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Background: Interactions between the immune and metabolic systems may play

a crucial role in the pathogenesis of metabolic syndrome-associated rheumatoid

arthritis (MetS-RA). The purpose of this study was to discover candidate

biomarkers for the diagnosis of RA patients who also had MetS.

Methods: Three RA datasets and one MetS dataset were obtained from the Gene

Expression Omnibus (GEO) database. Differential expression analysis, weighted

gene co-expression network analysis (WGCNA), and machine learning

algorithms including Least Absolute Shrinkage and Selection Operator (LASSO)

regression and Random Forest (RF) were employed to identify hub genes in

MetS-RA. Enrichment analysis was used to explore underlying common

pathways between MetS and RA. Receiver operating characteristic curves were

applied to assess the diagnostic performance of nomogram constructed based

on hub genes. Protein−protein interaction, Connectivity Map (CMap) analyses,

and molecular docking were utilized to predict the potential small molecule

compounds for MetS-RA treatment. qRT-PCR was used to verify the expression

of hub genes in fibroblast-like synoviocytes (FLS) of MetS-RA. The effects of small

molecule compounds on the function of RA-FLS were evaluated by wound-

healing assays and angiogenesis experiments. The CIBERSORT algorithm was

used to explore immune cell infiltration in MetS and RA.

Results: MetS-RA key genes were mainly enriched in immune cell-related

signaling pathways and immune-related processes. Two hub genes (TYK2 and

TRAF2) were selected as candidate biomarkers for developing nomogram with

ideal diagnostic performance through machine learning and proved to have a

high diagnostic value (area under the curve, TYK2, 0.92; TRAF2, 0.90). qRT-PCR
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results showed that the expression of TYK2 and TRAF2 in MetS-RA-FLS was

significantly higher than that in non-MetS-RA-FLS (nMetS-RA-FLS). The

combination of CMap analysis and molecular docking predicted camptothecin

(CPT) as a potential drug for MetS-RA treatment. In vitro validation, CPT was

observed to suppress the cell migration capacity and angiogenesis capacity of

MetS-RA-FLS. Immune cell infiltration results revealed immune dysregulation in

MetS and RA.

Conclusion: Two hub genes were identified in MetS-RA, a nomogram for the

diagnosis of RA and MetS was established based on them, and a potential

therapeutic small molecule compound for MetS-RA was predicted, which

offered a novel research perspective for future serum−based diagnosis and

therapeutic intervention of MetS-RA.
KEYWORDS

rheumatoid arthritis, metabolic syndrome, machine learning, molecular docking,
immune infiltration
Introduction

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune

inflammatory disease that primarily affects the joints and soft tissue

around the joints (1). RA patients have a high risk of developing

cardiovascular diseases (CVD) and premature death due to

systemic inflammation, which can shorten their expected lifespan

by 5-10 years (2). Metabolic syndrome (MetS) is a common

phenotype associated with increased CVD risk, including elevated

fasting blood glucose, elevated triglycerides, low high-density

lipoprotein, increased waist circumference, and hypertension (3).

There are increasing evidences that RA is related to various

components of MetS, such as weight changes, quantitative and

qualitative dyslipidemia, characteristic adipokine profile, and

insulin resistance, which increase CVD mortality (4). Previous

research has established that MetS was prevalent in RA patients

and that the risk of developing moderate to severe RA was higher in

MetS patients than in those without MetS. Importantly, MetS-

associated RA (MetS-RA) patients have higher disease activity than

non-MetS-RA (nMetS-RA) patients (5), which was associated with

the number of MetS components (6), suggesting that MetS may

have an inflammatory environment that promotes the development

of more severe RA.

Most recently, the interface between the metabolic system and

the immune system has aroused great interest (7). Changes in

immune-metabolic crosstalk contribute to the development of

autoimmune diseases (8). Adipokines such as leptin, adiponectin,

and lipoic acid-2 play multiple metabolic roles, which contributes to

the onset of MetS and participates in the inflammatory process and

immune regulation of RA (9). Consequently, exploring the

molecular associations between RA and MetS is of great clinical

value and research significance.
02
Currently, integrated bioinformatics analysis has been widely

applied to identify new diagnostic genes and pathogenic genes

related to various diseases (10, 11). Nevertheless, the genes for the

common diagnosis of RA and MetS and the genes associated with

each other are scarcely understood. Accordingly, the primary

purpose of this study is to screen out the hub genes between RA

and MetS, construct a diagnostic model, and provide new insights

into the prevention and treatment of MetS-RA.

In this study, we used a variety of bioinformatics tools to search

for MetS-RA hub genes by collecting RA datasets and MetS datasets

from the Gene Expression Omnibus (GEO). Two MetS-RA hub

genes (TYK2 and TRAF2) were filtered by machine learning

algorithms, and a diagnostic model for RA prediction was

constructed. In addition, camptothecin (CPT), a potential small

molecule compound for MetS-RA treatment, was discovered via

connectivity map (CMap) analysis and molecular docking. We

validated the expression of hub genes in fibroblast-like

synoviocytes (FLS) from the synovium of MetS-RA patients and

verified the effects of CPT on the cell migration and angiogenesis of

MetS-RA-FLS in vitro. Finally, we explored the immune cell

infiltration characteristics of RA and MetS.
Materials and methods

Microarray data collecting and processing

Three raw expression profile datasets of RA and healthy control

groups, including GSE7307, GSE77298, and GSE206848, were

obtained from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/) (12). The raw expression profile dataset GSE98895 of

peripheral blood mononuclear cells (PBMCs) in MetS patients
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was obtained from the GEO database. Detailed description of the

datasets is shown in Table 1. The combat function of

“inSilicoMerging” package in R software (version 4.3.3) was used

to merge three RA datasets and eliminate batch effect (13, 14).
Differentially expressed genes analysis

