozyme+ cluster demonstrates an M1-like

phenotype and expresses matrix metalloproteinase-9 strongly.
9.2 The pathogenic roles of the
macrophages in CTCL

The interaction between malignant T cells and macrophages is

extensively studied in CTCL TME. A subtyping system has been

created using the genetic characteristics of malignant T cells and the

surrounding TME that promotes tumor growth (129). The

interaction between malignant CTCL cells and CCL13+

macrophages has been demonstrated to promote tumor growth

by increasing S100 Calcium Binding Protein A9 levels and

activating NF-kB (130). Similar intercellular communications

have been observed in the transformed CTCL tumor ecosystem.

Malignant T cells that express MIF interact with macrophages, and

B cells that express CD74 are also involved in this interaction (131).

Macrophage enrichment has a role in creating an

immunosuppressive TME. Elimination of M2-like TAMs using

liposomes containing clodronate (the first-generation

bisphosphonate treating osteoporosis) has been demonstrated to

postpone the progression of CTCL (132). Furthermore, the

expressions of vascular markers also decrease by macrophage

exhaustion, suggesting macrophages are implicated in both the

advancement of CTCL and neoangiogenesis. CCR2 inhibitor,

which hinders the movement of monocytes through CCR2, can

lead to the reduction of macrophages. Mice treated with CCR2

inhibitor showed significantly reduced tumor sizes and weights

compared to the control group, providing more evidence of the

adverse impact of macrophages in CTCL (133).

Macrophages play a predictive role in the progression of CTCL,

with the quantities of CD163+ cells in affected skin and serum

sCD163 levels correlating with disease advancement (134). Another

study suggests that the CD163/CD68 ratio should be used to evaluate

TAMs instead of focusing on the total TAM count. A high ratio of

CD163/CD68 in tumor stage MF and SS suggests M2 polarization

of TAMs, which is associated with tumor advancement. Serum levels
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of sCD163 and CCL22 can indicate M2 load and may serve as

indicators for evaluating disease progression (135). However, there is

still no consensus on the relationship between CD163+ cells with

tumor progression. Some researchers suggest that the proportion of

CD206+ cells, as opposed to CD163+ cells, increases in correlation

with tumor advancement (136).
9.3 Treatments for CTCL
involving macrophages

BEX has been authorized for the treatment of relapsed CTCL

after at least one prior systemic therapy. BEX’s clinical benefits are

partly attributable to its ability to decrease the synthesis of CCL22

by M2 TAMs (137). IFNs are efficacious in treating advanced-stage

MF, potentially by influencing M2 TAMs as well. Mechanistically,

IFN-a2a and IFN-g reduce CCL17 and CCL18 expression and

synthesis, while raising CXCL10 and CXCL11 levels in M2

macrophages (138).
10 Conclusion and prospect

Numerous immune cells get involved in the pathogenesis of

inflammatory skin diseases and skin tumors. In this review, we aim

to understand the pathogenesis from the perspective of

macrophages. Due to their complex functions and dynamic

polarization states, macrophages are extensively implicated in the

occurrence of AD, psoriasis, SSc, SLE, rosacea, BP, melanoma and

CTCL. The mechanism of macrophages in these conditions is

multifaceted, including intercellular interactions (macrophages

and B cells, T cells, keratinocytes, basophils and fibroblasts), cell

death (ferroptosis and pyroptosis), and cell functions (autophagy

and efferocytosis). Additionally, multiple signaling pathways and

molecules, such as exosomes, ILs, CCLs, CXCLs, are also involved.

In the future, we anticipate that more macrophage-related

indicators can be developed to assess the disease severity,

prognosis and complication occurrence and to guide more precise

treatment. Furthermore, targeting the number and polarization

state of the macrophages holds promise for the exploration of

new therapeutic approaches. For example, M2 macrophages are

considered to play immunosuppressive roles in the TME. Research

may focus on depleting M2 macrophages or converting them to an

anti-tumoral M1 phenotype within the TME with safe medications.
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The investigation of macrophages in inflammatory skin diseases

and skin tumors remains a vibrant research area and we are

confident that patients will benefit from these advancements in

the future.
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105. Solıś-Barbosa MA, Santana E, Muñoz-Torres JR, Segovia-Gamboa NC, Patiño-
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