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Liver cancer, which most commonly manifests as hepatocellular carcinoma

(HCC), is the sixth most common cancer in the world. In HCC, the immune

system plays a crucial role in the growth and proliferation of tumor cells. HCC

achieve immune escape through the tumor microenvironment, which

significantly promotes the development of this cancer. Here, this article

introduces and summarizes the functions and effects of regulatory T cells

(Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and

regulate the functions of immune and tumor cells, cytokines, ligands and

receptors, etc, thereby promoting tumor immune escape. In addition, it

discusses the mechanism of CAR-T therapy for HCC and elaborate on the

relationship between CAR-T and Tregs.
KEYWORDS
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1 Introduction

HCC is a complex malignancy, with its tumor microenvironment playing a crucial role

in promoting tumor growth, invasion, metastasis, and immune escape. This

microenvironment is composed of a variety of cellular and molecular components,

including tumor cells, cancer-associated fibroblasts (CAFs), vascular cells, and a range of

immune cells such as tumor-associated macrophages, bone marrow-derived suppressor

cells, Tregs, and liver-specific Kupffer cells. While many of these components contribute to

tumor growth and metastasis, certain immune cells, including dendritic cells, regulatory B
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cells, and tumor-associated neutrophils, exhibit tumor-suppressing

effects. Additionally, the tumor microenvironment contains stromal

tissue that provides structural support, as well as metabolic products

and circulating DNA.

In the immune escape mechanism of HCC, Tregs inhibit the

immune cells’ ability to kill HCC through multiple pathways,

thereby promoting immune escape of HCC cells. Tregs are closely

associated with the poor prognosis of HCC patients. They not only

suppress excessive immune responses to prevent impairment of

normal functions but also promote the formation of immune

tolerance, thus protecting liver cancer cells from systemic attacks.

Additionally, studies have shown that an excess of Tregs in liver

cancer patients is linked to poor treatment outcomes because Tregs

limit the effectiveness of immunotherapy and weaken the efficacy of

immune checkpoint inhibitors.

Unlike many other tumors, liver cancer often develops from

chronic liver disease and possesses a unique dual blood supply from

the hepatic artery and portal vein. This dual supply facilitates

the invasion and metastasis of liver cancer. Additionally, the

liver functions as an immune regulatory center, aggregating

various types of immune cells and creating distinct immune

characteristics. These properties significantly impact the

physiological state of the liver and cause Tregs in liver cancer to

exhibit different expression patterns compared to other tumors. For

instance, in liver cancer, Tregs frequently express high levels of

Programmed Death-Ligand 1 (PD-L1) and Cytotoxic T-

lymphocyte-associated protein 4 (CTLA4). These unique features

significantly increase the complexity and challenge of researching

and treating liver cancer.
2 Regulatory T cells and
hepatocellular carcinoma

The immune microenvironment in HCC is predominantly

influenced by Tregs, which play a crucial role in immune

suppression and regulation, significantly affecting the progression

of liver cancer. This relationship prompts an in-depth exploration

of the interaction between regulatory T cells and liver cancer.
2.1 Regulatory T cells

Regulatory T cells, a subpopulation of T lymphocytes, possess

immunosuppressive capabilities. They regulate immune responses

by directly inhibiting activated immune cells to prevent an

overactive immune response. Additionally, they achieve

immunosuppression by releasing cytokines and other substances

that inhibit the activation of immune cells.

Treg research involves multiple fields, including the

pathogenesis and treatment of various autoimmune diseases,

cancer and allergy, as well as transplantation research and tissue

engineering. Here, it focuses on regulatory T cells in hepatocellular

carcinoma. It is found following the development of liver cancer, a

significant increase in Tregs is observed in the tumor
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microenvironment of the cancerous part, which affect the

development and treatment outcomes of hepatocellular carcinoma

through various mechanisms. This raises the question: what is the

origin of these abundant Tregs in liver cancer? After the onset of

liver cancer, dendritic cells in the lesion site recognize and present

antigens, activating a large number of T cell responses. Studies have

shown that transforming growth factor-beta (TGF-b) has been

shown to promote the plasticity of Th17 cells in a dose-

dependent manner facilitating their conversion into Treg cells (1).

Additionally, it has been demonstrated that when activated T cells

are co-cultured with exosomes derived from HCC, there is an

induced conversion of CD4+ T cells into Tregs (2). Regulatory T

cells express high levels of chemokine receptors such as

Characteristic Chemokine Receptor 4 (CCR4), Characteristic

Chemokine Receptor 8 (CCR8), Characteristic Chemokine

Receptor 10 (CCR10), and C-X-C Motif Chemokine Receptor 3

(CXCR3). In liver cancer, chemokines such as C-C Motif

Chemokine Ligand 17 (CCL17), C-C Motif Chemokine Ligand 22

(CCL22), C-C Motif Chemokine Ligand 28 (CCL28), and C-X-C

Motif Chemokine Ligand 9 (CXCL9) are produced, which bind to

these receptors, and consequently recruit a substantial number of

Tregs to the liver cancer site (3). Furthermore, interleukin-10

secreted by tumor-associated macrophages (TAMs) also activate

regulatory T cells (4).
2.2 Regulatory T cells and the immune
microenvironment of
hepatocellular carcinoma

Previous studies have shown that regulatory T cells play an

inhibitory role in hepatocellular carcinoma. In this section, it

mainly discusses how Treg cells exert their inhibitory effects in

the tumor microenvironment of hepatocellular carcinoma.

2.2.1 Immune cells
Immune cel ls are vi ta l components of the tumor

microenvironment (TME), with different immune cells playing

distinct roles in the tumor microenvironment. Some immune

cells infiltrate the TME to exert cytotoxic effects on HCC,

including T cells, Natural killer cell (NK cell), B cells, Dendritic

cells (DCs) and Neutrophils, etc.

As shown in the Supplementary Table, in the tumor

microenvironment of HCC, infiltrating T cells include CD8+

cytotoxic T lymphocytes (CTLs), natural killer T (NKT) cells,

regulatory T cells, and helper T cells. CD8+ CTLs target tumor

cells by recognizing specific antigens and secreting cytotoxic

substances, while NKT cells link the innate and adaptive immune

systems, with type I NKT cells exerting anti-tumor effects and type

II NKT cells promoting tumor growth through immunosuppressive

actions (5). Different levels of CD40 expression alter T cell

responses through different mechanisms: first, CD40 signaling

affects the process of antigen processing and presentation, and

second, different levels of CD40 produce different levels of IL-12

and IL-10 (6).
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NK cells activate their cytotoxicity by recognizing stress

molecules on the surface of tumor cells, subsequently destroying

the tumor cell membrane and inducing apoptosis through the

release of perforins and granzymes. For B cells, B cells primarily

include activated B cells, depleted B cells, and plasma cells, with

plasma cells producing and secreting antibodies. Additionally, the

heightened glucose and oxygen consumption by activated B cells

and plasma cells depletes the tumor microenvironment of essential

nutrients and energy, thereby impairing the effector function of

immune cells (7, 8).

In HCC, the two main subtypes of dendritic cells (DCs) are

conventional DCs, which maintain self-tolerance and induce

specific immune responses by presenting liver-acquired antigens

to T cells (9, 10), and plasmacytoid DCs, which circulate in the

bloodstream and is either tolerogenic when immature or

immunogenic and cytokine-secreting when mature (11, 12).

CD40 activation on dendritic cells enhances cytokine and

chemokine production, induces costimulatory molecules, and

facilitates antigen cross-presentation, thus improving DC-T cell

interactions and promoting anti-tumor effects. As the most

abundant type of granulocytes in innate immunity, neutrophils

are crucial immune cells active during liver inflammation and

injury. Regarding neutrophils, neutrophils are divided into type 1

and type 2 subsets. Type 1 neutrophils exert a pro-inflammatory

effect by producing interleukin 12 (IL-12) and C-C Motif

Chemokine Ligand 3 (CCL3), while Type 2 neutrophils are

immunosuppressive secreting IL-10 and C-C Motif Chemokine

Ligand 12 (CCL2) (13). Additionally, myeloid-derived suppressor

cells (MDSCs) inhibit T cell proliferation and activation by

depleting essential amino acids through elevated arginase

activity (14).