Sangerbox Tools (http://www.sangerbox.com/tool) as a user-

friendly interface supports differential analysis and provides

interactive customizable analysis tools, including various kinds of

correlation analyses, enrichment analyses, weighted correlation

network analysis (WGCNA) as well as some other common tools

and functions (15). Sangerbox Tools was utilized to missing values

completion, data standardization, and gene symbol conversion of

the integrated RA dataset and MetS dataset. The DEGs of RA and

MetS datasets were obtained through the “Limma” package in R

software (16), and the P value < 0.05 was statistically significant. The

expression patterns of DEGs were then visualized in the form of

volcanic plots and heatmaps.
Functional enrichment analysis

RA and MetS gene expression profile data were imported into

Gene Set Enrichment Analysis (GSEA) software (version 4.3.1), and

selected the Kyoto Encyclopedia of Genes and Genomes (KEGG)

subset to evaluate the relevant pathways and molecular

mechanisms. The DEGs were imported into Sangerbox Tools,

KEGG and Gene Ontology Biological Process (GO-BP)

enrichment analysis was completed based on the latest subset

gene annotation. Absolute value of Normalized Enrichment Score

(NES) > 1.5, Nominal P value (NP) < 0.05 and false discovery rate

(FDR) < 0.05 were considered statistically significant. The results of

enrichment analysis were visualized by Sangerbox Tools.
Weighted gene co-expression
network analysis

The MetS gene expression profile data was imported into

Sangerbox Tools, and the Median Absolute Deviation (MAD) of

each gene was calculated, and the top 50% of the genes with the
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smallest MAD were excluded. The “goodSamplesGenes” function of

the “WGCNA” package in R software was applied to remove outlier

genes and samples (17). Further, a scale-free co-expression network

was constructed based on the one-step network construction function

of the “WGCNA” package. The appropriate “soft” threshold power

(b = 3) was used for co-expression of similarity to calculate adjacency.

Then, dynamic tree cuts and hierarchical clustering were performed,

and a topological overlap matrix (TOM) was created to group genes

into modules by random colors, and a gene dendrogram was

constructed using a TOM-based measure of phase dissimilarity and

a minimum gene cluster size (n = 30), the sensitivity was set to 3, and

modules with distances less than 0.25 were merged. After obtaining

the module, the different module eigengenes (ME) were obtained

according to the first principal component of the module expression,

and the modular-trait relationship was evaluated in line with the

association between ME and MetS diagnosis. The module with the

most significant positive correlation between the module-trait

relationship was screened to obtain the genes contained in the

module. And the correlation between module membership (MM)

and Gene Significance (GS) scores in the module was evaluated to

illustrate the module significance (MS). Sangerbox Tools was used to

visualize the WGCNA analysis.
Machine learning

Candidate genes of MetS-RA were obtained by overlapping RA

DEGs, MetS DEGs, and the most significant module genes of MetS.

The expression profile data of these candidate genes in RA dataset were

screened for potential hub genes through the least absolute shrinkage

and selection operator (LASSO) algorithm of Sangerbox Tools based

on R software “glmnet” package. The R software “survival” package was

used to integrate RA diagnosis and gene expression profile data, and

the prognostic significance of each gene was further evaluated by COX

method, and P value < 0.05 was statistically significant. The risk score

was computed by the mRNA expression of diagnostic biomarkers

weighted by their corresponding coefficients via Sangerbox Tools.

RiskScore = -0.1374*CAPN3 + 0.0413*CKAP4 - 0.1862*CNBP +

0.0114*H2AFY2 + 0.0143*KCNK12 - 0.0441*KIR2DS1 +

0.0249*PIK3CD + 0.1887*TRAF2 + 0.6682*TYK2 - 0.0810*UQCRB.

Candidate genes were further screened and the forest map was drawn.

The R software “random forest” package was also used to screen out

potential hub genes, with the Increase in Mean Squared Error (%
TABLE 1 Basic information of GEO datasets used in the study.

GSE series Tissue Organism
Sample size

Platform
Control RA

GSE206848 Synovium Homo sapiens 7 2 GPL570

GSE77298 Synovium Homo sapiens 7 16 GPL570

GSE7307 Synovium Homo sapiens 6 5 GPL570

Control MetS

GSE98895 PBMC Homo sapiens 20 20 GPL649
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IncMSE) P value < 0.01. The overlapping genes screened by Lasso-cox

regression analysis and Random Forest (RF) algorithm were defined as

hub genes.
The construction of nomogram, the
assessment of diagnostic marker
prediction model, and the evaluation of
diagnostic models in the external cohort

The nomogram of hub genes was constructed using the “rms”

package of R software. The area under receiver operating characteristic

(ROC) curve was plotted to evaluate the performance of hub genes and

the nomogram in the diagnosis of RA. The calibration curves, decision

curve analysis (DCA) and clinical impact curve (CIC) were used to

evaluate the validity of nomogram in predicting MetS-RA. The validity

of the above nomogram was verified by using external GEO datasets.

Nomogram models based on hub genes from RA (GSE97779) and

MetS (GSE142401) datasets were constructed respectively, meanwhile

ROC, calibration curves, DCA, and CIC were used to evaluate the

validity of the nomogram.
Protein-protein interaction network
analysis and cluster analysis

The overlapping genes of RA DEGs and MetS DEGs were

analyzed by the STRING database (https://www.stringdb.org) (18),

with a medium confidence score of > 0.4. The PPI network was

imported into the Cytoscape software (version 3.10.2) for

visualization. Further, the Cytoscape molecular complex detection

(MCODE) function was used to screen the gene cluster with the

highest score for the next small molecule compound prediction.
Connectivity map analysis

The up-regulated genes in the highest scoring gene clusters

from the MetS-RA PPI network were analyzed by the CMap

database (https://clue.io) to search for potential small molecule

compounds. The top 10 small molecule compounds with the

highest negative enrichment scores were obtained.
Molecular docking

The protein crystal structure (pdb format) of hub genes was

obtained from the RCSB Protein Data Bank (http://www.pdb.org/).

The structure of the small molecule compounds (sdf format) was

obtained from the Pubchem (https://pubchem.ncbi.nlm.nih.gov/),

and was converted to a pdb format through OpenBabel software

(version 2.4.1). The proteins and compounds in pdb format were

imported into Autodock tools software (version 1.5.7) for deleting

water and adding hydrogenation. All flexible keys of compounds

were rotatable by default and saved in pdbqt format as docking

ligands. Then the molecular docking process was completed (19).
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According to the binding energy of proteins and compounds (< -6

kcal/mol), the tightly bound small molecular compounds were

screened out. The molecular docking results were visualized using

PyMOL (version 3.0).
Immune cell infiltration analysis

RA and MetS gene expression profile data were analyzed by

Sangerbox Tools immunoinfiltration analysis function. The R

software “CIBERSORT” package was used to calculate the

proportion of 22 types of immune cells in each sample by

Wilcoxon test (20), P value < 0.05 was considered statistically

significant, and stacked histogram visualization was performed.

Spearman’s correlation coefficient was employed to analyze the

proportion of infiltrating immune cells, P < 0.05 was considered

statistically significant, and heatmap was used for visualization.
Demographic and metabolic
characteristics of RA patients

RA patients who underwent total knee arthroplasty in our

hospital were collected (n = 29). According to the 2005 NCEP-

ATP-III diagnostic criteria for Asian patients with MetS, RA

patients with MetS were included in MetS-RA group (n = 15),

and patients without MetS were included in nMetS-RA group (n =

14). All participants in the study obtained the consent of themselves

or their families. The study was approved by the ethics committee of

Henan Provincial People’s Hospital (IRB ID:2023-108).

Demographics are shown in Supplementary Table 1. Serum

metabolic indicators of RA patients were recorded.
Human synovial sample collection and RA-
FLS isolation

Synovium samples of RA patients were collected. The synovium

was cut into 1 mm3 pieces, digested with 2.5 mg/ml type I collagenase

at 37°C for 2 h, filtered with 75 mm filter to remove the tissue

fragments. The isolated cells were cultured in DMEM medium

containing 10% fetal bovine serum and 1% penicillin-streptomycin.

RA-FLSs were passaged when reaching approximately 90% confluence.

Macrophages were removed by passage to purify FLS. RA-FLSs of

more than three passages were used for experiments.
The validation of the expression of
hub genes

Total cellular RNA of RA-FLS was extracted using RNA extraction

reagent (Accurate) according to the manufacturer’s instructions. cDNA

synthesis (Accurate) and quantitative real-time PCR (qRT-PCR,

Accurate) were performed according to the manufacturer’s

instructions. Data of hub genes were expressed as 2-△△ct, mRNA

expression was calculated relative to the b-actin level. Primer sequences
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are listed as follows: TYK2-F, 5’-GAGATGCAAGCCTGATGCTAT-

3’, TYK2-R, 5’-GGTTCCCGAGGATTCATGCC-3’, TRAF2-F, 5’-TCCC

TGGAGTTGCTACAGC-3’, TRAF2-R, 5’-AGGCGGAGCACAGG

TACTT-3’.
The effect of small molecule compounds
on cell function

The effects of small molecule compounds on the function

of RA-FLS were evaluated by wound-healing assays and

angiogenesis experiments.
Cell counting kit-8 for cell viability

CCK-8 was used to determine the viability of RA-FLS incubated

with camptothecin (CPT, TargetMol) in a concentration gradient

(0, 2.5, 5, 10, 20 µmol/L) and a time gradient (6, 12, 24, 48, 72 h).

Cell viability (%) = [OD value (CPT) - OD value (blank)]/[OD value

(control) - OD value (blank)]×100%. According to CCK-8 results,

optimal concentration of CPT was determined to be 5 µmol/L.
Wound-healing assays

2×105 RA-FLSs/well were seeded in 6-well plates, and were grown

overnight until they reached 95% confluence, after which wound gaps

were generated using a 200µl sterile pipette tip, and cellular debris was

removed with phosphate buffered saline (PBS). The wound closure was

monitored and photographed by inverted microscope (Olympus) at

0 h, 24 h, and 48 h. The migration area was quantified using imageJ

(version 1.8.0) (21), average scratch width = (initial scratch area -

scratch area at detection time)/image length, and cell migration ratio =

(initial scratch area - scratch area at detection time)/initial scratch area.
Angiogenesis experiments

Growth factor reduced matrigel (no phenol red, 8.9 mg/ml,

Becton), 48-well plate and pipette tips were precooled at 4°C, 120 µl

matrigel was uniformly added to 48-well plate and solidified at 37°C for

30 min. Human umbilical vein endothelial cells (HUVECs) were re-

suspended with pre-collected serum-free culture supernatants (nMetS-

RA-FLS, MetS-RA-FLS, and MetS-RA-FLS treated with 5 µmol/L CPT

for 24 h), and 200 µl cell culture supernatant containing 8×104 HUVEC

was added to each well. HUVECs were cultured in a 5% CO2 cell

incubator at 37°C for 4 h. The tube formation of HUVECs was

observed with an inverted microscope and photographed. The

number of meshes and segments length were quantized by imageJ (22).
Statistical analysis