Tumor-associated macrophages (TAMs) exhibit two distinct

phenotypes: the M1 phenotype, which expresses TGF-a, IL-12, and
other factors that exert pro-inflammatory and anti-tumor effects,

and the M2 phenotype, which expresses IL-10, TGF-b, and other

factors that exert anti-inflammatory and pro-tumor effects (15).

CD40 signaling also shifts macrophages from the M2 to the more

tumoricidal M1 phenotype (16). In the liver, Kupffer cells, which are

resident macrophages, play a key role in the formation and

development of HCC by mediating inflammatory responses,

fibrosis, and immune cell recruitment, thereby affecting the

balance between pro-fibrotic and anti-fibrotic processes.

Additionally, liver cell death induces the formation of apoptotic

bodies, which are engulfed by Kupffer cells, leading to a pro-fibrotic

response that promotes the development of HCC (17).

Resting Treg cells express and release TGF-b on their surface,

which then bind to TGF-b receptors on the surface of resting NK

cells. This interaction inhibits the proliferation and cytotoxic

functions of NK cells (18). Naive B cells contribute to enhancing

immune tolerance and facilitating the differentiation of Treg cells

(19). Additionally, B cells support their own differentiation into

IgA-producing plasma cells by stimulating the proliferation of Treg

cells (20). In the case of macrophages, they recruit mature Treg cells

into HCC and promote the transformation of naive T cells into Treg

cells by secreting cytokines such as CCL22, CCL20, TGF-b, and IL-

10 (21). Pro-tumor neutrophils recruit Treg and anti-inflammatory
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M2 macrophages and help further inhibit the function of cytotoxic

T cells (22). In addition, LPS-stimulated Treg has been found to

induce IL-10 production in neutrophils in a cellular contact-

dependent manner. Additionally, MDSCs stimulate the

differentiation and development of Tregs during tumor

progression and inhibit NK and DC cell functions through TGF-

b to promote tumor immune escape (23).

2.2.2 Stromal cells
In HCC, in addition to immune cells, stromal cells are present,

forming part of the extracellular matrix. These stromal cells include

cancer-associated fibroblasts (CAFs) and hepatic stellate cells

(HSCs). CAFs participate in aerobic glycolysis and secrete lactate,

which promote the metabolism of cancer cells (24). Increased

secretion of metabolites by CAFs along with reorganization of

Extracellular Matrix (ECM) proteins, enhances collagen

deposition, leading to ECM stiffening (25). This stiffened

extracellular matrix not only enhances tumor cell adhesion but

also disrupts intercellular contact, preventing contact inhibition

between cells, thereby promoting the growth and survival of cancer

cells. Additionally, the stiffened extracellular matrix impedes drug

uptake into the tumor area, enhancing the survival of tumor cells,

reducing cancer cell death and the release of cancer cell antigens,

and weakening immune therapy for cancer.

During HCC development, HSCs are activated by fibrosis in

liver stromal spaces, transitioning from a quiescent state to an

activated myofibroblast phenotype with the ability to release

collagen and ECM remodeling factors. In addition, activated

HSCs secrete angiogenesis growth factors to form new vasculature

in the TME (26, 27). These activities of activated HSCs establish

connections with the circulatory system, providing tumors with the

nutrients needed for growth and metastasis.

Tregs interact with these stromal cells, influencing the

progression of HCC. Tregs promote the activation and

transformation of CAFs by secreting inhibitory cytokines IL-10

and TGF-b. This causes CAFs to produce more collagen and

extracellular matrix proteins, thereby facilitating the invasion and

metastasis of tumor cells (28). Regarding HSCs, studies have shown

that activated HSCs significantly upregulate the expression of Treg

cells, thereby promoting the growth of HCC in the spleen, bone

marrow, and other tissues (29) (Figure 1).
2.2.3 Cytokines
In previous studies, it discussed that Treg cells exert inhibitory

effects either through direct cell-to-cell contact or by releasing

cytokines that act on other cells. This article focuses primarily on

the role of cytokines within the immune microenvironment.

2.2.3.1 Enzymes

In the immune microenvironment, enzymes secreted by various

cells influence the progression of HCC through distinct pathways.

In the tumor microenvironment, enzymes like intracellular glucose-

6-phosphate dehydrogenase (G6PD) are involved in various

metabolic pathways, such as the pentose phosphate pathway

(PPP). NADPH primarily functions in defending against reactive
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oxygen species and in lipid biosynthesis, while ribose, produced as a

result, provides a saccharide phosphate backbone essential for

nucleotide synthesis (30). The defensive role of NADPH against

reactive oxygen species enhances the ability of cancer cells to

withstand oxidative stress (31), thereby facilitating their evasion

from immune system clearance. Ribose, as a metabolite of glucose,

provide the energy needed for the growth and metabolism of tumor

cells. In addition, ribose is also an essential substrate for DNA

synthesis, which promote the proliferation and growth of tumor

cells (32). In normal tissues, the tumor suppressor gene p53 binds to

G6PD, preventing the formation and activation of G6PD dimers,

and thus inhibiting tumor development. However, in cancer,

TAp73, a member of the p53 family, is often overexpressed,

leading to the induction of G6PD expression which promotes

tumor growth (33, 34).

Tumor cells secrete matrix metalloproteinases (MMPs), enzymes

that degrade the extracellular matrix, enabling the tumor cells to

penetrate the basement membrane and invade surrounding tissues

and blood vessels, thereby promoting liver cancer metastasis (35).

Ecto-nucleotidases CD39 and CD73 are expressed on the

surface of regulatory T cells. Under normal conditions, ATP is

strictly retained within the cell. However, research has shown that

following cellular damage, intracellular ATP is released into the

extracellular space through vesicle exocytosis and membrane

transporters. CD39 on the surface of Treg cells then metabolizes
Frontiers in Immunology 04
ATP into ADP and AMP, and CD73 subsequently converts AMP

into adenosine. The adenosine produced binds to adenosine

receptors, inhibiting the function of effector T cells (36).

2.2.3.2 Vascular endothelial growth factor

In the TME, cancer-associated fibroblasts (CAFs) secrete

vascular endothelial growth factor (VEGF) to stimulate the

formation of new blood vessels, enabling tumor cells to

metastasize through these newly formed blood vessels.

Additionally, VEGF inhibits the differentiation of dendritic cells

into their mature cells, thus suppressing the antigen-presenting

function of mature dendritic cells and the cytotoxic effects of

effector T cells, favoring immune evasion by tumor cells (37).

Tumor cells, inflammatory cells, and damaged tissues all

produce VEGF (vascular endothelial growth factor). Elevated

levels of VEGF stimulate the proliferation and accumulation of

Tregs. Tumor-derived VEGF serve as a chemotactic agent,

attracting Tregs to the tumor microenvironment (38).

Furthermore, VEGF enhance the immunosuppressive function of

Tregs by regulating signaling pathways, such as STAT3, to promote

Treg differentiation and stability (39).

2.2.3.3 Transforming growth factor-b
In the tumor microenvironment, various cells secrete

transforming growth factor-beta (TGF-b). For example, TGF-b
FIGURE 1

In the tumor microenvironment of hepatocellular carcinoma, various cells indirectly promote the escape of tumor cells by regulating T cells. This
includes tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and Kupffer cells, which release cytokines such as TGF-
b and IL-10, as well as chemokines like CCL22. Additionally, Tregs directly promote tumor cell escape by secreting immunosuppressive cytokines,
including TGF-b, IL-10, and IL-35. On one hand, tregs secrete TGF-b and IL-10 to stimulate cancer-associated fibroblasts (CAFs). These CAFs then
produce collagen and extracellular matrix components, which facilitate tumor cell escape. On the other hand, tregs inhibit the cytotoxic activity of
natural killer (NK) cells, cytotoxic T lymphocytes (CTLs), and CD8+T cells against tumor cells through the secretion of TGF-b and proteins such
as FGL2.
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secreted by cancer-associated fibroblasts (CAFs), induces

hepatocellular carcinoma cells to undergo epithelial-mesenchymal

transition (EMT), where the cells transition from an epithelial to a

mesenchymal phenotype. This EMT process causes liver cancer

cells to lose their adhesive ability and polarity, increasing their

migration and invasion capabilities, thereby promoting immune

evasion in liver cancer (40).