All data between the two groups were analyzed statistically and

plotted using GraphPad Prism software (version 8.0) or Sangerbox
Frontiers in Immunology 05
Tools. The normality of the data distribution was evaluated using the

Kolmogorov–Smirnov test. Levene test was used to assess the

homogeneity of variance. Independent samples t-tests were applied

to analyze normally distributed values. Data with non-Gaussian

distribution were analyzed by using the non-parametric Mann–

Whitney U test. Correlation analysis was performed using

Spearman’s method. Two-tailed values of P < 0.05 were considered

statistically significant.
Results

Data processing, identification of DEGs and
GSEA enrichment analysis

The flow chart of bioinformatics analysis is shown in Figure 1.

After batch correction, a total of 23 RA synovial samples and 20

healthy control synovium samples were obtained from the

integrated RA dataset. All three datasets are from the same

sequencing platform and contain the same number of genes

(Supplementary Figure 1A). After batch effect removal, the data

distribution among the three datasets tended to be consistent

(Supplementary Figures 1B–E), and they cluster and intertwine

with each other (Supplementary Figures 1F, G), indicating that the

batch effect was better removed. There were 4013 DEGs in the

integrated RA dataset, including 1316 up-regulated genes and 2697

down-regulated genes (Figure 2A). The volcano plot and heatmap

were used to display the expression patterns of DEGs in the merged

RA dataset (Figures 2B, C). GSEA analysis revealed up-regulated T

cell receptor signaling pathways, B cell receptor signaling pathways,

and Intestinal Immune Network For Iga Production (Figure 2D).

To comprehensively demonstrate the metabolic characteristics of

RA datasets, KEGG enrichment analysis involving metabolic

pathway was conducted via GSEA. The results showed that these

RA datasets have similar metabolic characteristics, including

abnormalities in metabolic pathways such as Type I Diabetes

Mellitus, Sulfur Metabolism, and Tyrosine Metabolism

(Supplementary Tables 2–4). A total of 3507 DEGs were

identified in MetS dataset, including 1819 up-regulated genes and

1688 down-regulated genes (Figure 3A). The volcano plot and

heatmap were used to describe the expression patterns of DEGs

in the MetS dataset (Figures 3B, D). GSEA analysis showed up-

regulated T cell receptor signaling pathways and B cell receptor

signaling pathways (Figure 3C). KEGG enrichment analysis

involving metabolic pathway demonstrated the metabolic

characteristics of MetS and dysregulated metabolic genes

(Supplementary Table 5).
Construction of WGCNA and identification
of key module genes in MetS dataset

To further explore key genes in MetS, WGCNA was conducted

to identify the most relevant gene modules in MetS dataset. Based

on scale independence and mean connectivity, the soft threshold of

soft power was set as 3 (Figures 3E, F). The clustering tree diagram
frontiersin.org
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of MetS and control group were shown in Figure 3G. In order to

further assess these modules, we calculated the dissimilarity of

module eigengenes, chose a cut line for module dendrogram and

merged the module with a distance less than 0.25, and a total of 21

co-expression modules were obtained (Figure 3H). Spearman’s

correlation coefficient was performed to map the module-trait

relationship and evaluate the correlation between each module

and MetS diagnosis (Figure 3I). The black module exhibited the

highest positive correlation with MetS (454 genes, r = 0.71, P = 3e-

7), and was selected as the most relevant module for MetS

(Figure 3J). The correlation analysis results of genes in the black

module showed a strong association between module membership

and gene significance, r = 0.77, P = 4.4e-90 (Figure 3K).
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MetS key genes screening and
enrichment analysis

A total of 196 overlapping genes between MetS black module

genes and MetS DEGs were identified (Figure 4A). KEGG

enrichment analysis showed that these overlapping genes were

mainly enriched in “Kaposi sarcoma-associated herpesvirus

infection”, “osteoclast differentiation”, “NF-kappa B signaling

pathway”, and immune cell-related signaling pathways such as “NK

cell mediated cytotoxicity”, “Th1 and Th2 cell differentiation”, “Th17

cell differentiation”, and “T cell receptor signaling pathway”

(Figure 4B). In terms of GO-BP analysis, overlapping genes were

mainly enriched in “Cellular macromolecule localization”,
FIGURE 1

Flow chart of this study design. RA, Rheumatoid arthritis; MetS, Metabolic syndrome; MetS-RA, MetS-associated RA; DEGs, differentially expressed
genes; WGCNA, weighted correlation network analysis; Gene Set Enrichment Analysis, GSEA; Limma, linear models for microarray data; PPI, protein-
protein interaction; MCODE, molecular complex detection; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; least absolute
shrinkage and selection operator, LASSO; qRT-PCR, quantitative real-time PCR; DCA, decision curve analysis; CIC clinical impact curve; ROC,
receiver operating characteristic.
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“Intracellular transport”, “Intracellular protein transport”,

“Regulation of mitochondrion organization” and other

processes (Figure 4C).
MetS-RA key genes screening and
enrichment analysis

There were a total of 79 overlapping genes between MetS black

module genes and RA DEGs (Figure 4D). KEGG enrichment

analysis showed that these overlapping genes were concentrated

in “Osteoclast differentiation”, “Spliceosome”, and immune cell-

related signaling pathways such as “Th1 and Th2 cell

differentiation”, “Th17 cell differentiation”, “NK cell mediated

cytotoxicity”, and “T cell receptor signaling” (Figure 4E). In terms

of GO-BP analysis, overlapping genes were mainly enriched in

immune-related processes such as “Regulation of immune

response”, “Cell activation”, “Leukocyte mediated immunity”,

“Regulation of immune system process”, and “T cell receptor
Frontiers in Immunology 07
signaling pathway”. In addition, enrichment pathways were

involved in metabolism-related pathway including “Membrane

lipid catabolic process”, “Glycolipid catabolic process”, and

“Ceramide catabolic process” (Figure 4F).
Screening of hub genes for MetS-RA
diagnosis via machine learning

The common DEGs between MetS and RA may play critical

roles in MetS-RA, so the next step will be to further search for hub

genes in MetS-RA. A total of 43 overlapping genes between MetS

key genes and MetS-RA key genes will be further screened as

candidate genes (Figure 5A). LASSO regression algorithm was

applied to identify 10 potential candidate genes from 43 common

genes (Figures 5B, C). The prognostic significance of each gene was

further evaluated by COX regression analysis, and TYK2, TRAF2

and CAPN3 were screened out. The hazard ratio (HR) of TYK2 was

6.00 (95%CI 2.00 - 17.97), the HR of TRAF2 was 2.23 (95%CI 1.12 -
B

C

D

A

FIGURE 2

Differential expression analysis and GSEA of the integrated RA dataset. (A) The venn chart represented the total number of genes and the number of
DEGs in the integrated RA dataset, with red representing up-regulated genes and green representing down-regulated genes. (B) The heatmap
represented expression patterns of partial significantly up-regulated or down-regulated DEGs in the integrated RA dataset, with each row
representing a DEG and each column representing a sample of RA cases or controls. (C) The volcano plots represented the expression pattern of RA
DGEs with red representing up-regulated genes, green representing down-regulated genes, and black representing genes with no significant
differences. (D) GSEA with KEGG gene sets indicated up-regulated T cell receptor signaling pathways, B cell receptor signaling pathways, and NK cell
mediated cytotoxicity signaling pathways in RA synovium compared with healthy control (NES absolute value > 1.5, NP value < 0.05, FDR < 0.05).
NES, normalized enrichment score; NP, Nominal P value; FDR, false discovery rate.
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FIGURE 3

Differential expression analysis, GSEA analysis, and identification of key modules of WGCNA in the MetS dataset. (A) The venn chart represented the
total number of genes and the number of DEGs in the MetS dataset, with red representing up-regulated genes and green representing down-
regulated genes. (B) The volcano plots represented the expression pattern of MetS DGEs with red representing up-regulated genes, green
representing down-regulated genes, and black representing genes with no significant differences. (C) GSEA with KEGG gene sets indicated up-
regulated T cell receptor signaling pathways and B cell receptor signaling pathways in MetS PBMCs compared with healthy control (NES absolute
value > 1.5, NP value < 0.05, FDR < 0.05). (D) The heatmap represented expression patterns of partial significantly up-regulated or down-regulated
DEGs in the MetS dataset, with each row representing a DEG and each column representing a sample of MetS cases or controls. (E) A scale-free
topological model was used to determine the optimal b value, combined with scale independence and (F) mean connectivity analysis, b = 3 was
selected as the soft threshold. (G) The cluster dendrogram of the MetS and control samples. (H) Gene co-expression modules represented by
different colors under the gene tree. (I) Heatmap of eigengene adjacency. (J) The heatmap represented the relationship between module
eigengenes and MetS. The correlation (left) and P value (right) were presented. The black module correlated with RA exhibited the highest
correlation coefficient, which was identified as the key module of MetS. (K) Correlation plot between module membership and gene significance of
genes included in the black module. PBMCs, peripheral blood mononuclear cells.
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4.45), and the HR of CAPN3 was 0.64 (95%CI 0.48 - 0.84)

(Figure 5D). Meanwhile, RF machine learning algorithm was

applied to sort 43 overlapping genes according to the %IncMSE

of each gene, and genes with %IncMSE P value < 0.01 were

extracted. A total of 6 genes were obtained (Figure 5E). Three

overlapping genes (TYK2, TRAF2, and CAPN3) were identified in

candidate genes obtained by LASSO-COX and RF (Figure 5F). The

expression of TYK2 and TRAF2 was positively correlated with the

risk score of RA diagnosis, while CAPN3 was negatively correlated

with the risk score of RA diagnosis (Figure 5G). For better diagnosis
Frontiers in Immunology 09
and prediction, a nomogram was constructed based on TYK2 and

TRAF2 by logistic regression analysis (Figure 6A). The area under

the curve (AUC) value of the hub gene was evaluated using ROC to

determine its sensitivity and specificity for the diagnostic efficacy of

MetS-RA. AUC values of TYK2 and TRAF2 were both > 0.9,

suggesting that these two hub genes had strong diagnostic value

for MetS-RA (Figure 6B). The calibration curve showed that the

prediction probability of the constructed nomogram diagnostic

model was almost identical to that of the ideal model (Figure 6C).