Kupffer cells, a type of macrophage, exhibit both M1 and M2

phenotypes. As liver cancer progresses, Kupffer cells transition from

an intermediate phenotype to the M1 phenotype, characterized by

an anti-inflammatory profile. When exposed to factors like IL-3 and

IL-4, M1 cells secrete TGF-b. With the increasing levels of TGF-b in
the TME, Kupffer cells gradually transition from an anti-

inflammatory to an immune-suppressive phenotype, promoting

immune evasion (17, 41).

Myeloid-derived suppressor cells (MDSCs) release TGF-b to

inhibit the activity and function of natural killer (NK) cells, leading

to immune evasion in tumors. For instance, TGF-b inhibits the

secretion of IFN-l by NK cells and reduces the expression of

activation receptors on their surfaces, thereby impairing the

recognition and elimination of target cells. TGF-b also act back

on MDSCs, inducing them to secrete inhibitory molecules such as

IDO, further suppressing NK cell function (42).

In the immune microenvironment, various cells secrete

transforming growth factor-beta (TGF-b). For instance,

regulatory T cells secrete TGF-b, which diminish the cytotoxic

functions of natural killer (NK) cells and cytotoxic T lymphocytes

(CTLs). This process induces NK cells to transform into type 1

innate lymphoid cells within the tumor microenvironment,

reducing their ability to suppress tumor growth and metastasis (43).

2.2.3.4 Interferon-g
In HCC, IFN-g is primarily produced by activated T cells and

NK cells, playing a crucial role in immune regulation. Research has

shown that in HCC, IFN-g synergize with IL-1b to enhance the

expression of IRF-1, which subsequently leads to an increase in PD-

L1 expression (44). Moreover, IFN-g induce a state in tumor-

derived Tregs where they exhibit a reduction in their suppressive

activity (45). Moreover, IFN-g induce a state in tumor-derived

Tregs where they exhibit a reduction in their suppressive activity.

2.2.3.5 Interleukin 10 and Interleukin 35

Regulatory T cells secrete inhibitory factors for immune

suppression, such as IL-10 and IL-35. IL-10 has broad

immunosuppressive and anti-inflammatory effects. Its main

mechanisms include regulating the activity of inflammatory cells.

For example, IL-10 upregulate mature protein-1 induced by B

lymphocytes to inhibit CD28 tyrosine phosphorylation and

induce exhaustion of CD8+ T cells (46). It also reduces the

production of inflammatory mediators, lowers the intensity of

inflammatory reactions, inhibits antigen presentation and co-

stimulatory signal provision, and promotes the formation of

immune tolerance (47). IL-10 has a potent immunosuppressive

effect on APC and effector T cells, and convert DCs to tolerant DCs.

In addition, local production of IL-10 lead to the exclusion of APC
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from the tumor mass (48). IL-35 has extensive immunosuppressive

effects and is considered a negative regulatory factor. It suppress the

immune response through pathways such as inhibiting cell

proliferation, reducing the production of inflammatory mediators,

promoting the development and function of Treg cells, assisting

immune escape. For instance, IL-35 induces T cells to express

inhibitory receptors like PD-1, TIM3, LAG3, facilitating T cell

exhaustion and contributing to immune escape (49). IL-35 has

also been found to inhibit the production of IFN-g, thus suppressing
the development of inflammation through this pathway (50).

2.2.4 Immune-related proteins
2.2.4.1 Leukocyte function-associated antigen-1

One integral protein expressed on the surface of regulating T

cells is Leukocyte Function-Associated Antigen-1 (LFA-1). Under

normal conditions, LFA-1 on regulatory T cells facilitates

interaction with dendritic cells, supporting the initiation and

regulation of immune responses, supporting T cells in recognizing

and responding to tumor cells. However, regulatory T cells, upon

stimulation of antigen receptors, form aggregates with DCs through

LFA-1, inhibiting the co-stimulatory process between DCs and

effector T cells (51).

2.2.4.2 V-domain Ig suppressor of T-cell activation

VISTA, a B7 family member, crucially maintains T cell quiescence

and regulates bone marrow cell populations. In HCC, higher VISTA

levels correlate with CD8+ tumor-infiltrating lymphocytes (TILs) (52).

VISTA is more expressed in tumor-infiltrating Tregs compared to

those in peripheral lymph nodes, indicating its role in suppressing

tumor-specific immunity within the tumor microenvironment (TME)

(53). VISTA-Ig fusion protein has been shown to inhibit T cell

activation by blocking proliferation and cytokine production (54).

Moreover, VISTA inhibits iTreg transformation to Th1 and Th17 in

inflammatory environments, while promoting iTreg differentiation

under TGF-b induction in vitro (55). On the other hand, VISTA-Ig

promotes the differentiation of iTregs in response to in vitro TGF-b
induction (53).

2.2.4.3 Cytotoxic T-lymphocyte associated protein 4

Regulatory T cells assist in immune suppression by secreting

various immune-related proteins. For example, CTLA-4, expressed

on Tregs, negatively regulates T cell activation by binding to CD80/

CD86 on APCs, thus blocking the stimulatory effects of CD28

binding to these molecules. Both CD28 and CTLA-4 have affinities

for CD80/CD86, but they have different effects on co-stimulatory

signal transduction. Binding of CD28 to CD80/CD86 provides a

second signal that enhances T cell activation, proliferation, and

function. In contrast, when CTLA-4 binds to CD80/CD86, it

competitively antagonizes the signaling of CD28, inhibiting its

signal transduction. Through this mechanism, Tregs suppress T

cell activation, contributing to immune escape of cancer cells (56).

2.2.5 Chemokines
Chemokines are a class of small cytokines knowns for their

similar structures, functions, and chemotactic properties. They
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directly act on tumor cells and non-immune cells such as vascular

endothelial cells, regulating the proliferation, invasion, and

metastasis of tumor cells, thereby promoting the progression of

cancer in the tumor microenvironment (57).

CCR8+Treg cells are recruited to tumors by C-C Motif

Chemokine Ligand 1 (CCL1), which promotes immune escape.

CCL1 also induces STAT3-dependent upregulation of FOXP3,

CD39, and IL-10, thus enhancing the immunosuppressive activity

of Tregs (58). Another way chemical factors promote tumor

development is by mediating the entry of Tregs into the tumor

microenvironment. Treg cells express CCR4 and are recruited to the

tumor microenvironment by CCL22 induction. In addition to the

CCL22-CCR4 pathway, Treg cells express CCR10 and respond to

migration cues like CCL28 in hypoxic areas of the tumor

microenvironment (59, 60).

Bone marrow, a common site for tumor metastasis, hosts

numerous Treg cells with a memory phenotype and functional C-

X-C Motif Chemokine Ligand 4 (CXCR4) expression. Treg cells

move from bone marrow to peripheral blood through the action of

granulocyte colony-stimulating factor (G-CSF), which promotes the

degradation of C-X-CMotif Chemokine Ligand 12 (CXCL12) in the

bone marrow. The abundance of Treg cells in the bone marrow may

provide an immune “shield,” favoring tumor metastasis to this site.

Treg cells producing C-X-C Motif Chemokine Ligand 8 (CXCL8)

and IL-17 not only suppress T cells but also promote inflammation

within the cancer microenvironment.

2.2.6 Metabolites
Substances produced by the metabolism of components in the

tumormicroenvironment of liver cancer also impact the formation and

development of tumor cells. Metabolites in the microenvironment

interact with various cells to exert their effects. In hepatocellular

carcinoma, the Warburg effect leads tumor cells to utilize glucose via

aerobic glycolysis—even under oxygen-rich conditions—to produce

ATP, concurrently increasing lactate production and lowering pH in

the tumor microenvironment (61). High lactate production in the

tumor microenvironment increases FOXP3 concentration. Under

normal circumstances, FOXP3 promotes the growth of Tregs and

limits the differentiation of Tregs into other immune cells, maintaining

the stability and function of Treg cells (62). The metabolic processes of

tumor cells transform the tumor microenvironment into a nutrient-

restricted, hypoxic, and lactate-rich environment. In tumors, Tregs

convert pyruvate into acetyl-CoA via mitochondria, utilizing the

tricarboxylic acid cycle to sustain survival (63). Furthermore, Tregs

have a unique fatty acid metabolism mechanism where lipid oxidation

in Tregs reduces their glucose requirements and mitigates the cytotoxic

effects induced by fatty acids. Even under nutrient-restricted

conditions, Tregs utilize fatty acids for proliferation and to perform

their immunosuppressive functions (64).
2.3 Exosomes

Exosomes are small vesicles containing a variety of biomolecules

that mediate intercellular communication, thus regulating the
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microenvironment and immune system interactions. Research has

shown that exosomes not only transmit downstream signals to target

cells but also transfer genetic material to downstream cells, thus

facilitating intercellular communication (65).