In addition, the DCA and the CIC showed that decision making
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FIGURE 4

Screening and enrichment analysis of MetS key genes and MetS-RA key genes. (A) The venn diagram represented the overlap between MetS black
module genes and MetS DEGs, totally 196 overlapping genes, which were defined as MetS key genes. Red represents MetS black module genes and
blue represents MetS DEGs. (B) The circos plot represented KEGG analysis results for MetS key genes. (C) The bubble plot represented GO-BP
analysis results for MetS key genes. (D) The venn diagram represented the overlap between MetS black module genes and RA DEGs, totally 79
overlapping genes, which were defined as MetS-RA key genes. Red represents MetS black module genes and blue represents RA DEGs. (E) The
circos plot represented KEGG analysis results for MetS-RA key genes. (F) The bubble plot represented GO-BP analysis results for MetS-RA key genes.
GO-BP, Gene Ontology Biological Process.
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based on the nomogram model may be beneficial for the diagnosis

of MetS-RA (Figures 6D, E). To further confirm the accuracy of the

above nomogram model, two external GEO datasets were used for

validation. We developed a MetS diagnostic nomogram model

based on GSE142401 to predict the possibility of MetS from

control and MetS groups (Figure 6F). The AUC values of TYK2

and TRAF2 were 0.83 and 0.79, respectively (Figure 6G). The

calibration curves, DCA, and CIC for assessing nomogram MetS

showed that decision-making based on the nomogram MetS may

favor the prediction of MetS (Figures 6H–J). Furthermore, another

diagnostic nomogrammodel was also constructed to distinguish RA

patients based on GSE97779 (Figure 6K). Similarly, ROC,

calibration curves, DCA, and CIC indicated ideal predictive value

of nomogram RA for the RA patients (Figures 6L–O).
Frontiers in Immunology 10
Identification of candidate small molecule
compounds and molecular docking

In order to uncover potential pathogenic genes and underlying

signaling pathways in MetS-RA, interactions of MetS associated

RA genes were obtained through the STRING database with a

medium confidence score > 0.4. The top-ranked module was

identified and visualized via the MCODE function of Cytoscape

software (Figure 7A, Supplementary Figures 2A). The module

with the highest score contained 25 genes (Figure 7B). KEGG

analysis showed that these genes were mainly enriched in “NK cell

mediated cytotoxicity”, “Hematopoietic cell lineage”, “Cell

adhesion molecules”, and immune-related signaling pathways

(Figure 7C). In terms of GO-BP, overlapping genes were mainly
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FIGURE 5

Hub genes screening via LASSO-COX and Random Forest. (A) The venn diagram represented the overlap among RA DEGs, MetS DEGs, and MetS
black module genes, with a total of 43 overlapping genes defined as MetS-RA pathogenic candidate genes. Red represents RA DEGs, blue represents
MetS DEGs, and green represents MetS black module genes. (B, C) The expression profile data of 43 genes were analyzed through the LASSO
algorithm of Sangerbox Tools based on R software “glmnet” package. The R software “survival” package was used to integrate RA diagnosis and gene
expression profile data, and the prognostic significance of each gene was further evaluated by COX method. The risk score was computed by the
mRNA expression of diagnostic biomarkers weighted by their corresponding coefficients via Sangerbox Tools. The diagnostic biomarkers (n = 10)
were identified by the LASSO logistic regression algorithm, l = 0.09. (D) The forest plot represented candidate genes screened by LASSO model
were evaluated for RA diagnostic significance by COX method. (E) The R software “random forest” package was also used to screen out potential
hub genes. The diagnostic biomarkers (n = 6) were identified by the RF algorithm with %IncMSE P value < 0.01 were extracted. ** P < 0.01. (F) The
venn diagram displayed three common genes between LASSO-COX and RF algorithms, which were identified as the hub genes in MetS-RA. (G)
Visualization of the relationship between RA diagnostic risk and hub genes expression.
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FIGURE 6

Construction of a diagnostic nomogram model and evaluation of diagnostic models in external cohorts. (A) The nomogram was constructed based
on the hub genes TYK2 and TRAF2. (B) The ROC curve for the diagnostic performance of TYK2, TRAF2, and CAPN3. (C) The calibration curve of
nomogram model prediction in MetS-RA. The dotted line marked as “Apparent” represents the uncalibrated prediction curve. The solid line marked
as “Bias−corrected” represents the calibrated prediction curve. The dash line marked as “Ideal”, represents the perfect prediction of the ideal model.
(D) DCA for the nomogram model. The black line marked as “None” stands for the net benefit of the assumption that no patients have RA. The grey
line marked as “All” represents the net benefit of the assumption that all patients have RA. The red line marked as “Nomogram” represents the net
benefit of the assumption that MetS-RA was identified according to the diagnostic value of RA predicted by the nomogram model. (E) CIC for the
nomogram model. The red curve indicates the number of people who are classified as high risk by the model at each threshold probability. The blue
curve represents the number of true positives at each threshold probability. (F) The nomogram was developed based on TYK2 and TRAF2 from MetS
dataset (GSE142401) to predict the risk of MetS. (G) The ROC curves for the predictive performance of TYK2, TRAF2. (H) The calibration curve of
nomogram prediction in MetS patients. (I) DCA for the nomogram model. (J) CIC for the nomogram model. (K) The nomogram was developed
based on TYK2 and TRAF2 from RA dataset (GSE97779) to predict the risk of RA. (L) The ROC curves for the predictive performance of TYK2, TRAF2.
(M) The calibration curve of nomogram prediction in RA patients. (N) DCA for the nomogram model. (O) CIC for the nomogram model.
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enriched in immune regulatory processes such as “Regulation of

immune system process”, “Regulation of immune response” and

“Positive regulation of immune system process”, and cell

activation processes such as “T cell activation”, “Lymphocyte

activation”, and “Positive regulation of cell activation”

(Figure 7D). To predict potential small molecule compounds

that might play a therapeutic role in MetS-RA patients, 25 genes

(all up-regulated genes) were analyzed via the CMap database. The

top 10 compounds with the highest negative scores were

considered to be potential therapeutic drugs for the treatment of

MetS-RA, including desoxypeganine, IRL-2500, latrepirdine,

etodolac, verapamil, CPT, phyllalbine, flumazenil, tropanserin,

and valproic-acid (Figure 7E). The sankey diagram showed the

targeted pathways of these 10 compounds (Figure 7F), and the
Frontiers in Immunology 12
chemical structure was visualized (Figure 7G). Further, the

molecular docking of these potential therapeutic compounds

with TYK2 and TRAF2 was carried out, and the results showed

that IRL-2500 and CPT were the top two compounds most closely

bound to TYK2 or TRAF2. The binding energy of TYK2 with IRL-

2500 was -10.3 kcal/mol, and the binding energy of TYK2 with

CPT was -9.43 kcal/mol. TRAF2 has a binding energy of -8.24

kcal/mol with IRL-2500 and -7.7 kcal/mol with CPT

(Supplementary Figures 2B, C). It was well proved from a

previous research that low-dose CPT could improve the disease

condition of RA (23), so the next step was to validate the

effect of CPT on the function of MetS-RA-FLS in vitro. The

molecular docking of TYK2 or TRAF2 with CPT was visualized

(Figures 7H, I).
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FIGURE 7

Identification of candidate small molecule compounds and molecular docking. (A) PPI analysis of overlapping genes between RA DGEs and MetS DEGs
was performed by STRING database, and cluster analysis was performed via MCODE function of Cytoscape software. (B) The PPI network of module
genes with the highest score contained 25 genes based on MCODE analysis. (C) The bubble plot displayed the KEGG enrichment analysis and (D) GO-
BP enrichment analysis of genes included in module with the highest score. (E) The heatmap presented the top10 compounds with the most
significantly negative enrichment scores in cell lines based on CMap analysis. (F) The sankey diagram showed a description of the top ten compounds.
(G) 3D chemical structure visualization of 10 compounds. (H) The molecular docking of TYK2 and camptothecin (CPT), and (I) the molecular docking of
TRAF2 and CPT. The yellow dash line represents the hydrogen bond between CPT and the amino acid residue of TYK2 or TRAF2.
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Validation of the expression of hub genes
and the effect of camptothecin on cell
migration and angiogenesis of MetS-RA-FLS

To verify the accuracy of the two hub genes obtained by above

integrated bioinformatics analysis, FLSs from patients with

osteoarthritis (OA), MetS-RA, and nMetS-RA were isolated. CCK-8

assay showed that the cytotoxicity of CPT to RA-FLS was obvious with

the concentration of CPT at 10 or 20mmol/L. According to CCK-8

results, optimal concentration of CPT was determined to be 5 µmol/L

(Figure 8A). qRT-PCR results indicated that TYK2 and TRAF2 levels
Frontiers in Immunology 13
were elevated in RA-FLS compared to OA-FLS, TYK2 and TRAF2were

higher expressed in MetS-RA-FLS compared to nMetS-RA-FLS

(Figure 8B). Then CPT was identified as a potential treatment for

MetS-RA. RA-FLS has the ability to promote angiogenesis and strong

cell migration, so wound-healing assays and angiogenesis experiments

were conducted in vitro to verify the effect of CPT on MetS-RA-FLS

functions. The results revealed that CPT significantly attenuated the

angiogenesis ability of MetS-RA-FLS (Figure 8C). Wound-healing

assays showed that MetS-RA-FLS had stronger cell migration ability

than MetS-RA-FLS, and CPT treatment significantly reduced the cell

migration ability of MetS-RA-FLS (Figure 8D).
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FIGURE 8

Validation of the expression of hub genes and the effect of CPT on cell migration and angiogenesis of MetS-RA-FLS. (A) Cell Counting Kit-8 (CCK-8)
was used to determine the viability of RA-FLS incubated with CPT in a concentration gradient (0, 2.5, 5, 10, and 20mmol/L) and a time gradient (6, 12,
24, 48, and 72h). (B) qRT-PCR was used to determine the relative mRNA level of TYK2 and TRAF2 in OA-FLS (n = 3), nMetS-RA-FLS (n = 3), and
MetS-RA-FLS (n = 4). Data are mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. (C) Angiogenesis experiments exhibited HUVEC tube
formation after 4h treatment with cell culture supernatants of MetS-RA-FLS and MetS-RA-FLS incubated with 5 µmol/L CPT (n = 4, per group). Number
of meshes and segments length were calculated via ImageJ. (D) Wound-healing assays displayed cell migration of nMetS-RA-FLS, MetS-RA-FLS, and
MetS-RA-FLS treated with 5 µmol/L CPT at 0, 24, and 48 h (n = 3, per group). Measurement of scratch width and cell migration ratio via ImageJ.
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Immune cell infiltration and correlation
analysis in MetS and RA

The enrichment analysis of MetS key genes and MetS-RA key

genes showed that MetS and MetS-RA were closely related to

immune cell-related signaling pathways. Therefore, the

CIBERSORT algorithm was employed to obtain immune cell

characteristics to explore the immune regulation and the

correlation between infiltrating immune cells in MetS and RA.

Immunoinfiltration analysis displayed the proportion of 22 types of

immune cells in each sample (Figures 9A, C). There were significant

differences in 9 immune cell subsets between RA and control

synovium samples. Compared with the control group, the
Frontiers in Immunology 14
proportion of T cells CD4 memory activated, T cells follicular

helper, T cells gamma delta, NK cells activated, and Macrophages

M1 increased, while the proportion of B cells naive, Monocytes,

Dendritic cells resting, and Mast cells resting decreased (Figure 9B).