Apart from their communicative role, exosomes participate in

various processes in hepatocellular carcinoma, including tumor

survival, growth, angiogenesis, and invasion. Exosomes transfer

biological molecules such as miRNAs, lncRNAs, and circRNAs,

which are primarily involved in regulating interactions between HCC

cells and endothelial cells, thereby stimulating angiogenesis to supply

oxygen and nutrients to the tumor. Exosomes from cancer-associated

fibroblasts (CAFs) modulate liver cancer cell phenotypes by

transferring miRNAs, proteins, and miRNA-mediated RNA oxidases,

thus activating signaling pathways like Wnt/b-catenin and promoting

epithelial-mesenchymal transition (EMT), which enhances migration

and invasion capabilities (66). Tumor-derived exosomes promote M2

polarization and increase PD1 expression on T cells, while concurrently

inhibiting cytokines that activate M1 macrophages and their

phagocytic activity (67, 68). In addition to tumor sources, exosomes

secreted by macrophages express specific CD11b/CD18 proteins to

promote MMP-9 expression, thereby promoting HCC migration

(69).Furthermore, exosomes alter the stromal environment

surrounding the tumor by regulating the synthesis and degradation

of matrix components and matrix adhesion factors, thereby creating a

suitable tumor microenvironment and enhancing the metastatic ability

of hepatocellular carcinoma (70). Certain molecules within exosomes

regulate the function and immune response of immune cells. They

suppress the activity of immune cells, inhibit the cytotoxic effects of

natural killer cells and T cells, thereby helping liver cancer cells evade

immune attacks and metastasis (71). In the tumor microenvironment,

exosomes package circular RNAs that suppress immunity in HCC, for

instance, by increasing CD39 expression in macrophages, which

contributes to resistance against anti-PD-1 therapy (72).
3 Research progress of CAR-T cell
therapy for hepatocellular carcinoma

Common treatments for hepatocellular carcinoma include drug

therapy, radiation therapy, and surgical interventions, such as

donafenib, apatinib, durvazumab, and sorafenib. However, these

traditional therapies often result in low cure rates and poor

prognosis, whether used alone or in combination (73). This

underscores the urgent need for innovative treatments.

Consequently, to improve treatment outcomes in hepatocellular

carcinoma, researchers have developed a novel immunological

approach—CAR-T therapy (Figure 2). CAR-T therapy is chimeric

antigen receptor T-cell immunotherapy, which is also known as

Chimeric Antigen Receptor T-Cell Immunotherapy. CAR-T therapy,

a precise form of targeted tumor treatment, has recently made

significant advancements in liver cancer treatment. A CAR-T cell is a

special type of cell in T cells. CAR consists of three parts: an

extracellular antigen recognition domain with or without hinge/

spacer domains, a transmembrane domain, and an intracellular

signal domain. The hinge/spacer ensures the accessibility of CAR-T
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cell epitopes, making CAR expression very stable. The transmembrane

domain affect the expression of CAR on the cell surface and signal

transduction in T cells. The intracellular signaling domain comprises

two parts: the costimulatory and signal transduction domains. The

costimulatory domain typically includes either the CD28 receptor

family (CD28,ICOS) or the tumor necrosis factor receptor family

(4–1BB,OX40,CD27). The role of the costimulatory domain is to

achieve synergistic stimulation of the dual activation of molecular

and intracellular signals, and improve T cell action and anti-tumor

ability. However, CD28 and 4–1BB have different effects, and CD28

cause CAR-T cells to be metabolized by glycolysis, which promote the

differentiation of CAR-T cells into effector T cells. 4–1BB promote

mitochondrial production, enhance respiration and fatty acid

oxidation, and CAR-T cells will differentiate into central memory T

cells after exposure to antigen stimulation (74–76). In addition to this,

CD28 exhibits faster and stronger signaling activity, while 4–1BB is

comparatively slower and gentler, and studies have found that 4–

1BBnbetter prolong T cell lifespan and maintain its anti-cancer effects

(77). Based on the number of costimulatory molecules, CAR proteins

are classified into three generations (78). Each of the three generations

of CAR proteins plays a crucial role in treating hepatocellular

carcinoma. A key advantage of CAR-T therapy in treating

hepatocellular carcinoma is that its efficacy does not rely on antigen

presentation by major histocompatibility complex (MHC) molecules,

thus circumventing MHC-related restrictions and addressing tumor

immune escape issues due to MHC downregulation (79). The

treatment of hepatocellular carcinoma through CAR-T start with the

types of CAR-T, treatment targets for hepatocellular carcinoma, and

substances secreted by CAR-T.
3.1 Strategies for CAR-T cells therapy for
hepatocellular carcinoma

There are many types of CAR-T cells, among which GPC3

CAR-T cells, CD133 CAR-T cells, c-Met CAR-T cells, NKG2D

CAR-T cells, and other CAR-T cells effectively treat hepatocellular

carcinoma (80).
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3.1.1 Glypican-3 CAR-T cell
Glypican-3 (GPC3) is a carcinoembryonic heparan

sulfate proteoglycan that attaches to cell membranes via

glycophosphatidylinositol anchors (81). It is highly expressed in

hepatocellular carcinoma but absent in normal tissues, potentially

playing a critical role in regulating cell division and growth.

Numerous studies have demonstrated that higher GPC3 expression

in hepatocellular carcinoma correlates with poorer prognosis. This

suggests GPC3’s potential as a prognostic marker for hepatocellular

carcinoma. Notably, GPC3 is highly expressed in hepatocellular

carcinoma and squamous non-small cell lung cancer but is expressed

at low levels in other cancers. This indicates that GPC3 serve as an

important target for the treatment of hepatocellular carcinoma.

Therefore, GPC3 CAR-T cells have emerged (82). GPC3 CAR-T

cells secrete IL15 and IL21, enhancing the proliferation of poorly

differentiated GPC3-CAR T cells, maintaining TCF-1 expression, and

increasing both the persistence and anti-tumor activity of these cells.

This greatly enhances the treatment of hepatocellular carcinoma by

GPC3 CAR-T cells (83). In addition, Lin28 is also overexpressed in

hepatocellular carcinoma, and regulating Lin28B enhance the anti-

tumor activity of GPC3 CAR-T cells, enabling GPC3 CAR-T cells to

better treat hepatocellular carcinoma (84). Researchers have found that

generating GPC3-specific CAR-T cells through simultaneous

electroporation of plasmid DNA encoding the piggyBac (PB)

transposon and overactive piggyBac transposase, rather than using

common viral vectors, results in cells with enhanced proliferation and

cytokine secretion (85). This discovery has propelled further

development of GPC3 CAR-T cell therapy for hepatocellular

carcinoma. However, GPC3 CAR-T cell therapy for hepatocellular

carcinoma remains in its early stages, with its methods and effects yet to

meet clinical needs. Therefore, a large amount of research is still needed

to make this treatment method better treat hepatocellular carcinoma.

3.1.2 CD133 CAR-T cell
CD133, which is highly expressed in hepatocellular carcinoma,

presents an attractive therapeutic target (86). Studies indicate that

CD133 CAR-T cells exhibit effective anti-tumor activity and

manageable safety profiles in treating advanced hepatocellular
FIGURE 2

The treatment methods for HCC include Drug therapy, Radiotherapy, Operative treatment and CAR-T Cell therapy.
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carcinoma. In fact, CD133 is also highly expressed in endothelial

progenitor cells of tumors. CD133 promotes angiogenesis in

hepatocellular carcinoma; thus, combining CD133 CAR-T cells with

anti-angiogenic drugs effectively inhibit new blood vessel formation in

tumors. Unlike GPC3 CAR-T cells, CD133 CAR-T cells not only block

the nutritional supply to tumor cells but also are used in combination

with other drugs to treat hepatocellular carcinoma (87). It should be

noted that CD133 CAR-T treatment for hepatocellular carcinoma in

patients with biliary obstruction requires more caution (86).

3.1.3 c-Met CAR-T cell
c-Met, a hepatocyte growth factor receptor (also known as

HGFR) and a cell surface protein tyrosine kinase, is

overexpressed in hepatocellular carcinoma. It plays a crucial role

in tumor cell proliferation, invasion, and apoptosis. Overexpression

of c-Met is an indicator of increased tumor invasiveness and poor

prognosis (88), and because of antigen escape effect and tumor

microenvironment and other factors, ordinary CAR-T cells have

poor therapeutic effect on hepatocellular carcinoma (89). Therefore,

c-Met is an important target for immunotherapy of hepatocellular

carcinoma. c-Met CAR-T cells bind to c-Met targets in

hepatocellular carcinoma and specifically kill tumor cells in an

antigen-dependent manner (88). However, the immunosuppressive

tumor microenvironment of hepatocellular carcinoma induce the

expression of PD-1 on CAR-T cells, and make PD-1 combine with

PD-L1 on tumor cells to inhibit the role of CAR-T cells, so that

tumor cells avoid immune surveillance (90, 91). Consequently,

constructing CAR-T cells that target both c-Met and PD-1 could

enhance therapeutic effects in hepatocellular carcinoma. c-Met/PD-

1 CAR-T cells block the interaction between PD-1 and PD-L1,

displaying lower levels of inhibitory receptors, reduced

differentiation, enhanced anti-tumor activity, and extended

survival compared to conventional CAR-T cells (92). Therefore,

c-Met/PD-1 CAR-T cells have broad application prospects for

better treatment of hepatocellular carcinoma. In addition, various

c-Met CAR-T cells such as c-Met/PD-L1 CAR-T cells are being

studied to better treat hepatocellular carcinoma.

3.1.4 NKG2D CAR-T cell
NKG2D is a type II transmembrane C-type lectin-like protein

receptor expressed on natural killer cells, CD8+ T cells, and some

autoreactive CD4+ T cells (93, 94). NKG2DL, the ligand for NKG2D, is

not expressed in normal cells but is highly expressed in tumor cells,

with expression further inducible by radiotherapy and chemotherapy

(95). Therefore, NKG2DL is an important target for the treatment of

hepatocellular carcinoma (96). Combining NKG2D CAR-T cells with

NKG2DL targets in hepatocellular carcinoma eradicate tumor

neovascularization, ameliorate the tumor microenvironment, and

augment immunotherapy efficacy (97). Moreover, NKG2D CAR-T

cells target multiple ligands expressed in hepatocellular carcinoma to

cope with tumor immune escape caused by tumor heterogeneity.

Therefore, NKG2D CAR-T cells have the possibility of radical

treatment of hepatocellular carcinoma (98). In addition, NKG2D

CAR-T cells have good effects and broad application prospects in the

treatment of multiple myeloma, glioblastoma, osteosarcoma and other

tumors (96).
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3.1.5 CD147 CAR-T cell
CD147, a glycoprotein, acts as a regulator of matrix

metalloproteinases (MMPs). Numerous studies have shown that

CD147 regulate cell proliferation, drug resistance, and cell matrix

adhesion characteristics through cell matrix and cell interactions.

CD147 is overexpressed in cancer cells and contributes to

angiogenesis by regulating vascular endothelial growth factor

production in tumor and stromal cells, thus promoting tumor

progression. Therefore, CD147 has become a potential therapeutic

target for treating hepatocellular carcinoma (99). However, CD147 is

not only expressed in cancer cells, but also in small amounts in other

tissues, whichmay result in CD147 CAR-T cells not accurately reaching

the CD147 target of hepatocellular carcinoma and may be toxic to

normal cells. To minimize the toxicity of CD147 CAR-T cells,

researchers have employed the Tet-On 3G system. Tet-On 3G is the

third-generation tetracycline induced gene expression system, which

use Doxycycline to turn on or off gene expression reversibly. This

system allows for the controlled induction of Tet-CD147 CAR-T cells at

specific times and locations, optimizing the treatment of hepatocellular

carcinoma. Furthermore, in the presence of Doxycycline, Tet-CD147

CAR-T cell activity is significantly enhanced in hepatocellular

carcinoma, potentially improving treatment outcomes (100).

3.1.6 Alpha fetoprotein CAR-T cell
Alpha fetoprotein (AFP), a glycoprotein of the albumin family,

is primarily synthesized by fetal liver cells and the yolk sac. The

content of AFP in normal adult serum is extremely low. Research

indicates that AFP promotes cell proliferation and inhibits

apoptosis; thus, elevated levels are commonly associated with

tumors. Alpha fetoprotein (AFP) is the most commonly used

biomarker in hepatocellular carcinoma, often used for detection,

diagnosis, and prognosis (101). Therefore, AFP is a good target for

the treatment of hepatocellular carcinoma. Traditional CAR-T cell

therapy for hepatocellular carcinoma cause serious side effects,

including cytokine release syndrome (CRS), and the AFP peptide-

MHC complex is less expressed on the surface of tumor cells. AFP

CAR-T cells effectively kill tumor cells without inducing cytokine

release syndrome. Therefore, AFP CAR-T cells are safer to use.

Moreover, studies have shown that local injection of AFP CAR-T

cells into tumors produce deeper, faster, and more lasting anti-

tumor responses. Thus, the appropriate route of administration is

crucial for optimizing the efficacy of AFP CAR-T cells (102).
4 Effects of various components in the
immune microenvironment on CAR-T

4.1 Effect of treg cells on CAR-T cell
therapy for hepatocellular carcinoma

However, CAR-T cell therapy for hepatocellular carcinoma still

has significant limitations. When using CAR-T cell therapy, serious

adverse reactions may occur, leading to poor treatment

effectiveness. In addition, CAR-T cell therapy for hepatocellular

carcinoma is still in its early stages, and research in this field is still
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insufficient. Therefore, it is necessary to be very cautious when

using CAR-T cells to treat hepatocellular carcinoma (78). In order

to reduce adverse reactions and improve efficacy, researchers have

found that using Treg help improve CAR-T treatment for

hepatocellular carcinoma.

4.1.1 Umbilical cord blood treg cells eliminate
inflammatory responses

During the CAR-T treatment of hepatocellular carcinoma, rapid

immune activation reactions are induced, leading to cytokine release

syndrome (CRS). CRS causes severe therapeutic toxicity in the body,

causing fever, hypoxia, and hypotension, and in severe cases, it is life-

threatening (103). Tregs play a good role in eliminating excessive

inflammation, maintaining self-immune tolerance, and immune

homeostasis (104). The therapeutic effect of Treg cells in metabolic

diseases has been proven, and they maintain metabolic balance and

prevent inflammation well (105). So, research has found that Treg cells

derived from allogeneic umbilical cord blood (UCB) effectively

eliminate the inflammatory response caused by CAR-T cells in the

treatment of hepatocellular carcinoma. UCB Treg cells may

preferentially accumulate at inflammatory sites and interact with

antigen-presenting cells, rapidly reducing inflammation. However, it

should be noted that UCB Treg cell adjuvant therapy should be

administered 3 days after CAR-T cell infusion to minimize the

interference of CAR-T cells in the treatment of hepatocellular

carcinoma (106).

4.1.2 Immunosuppression is reduced using the
C-C Motif chemokine ligand 1- C-C Motif
chemokine receptor 8 axis and DNR

Although the inflammatory response caused by CAR-T cells in the

treatment of hepatocellular carcinoma has been resolved, excessive

immune suppression of Treg cells leading to the promotion of tumor

proliferation and metastasis remains a major issue. Treg cells exhibit

two primary immunosuppressive mechanisms: one involves the release

of transforming growth factor-beta (TGF-b) to perform immune

suppression. The second mechanism is achieved when the ligand

CCL1 binds to its receptor, C-C chemokine receptor 8 (CCR8) (107).

CCR8 is highly expressed in tumors and tumor infiltrating Treg cells.

CCR8 is the only receptor of CCL1, so CCL1 activation of the CCR8

receptor on tumor cells promotes their proliferation and metastasis.

CCL1 also recruits a large number of Treg cells to the tumor site for

immune suppression, promoting tumor growth (108, 109). Utilizing the

CCL1-CCR8 axis, which recruits Treg cells to tumor sites, researchers

have developed CCR8-CAR-T cells. These CCR8-CAR-T cells are

recruited to tumor sites via the CCL1-CCR8 axis, potentially

enhancing the efficacy of CAR-T cell therapy. Although CAR-T cells

reach tumor cells through this axis, the immunosuppressive effect

produced by a large number of Treg cells at the site of tumor

infiltration still reduces the therapeutic effect of CAR-T. For this

purpose, researchers constructed new CAR-T cells, namely CCR8-

DNR-CAR-T cells, to resist the immune suppression produced by Treg.

DNR, a truncated form of TGF-b receptor 2, lacks the intracellular

signaling components necessary for TGF-b signal transduction. It

competes with TGF-b receptor 2 to bind TGF-b, allowing DNR-
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transduced T cells to clear TGF-b and reduce immunosuppressive

reactions (110, 111). Studies have shown that CCR8-DNR-CAR-T cells

are recruited in large quantities to tumor sites, but not to other normal

organ tissues. CCR8-DNR-CAR-T cells have a long survival and good

proliferation ability at the tumor site, and the therapeutic effect on the

tumor has also been significantly improved (109) (Figure 3).

4.1.3 Lck-inactivated 4–1BB CAR-T
resists immunosuppression

Additionally, modifying CAR-T cells to evade Treg cell inhibition

is another effective strategy to enhance tumor treatment efficacy. T cells

secrete interleukin-2 (IL-2) when stimulated by antigens, and IL-2

promotes the production of Tregs. It has been found that ordinary

CAR-T cells promote the production of Treg cells with the help of the

IL-2 axis through the co-stimulatory signal CD28 (112). In order to

eliminate IL-2 secretion, the researchers replaced two amino acids in

the CAR transgene to prevent lymphocyte-specific tyrosine kinase

(Lck) from attaching to the CD28 cytoplasmic tail (113), which

eliminated IL-2 secretion but also impaired the role of CAR-T cells

in vivo. However, 4–1BB is a costimulatory glycoprotein on activated

immune cells, including lytic and helper T lymphocytes, with its ligand

4–1BBL primarily on antigen-presenting cells like DCs, macrophages,

and B cells (114). This interaction enhances T cell proliferation,

differentiation, and effector function (115, 116). Cross-linking of 4–

1BB in T cells promotes proliferation, memory cell formation, and

increases viability and cytokine production, such as IFN-g and IL-2

(117). In addition, 4–1BB converts T cells with reprogramming

tolerance potential into effector T cells with antitumor activity (118),

so the introduction of a 4–1BB signaling domain within CAR-T cells

made up for this deficiency. 4–1BB CAR-T cells that inhibit Lck

activation are not only active at tumor sites but also resist Treg-

mediated immunosuppression. Studies have shown that 4–1BB is

targeted by Treg cells in various cancers and plays a crucial role in

regulating effector T cell responses, demonstrating significant

therapeutic effects within the immune microenvironment (119, 120).

4.1.4 Optimization of CAR-T cells
Although improvements have been made in the effects and

adverse reactions of CAR-T cells, significant challenges remain in

developing standardized, safe, and reliable CAR-T cells (121). To

address this, the construction process has been optimized to

enhance the efficacy of CAR-T cells against tumors. For instance,

incorporating an apoptosis switch in CAR-T cells that activates

caspase9 (iCasp9) is beneficial. Activation of iCasp9 by a synthetic

dimerizer induces apoptosis in CAR-T cells, allowing for controlled

regulation of their activity based on specific situations. This

improves the safety of CAR-T cell therapy. Additionally, gene

editing is employed to develop multifunctional CAR-T cells. In

hepatocellular carcinoma, PD-L1 is upregulated and expressed by

various activated immune cells including macrophages, B cells,

dendritic cells, and T cells (122). PD-1 is expressed on immature

thymocytes, activated CD4 and CD8+ T cells, B cells, dendritic cells,

and natural killer (NK) cells. PD-L1, when expressed on

hepatocellular carcinoma cells, bind to PD-1 on T cells, inducing

tolerance by inhibiting their ability to mount an effective immune
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response against specific cancer antigens (123). Regulatory T cells

express PD-L1, which bind to inhibitory receptors on NK cells,

thereby suppressing their cytotoxic function and preventing the

direct killing of tumor cells (124). The interaction of PD-L1 with

PD-1 on immune cells transmits an inhibitory signal that decreases

the cytotoxic activity of effector T cells, aiding the survival of tumor

cells (125). Activated PD-1/PD-L1 complexes modulate T cell

receptor and CD28 co-stimulatory signaling pathways by

recruiting SHP1/2, which dephosphorylates these receptors,

leading to reduced T cell activation and increased apoptosis,

promoting immune escape (126). SHP1/2 remove phosphate

groups, inhibit T cell activation, increase cytokine production,

promote expression of apoptotic molecules, ultimately leading to

T cell apoptosis and non-responsiveness, driving tumor immune

escape and progression (127). Both PD-1 and CD276 are members

of the B7 family, making their effects on the tumor

microenvironment similar. The binding of CD276/PD-1 and the

corresponding receptor exert a synergistic effect, thereby jointly

inhibiting the proliferation of T cells and the secretion of related

cytokines (128, 129). Therefore, by utilizing gene editing technology

to disrupt genes like PD-1 and CD276 in CAR-T cells, researchers

inhibit the tumor microenvironment and enhance the therapeutic

efficacy of CAR-T cells (130).
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4.1.5 Regulatory T cells depletion enhances CAR-
T efficacy

For Treg cells, researchers have found that the tumor

microenvironment significantly induces high expression of

histone demethylase JMJD1C in tumor Tregs. Inhibiting

JMJD1C expression does not affect the development and

function of peripheral Tregs but reduces tumor-associated Tregs,

consequently slowing tumor growth. This effect is primarily due to

JMJD1C’s role in promoting PD-1 expression and inhibiting AKT

signaling and IFN-g production in tumor-associated Tregs. The use

of JMJD1C inhibitors significantly inhibits tumor growth and has

good application prospects (131).
4.2 Tumor-associated macrophages
influence CAR-T therapy in the treatment
of HCC

Tumor-associated macrophages (TAMs) inhibit the anti-tumor

immune response within the tumor microenvironment, thereby

promoting tumor growth through various mechanisms and

diminishing the efficacy of CAR-T therapy (132). First, TAMs

express the inhibitory molecule PD-L1, which binds to PD-1 on
FIGURE 3

After releasing CCL1 from HCC, Treg cells and CAR-T cells with CCR8 receptor are recruited together. CAR-T cells combine with HCC and release
perforin and granzyme to initiate apoptosis of HCC. DNR receptors on the surface of CAR-T cells compete well for binding to TGF-b,
Prevent immunosuppression.
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CAR-T cells, reducing their cytotoxicity and efficacy. Secondly,

TAMs secrete several immunosuppressive cytokines such as IL-10

and TGF-b. IL-10 weakens the response of CD8+ T cells (133),

while TGF-b excludes T cells, including CAR-T cells, from the

tumor, significantly impairing their function. Thirdly, TAMs inhibit

the recruitment of T cells to tumor sites by producing peroxynitrites

and nitrifying CCL2 and CCL5, thereby preventing chemotaxis of

CAR-T and other T cells to the tumor, reducing their effectiveness

(134). Finally, TAMs produce VEGF and other growth factors that

support blood vessel and tumor survival.
4.3 Effect of cancer-associated fibroblasts
on CAR-T therapy in HCC

Cancer-associated fibroblasts (CAFs) inhibit the infiltration and

function of T cells, including CAR-T cells, within the immune

microenvironment, thereby reducing the efficacy of CAR-T therapy.

As a significant component of the tumor microenvironment, CAFs

promote the production of TAMs, which in turn inhibit CAR-T cell

function (135). Additionally, CAFs secrete immunosuppressive

cytokines like IL-10 and TGF-b, further suppressing T cell

activity. CAFs also enhance the recruitment and differentiation of

Tregs by producing chemokines (136), indirectly inhibiting CAR-T

cell function. Moreover, CAFs interfere with T cell-dependent

immune responses by regulating myeloid-derived suppressor cells

(MDSCs). By secreting CXCL12/SDF1, CAFs recruit monocytes to

the tumor site, which are then induced to differentiate into MDSCs

through IL-6-mediated STAT3 activation, thus altering CAR-T cell

proliferation and function and diminishing their therapeutic

effect (137).
4.4 Effects of metabolites on CAR-
T therapy

The unique metabolic profile of tumor cells creates a nutrient-

restricted, hypoxic, and lactate-rich environment in the tumor

microenvironment. Hypoxia is closely associated with cancer cell

resistance to radiotherapy and chemotherapy, as well as impaired

immune cell function, thus impacting the efficacy of CAR-T

therapy. Researchers observed that hypoxia inhibits CAR-T cell

proliferation and differentiation and reduces granzyme B and

cytokine production without affecting their frequency and

cytotoxicity (138). To enable CAR-T cells to function in hypoxic

conditions, researchers integrated hypoxia-induced transcription

factor-1a (HIF-1a) hypoxia response element (HRE) into CAR-T

cells, creating a hypoxia-induced transcription amplification system

that significantly enhances anti-tumor efficacy under hypoxia (139).

Tumor proliferation also results in increased glucose consumption

and lactate production, causing metabolic acidosis and a low pH state

in the tumor microenvironment. Acidosis inhibits glycolysis and

oxidative phosphorylation, affecting CAR-T cell metabolism. Low pH

induces V-domain Ig suppressor of T cell activation (VISTA), which

inhibits T cell activation, proliferation, and cytokine production, thus

affecting CAR-T therapy (140). Researchers found that pretreating T
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cells with lactate in vitro enhance CAR-T therapy by improving their

stemness and anti-tumor immunity (141).
4.5 Impact of PD-1/PD-L1 on CAR-
T therapy

PD-1/PD-L1 interactions assist tumor cells in immune evasion

and impact CAR-T therapy by reducing T cell glycolysis, impairing

T cell effector functions, and limiting glucose availability for T cells

(142). Initially, researchers used monoclonal antibodies against PD-

1 to block the PD-1/PD-L1 axis, but this approach had serious

adverse reactions and increased the risk of immune tolerance

breakdown. To enhance CAR-T therapy for solid tumors like

HCC, researchers combined CAR-T cells with PD-1 knockout

(KO) therapy to improve anti-tumor activity and safety (143).
4.6 Effect of exosomes on CAR-T therapy

Exosomes are extracellular vesicles that carry bioactive

molecules and influence recipient cells’ pathophysiological

processes. Tumor cells release small extracellular vesicles (sEVs)

after CAR-T therapy, promoting PD-L1 expression and inhibiting

CAR-T cell efficacy. Exosome inhibitors, such as GW4869 and

Nexinhib20, have been shown to enhance CAR-T therapy by

improving CD8+ T cell infiltration and activation (144).
4.7 Effect of extracellular matrix on CAR-
T therapy

In HCC, excessive collagen and hyaluronic acid in the ECM lead

to matrix hardening, poor diffusion, decreased oxygen content, and

delayed material exchange in the tumor microenvironment(TME)

(145).ECM stiffness suppresses T lymphocyte-mediated anti-tumor

responses and reduces CAR-T cell infiltration (146). Researchers

have incorporated strategies to inhibit hyaluronan synthesis and

enhance degradation into CAR-T therapy to decompose ECM and

promote T cell penetration (147). Additionally, combining CAR-T

therapy with tumor vaccines targeting ECM components softens

the ECM and improve T cell infiltration (148).
5 Challenges and future outlook

Although CAR-T therapy is effective in treating liver cancer cells,

there are still many deficiencies and challenges. Firstly, various

substances in the immune microenvironment weaken the efficacy of

CAR-T in hepatocellular carcinoma. Among these, several obstacles

affecting the function of CAR-T in the tumor microenvironment

(TME) include hypoxia, high lactate levels, activation of the PD-1/

PD-L1 axis, and accumulation of the extracellular matrix (ECM) (138,

140, 142, 145).Secondly, CAR-T therapy also faces limitations such as

long treatment cycles, high costs, and the need for standardization,

safety, and reliability (130). Additionally, CAR-T therapy has certain
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hepatotoxicity, which may damage the normal function and

proliferation of hepatocytes. Currently, CAR-T cells are still

insufficiently infiltrated in the environment of hepatocellular

carcinoma, so CAR-T cell therapy still needs improvement.

However, with technological advancements, these issues are

gradually being addressed. For example, anti-hypoxia CAR-T cells

have been developed by introducing hypoxia-inducible factor

elements (139), and immune checkpoint molecules such as PD-1/

PD-L1 have been knocked out using CRISPR/Cas9 gene editing

technology (143). Combining CAR-T cell therapy with anti-PD-1/

PD-L1 monoclonal antibodies to enhance the anti-tumor response

is a promising research direction. Additionally, combined therapy is

used to integrate anticancer drugs with CAR-T therapy to improve

the efficacy of CAR-T cel ls by enhancing the tumor

microenvironment. Finally, with future research directions and

the use of technological advancements, the field of CAR-T

treatment for liver cancer progresses towards more effective and

lasting treatments, ultimately improving patient prognosis.
6 Summary

This review has highlighted the significant role of various

components of the tumor microenvironment in aiding immune

escape in hepatocellular carcinoma, particularly emphasizing the

importance of regulating T cells in the growth and spread of cancer

cells. To counteract the immune escape mechanisms of

hepatocellular carcinoma and enhance T cell therapy efficacy,

researchers have explored the potential of CAR-T cell therapy. In

conclusion, a thorough understanding of how T cells regulate

immune escape in hepatocellular carcinoma offers valuable

insights for theoretical and clinical advancements in developing

more effective immunotherapies for this cancer. We hope that our

research will lead to more treatment options and improve the

quality of life for patients with hepatocellular carcinoma.
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Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory
microenvironment that drives progression in hepatocellular carcinoma. Cancer Res.
(2012) 72:2533–42. doi: 10.1158/0008-5472.CAN-11-3317

27. Heindryckx F, Gerwins P. Targeting the tumor stroma in hepatocellular
carcinoma. World J Hepatol. (2015) 7:165–76. doi: 10.4254/wjh.v7.i2.165

28. Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC:
spotlight on innate and innate-like immune cells. Cell Mol Immunol. (2021) 18:112–27.
doi: 10.1038/s41423-020-00572-w

29. Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, et al. Hepatic stellate cells
promote tumor progression by enhancement of immunosuppressive cells in an
orthotopic liver tumor mouse model. Lab Investigat J Tech Methods Pathol. (2014)
94:182–91. doi: 10.1038/labinvest.2013.139

30. Chen J, Wu H, Zhang W, Mu W. Ribose-5-phosphate isomerases:
characteristics, structural features, and applications. Appl Microbiol Biotechnol.
(2020) 104:6429–41. doi: 10.1007/s00253-020-10735-4

31. MurphyMP. Mitochondrial thiols in antioxidant protection and redox signaling:
distinct roles for glutathionylation and other thiol modifications. Antioxidants Redox
Signaling. (2012) 16:476–95. doi: 10.1089/ars.2011.4289

32. Li R, Wang W, Yang Y, Gu C. Exploring the role of glucose−6−phosphate
dehydrogenase in cancer (Review). Oncol Rep. (2020) 44:2325–36. doi: 10.3892/or

33. Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, et al. TAp73
enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol.
(2013) 15:991–1000. doi: 10.1038/ncb2789

34. Jiang P, Du W, Yang X. A critical role of glucose-6-phosphate dehydrogenase in
TAp73-mediated cell proliferation. Cell Cycle (Georgetown Tex). (2013) 12:3720–6.
doi: 10.4161/cc.27267

35. Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects
of stroma remodeling. Proteomics. (2018) 18:e1700167. doi: 10.1002/pmic.201700167

36. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and
CD73: Novel checkpoint inhibitor targets. Immunol Rev. (2017) 276:121–44.
doi: 10.1111/imr.12528
Frontiers in Immunology 13
37. Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited:
Is there a role for combinations with immunotherapy? Angiogenesis. (2017) 20:185–
204. doi: 10.1007/s10456-017-9552-y

38. Hansen W, Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, et al. Neuropilin
1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J
Exp Med. (2012) 209:2001–16. doi: 10.1084/jem.20111497

39. Zhu AX, Abbas AR, de Galarreta MR, Guan Y, Lu S, Koeppen H, et al. Molecular
correlates of clinical response and resistance to atezolizumab in combination with
bevacizumab in advanced hepatocellular carcinoma. Nat Med. (2022) 28:1599–611.
doi: 10.1038/s41591-022-01868-2

40. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol CB. (2020)
30:R921–r5. doi: 10.1016/j.cub.2020.06.081

41. Ramachandran P, Iredale JP, Fallowfield JA. Resolution of liver fibrosis: basic
mechanisms and clinical relevance. Semin liver Dis. (2015) 35:119–31. doi: 10.1055/s-00000069

42. Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived
suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J
Immunol (Baltimore Md 1950). (2009) 182:240–9. doi: 10.4049/jimmunol.182.1.240

43. Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, et al.
Tumor immunoevasion by the conversion of effector NK cells into type 1 innate
lymphoid cells. Nat Immunol. (2017) 18:1004–15. doi: 10.1038/ni.3800

44. Numata Y, Akutsu N, Ishigami K, Koide H, Wagatsuma K, Motoya M, et al.
Synergistic effect of IFN-g and IL-1b on PD-L1 expression in hepatocellular carcinoma.
Biochem Biophys Rep. (2022) 30:101270. doi: 10.1016/j.bbrep.2022.101270

45. Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G,
et al. Interferon-g Drives T(reg) fragility to promote anti-tumor immunity. Cell. (2017)
169:1130–41.e11. doi: 10.1016/j.cell.2017.05.005

46. Scott EN, Gocher AM, Workman CJ, Vignali DAA. Regulatory T cells: barriers
of immune infiltration into the tumor microenvironment. Front Immunol. (2021)
12:702726. doi: 10.3389/fimmu.2021.702726

47. Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive
plasticity of IL-10(+) and IL-35(+) T(reg) cells cooperatively promotes tumor T cell
exhaustion. Nat Immunol. (2019) 20:724–35. doi: 10.1038/s41590-019-0346-9

48. Koh YT, Higgins SA, Weber JS, Kast WM. Immunological consequences of using
three different clinical/laboratory techniques of emulsifying peptide-based vaccines in
incomplete Freund's adjuvant. J Transl Med. (2006) 4:42. doi: 10.1186/1479-5876-4-42

49. Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe GM,
Yano H, et al. Interleukin-35 limits anti-tumor immunity. Immunity. (2016) 44:316–29.
doi: 10.1016/j.immuni.2016.01.013

50. Wang W, Guo H, Li H, Yan Y, Wu C, Wang X, et al. Interleukin-35 gene-
modified mesenchymal stem cells protect concanavalin A-induced fulminant hepatitis
by decreasing the interferon gamma level. Hum Gene Ther. (2018) 29:234–41.
doi: 10.1089/hum.2017.171

51. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells
preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation.
Proc Natl Acad Sci United States America. (2008) 105:10113–8. doi: 10.1073/pnas.0711106105

52. Villarroel-Espindola F, Yu X, Datar I, Mani N, Sanmamed M, Velcheti V, et al.
Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel
immunotherapy target in human non-small cell lung cancer. Clin Cancer Res. (2018)
24:1562–73. doi: 10.1158/1078-0432.CCR-17-2542

53. Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, et al. VISTA regulates the
development of protective antitumor immunity. Cancer Res. (2014) 74:1933–44.
doi: 10.1158/0008-5472.CAN-13-1506

54. Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, et al. VISTA, a
novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med.
(2011) 208:577–92. doi: 10.1084/jem.20100619

55. Wang Q, He J, Flies DB, Luo L, Chen L. Programmed death one homolog
maintains the pool size of regulatory T cells by promoting their differentiation and
stability. Sci Rep. (2017) 7:6086. doi: 10.1038/s41598-017-06410-w

56. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al.
Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function
of CTLA-4. Sci (New York NY). (2011) 332:600–3. doi: 10.1126/science.1202947

57. Nagarsheth N, Wicha MS, ZouW. Chemokines in the cancer microenvironment
and their relevance in cancer immunotherapy. Nat Rev Immunol. (2017) 17:559–72.
doi: 10.1038/nri.2017.49

58. Kryczek I, Wang L, Wu K, Li W, Zhao E, Cui T, et al. Inflammatory regulatory T
cells in the microenvironments of ulcerative colitis and colon carcinoma.
Oncoimmunology. (2016) 5:e1105430. doi: 10.1080/2162402X.2015.1105430

59. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific
recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and
predicts reduced survival. Nat Med. (2004) 10:942–9. doi: 10.1038/nm1093

60. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al.
Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells.
Nature. (2011) 475:226–30. doi: 10.1038/nature10169

61. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev
Cancer. (2004) 4:891–9. doi: 10.1038/nrc1478
62. Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, et al. Tumor metabolite lactate promotes

tumorigenesis by modulating MOESIN lactylation and enhancing TGF-b signaling in
regulatory T cells. Cell Rep. (2022) 39:110986. doi: 10.1016/j.celrep.2022.110986
frontiersin.org

https://doi.org/10.1016/j.smim.2005.05.008
https://doi.org/10.4049/jimmunol.169.12.6673
https://doi.org/10.1007/s10753-016-0458-4
https://doi.org/10.1053/j.gastro.2008.03.020
https://doi.org/10.1002/hep.30889
https://doi.org/10.1080/21645515.2019.1653744
https://doi.org/10.3390/cells9040875
https://doi.org/10.4049/jimmunol.175.8.5541
https://doi.org/10.1186/s12929-017-0391-3
https://doi.org/10.1038/mi.2015.20
https://doi.org/10.1016/S1471-4906(02)02302-5
https://doi.org/10.1182/blood-2018-11-844548
https://doi.org/10.3389/fimmu.2022.887186
https://doi.org/10.1038/s42255-020-00317-z
https://doi.org/10.1038/s42255-020-00317-z
https://doi.org/10.1016/j.cell.2009.10.027
https://doi.org/10.1158/0008-5472.CAN-11-3317
https://doi.org/10.4254/wjh.v7.i2.165
https://doi.org/10.1038/s41423-020-00572-w
https://doi.org/10.1038/labinvest.2013.139
https://doi.org/10.1007/s00253-020-10735-4
https://doi.org/10.1089/ars.2011.4289
https://doi.org/10.3892/or
https://doi.org/10.1038/ncb2789
https://doi.org/10.4161/cc.27267
https://doi.org/10.1002/pmic.201700167
https://doi.org/10.1111/imr.12528
https://doi.org/10.1007/s10456-017-9552-y
https://doi.org/10.1084/jem.20111497
https://doi.org/10.1038/s41591-022-01868-2
https://doi.org/10.1016/j.cub.2020.06.081
https://doi.org/10.1055/s-00000069
https://doi.org/10.4049/jimmunol.182.1.240
https://doi.org/10.1038/ni.3800
https://doi.org/10.1016/j.bbrep.2022.101270
https://doi.org/10.1016/j.cell.2017.05.005
https://doi.org/10.3389/fimmu.2021.702726
https://doi.org/10.1038/s41590-019-0346-9
https://doi.org/10.1186/1479-5876-4-42
https://doi.org/10.1016/j.immuni.2016.01.013
https://doi.org/10.1089/hum.2017.171
https://doi.org/10.1073/pnas.0711106105
https://doi.org/10.1158/1078-0432.CCR-17-2542
https://doi.org/10.1158/0008-5472.CAN-13-1506
https://doi.org/10.1084/jem.20100619
https://doi.org/10.1038/s41598-017-06410-w
https://doi.org/10.1126/science.1202947
https://doi.org/10.1038/nri.2017.49
https://doi.org/10.1080/2162402X.2015.1105430
https://doi.org/10.1038/nm1093
https://doi.org/10.1038/nature10169
https://doi.org/10.1038/nrc1478
https://doi.org/10.1016/j.celrep.2022.110986
https://doi.org/10.3389/fimmu.2024.1431211
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Du et al. 10.3389/fimmu.2024.1431211
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