The correlation analysis showed that Macrophages M1 was

significantly positively correlated with T cells gamma delta (r =

0.70, P < 0.0001), T cells CD4 memory activation was negatively

correlated with T cells regulation (r = -0.60, P < 0.0001) (Figure 9E).

There were significant differences between the PBMC samples from

MetS and control groups in 3 immune cell subsets, and the

proportion of T cells CD4 memory activated and NK cells resting

was increased in MetS PBMC, while the proportion of Macrophages

M0 decreased (Figure 9D). The correlation analysis showed that
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FIGURE 9

Immune cell infiltration and correlation analysis in MetS and RA. (A) The stacked histogram displayed the proportion of 22 kinds of immune cells
between RA and control groups. (B) The boxplot showed the comparison of 22 kinds of immune cells between RA and control groups. Data are
mean ± SD, * P < 0.05, ** P < 0.01. (C) The stacked histogram represented the proportion of 22 kinds of immune cells between MetS and control
groups. (D) The boxplot exhibited the comparison of 22 kinds of immune cells between MetS and control groups. Data are mean ± SD, * P < 0.05,
** P < 0.01. (E) The heatmap displayed the correlation of 22 immune cell type compositions. Both horizontal and vertical axes demonstrate immune
cell subtypes of RA or (F) MetS. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
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Macrophages M0 was significantly positively correlated with Mast

cells resting (r = 0.62, P < 0.0001), T cells CD8 was negatively

correlated with T cells CD4 memory resting (r = -0.60, P <

0.0001) (Figure 9F).
Discussion

In recent years, with the widespread application of sequencing,

integrated bioinformatic analysis and machine learning methods

are increasingly being applied to explore key genes of disease,

potential diagnostic and prognostic biomarkers, potential

signaling pathways, and therapeutic targets, thereby providing

data support for the full disclosure of diseases (24, 25). The

association between RA and MetS has received extensive

attention, and a large number of studies have revealed a close

relationship between various components of MetS and clinical

features of RA (8, 26). In terms of molecular mechanisms,

adipokines associated with MetS and metabolic reprogramming of

cells caused by MetS affect the disease course of RA (4). However,

studies on RA and MetS based on bioinformatics are much less

explored. In this study, a variety of bioinformatics analysis methods

and machine learning methods were employed to excavate

pathogenic genes in MetS-RA, clarify the association between RA

and MetS, predict small molecule compounds with potential

therapeutic effects, and reveal the immune cell infiltration

characteristics of MetS and RA, providing new ideas for future

treatment of MetS-RA patients.

Firstly, the enrichment analysis in this study demonstrated that

the pathogenesis of MetS-RA may focus on immune system

regulation and immune cell activation. GSEA analysis revealed

that both RA and MetS had up-regulated T cell receptor

pathways and B cell receptor signaling pathways. Moreover, the

key genes of MetS and MetS-RA that overlapped with key modules

of WGCNA were enriched in Th1/2/17 cell differentiation, NK

mediated cytotoxicity, and osteoclast differentiation signaling

pathways, which were also included in the enrichment pathway of

MetS and RA overlapping DEGs. Li et al. have enlightened the

contribution of NK cells to the chronic inflammatory state found in

obesity (27). NK cells are innate lymphoid cells that reside in

visceral adipose tissue and mediate cellular cytotoxicity. In

addition, a study has demonstrated that in non-obese people,

macrophages were the main immune cells in adipose tissue,

playing a key role in regulating anti-inflammatory mediators,

while in obese people, the shift in macrophage phenotype leads to

the recruitment of NK cells (28). In turn, NK cells produce

cytokines and chemokines that further promote the inflammatory

microenvironment associated with obesity. Th cells are key

regulators of pro-inflammatory and anti-inflammatory immune

processes. Th1 cells are pro-inflammatory cells that express the

transcription factor T-bet, interferon g (IFNg), interleukin 2 (IL-2),

and tumor necrosis factor a (TNF-a). Th17 cells are also highly

pro-inflammatory cells. While in obesity-related conditions, Th2

cells seem to exert an anti-inflammatory effect. At present, it is well

confirmed that Th1 cells are involved in adipose tissue

inflammation associated with obesity-related pathology, the
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content of Th17 cells in adipose tissue and peripheral blood was

increased in patients with obesity and type 2 diabetes. In addition,

Th1 and Th17 also aggravate insulin resistance (29). Yokota et al.

have reported that osteoclasts induced by TNF and IL-6 participate

in the pathological process of RA joint destruction (30). Moreover,

pro-inflammatory systemic condition and altered immune response

in MetS also affect both catabolic and anabolic processes of bone

healing, including increased osteoclastogenesis and impaired

osteoblast activity, which could be explained by the dysfunction

of insulin receptors that led to activation of signals related to

osteoblast differentiation (31). Furthermore, dysregulated

metabolic genes existed in MetS, primarily involving glycan

biosynthesis, inositol phosphate metabolism, and tryptophan

metabolism. These abnormal metabolic pathway were also present

in RA, indicating that MetS and RA may share common metabolic

pathways, which may be a potential pathogenic mechanism for

MetS-RA. In summary, abnormal immune cell differentiation and

osteoclast differentiation in MetS may aggravate the pathological

process of RA, and the immune environment of RA may also

aggravate the inflammatory microenvironment and metabolic

reprogramming of histocytes in adipose tissue of individuals

with MetS.

Next, two hub genes of MetS-RA, TYK2, and TRAF2, were

screened by machine learning methods. After the evaluation of

ROC, DCA, and CIC, a nomogram model was constructed based on

TYK2 and TRAF2 to show the ideal efficacy of RA diagnosis. In

addition, qRT-PCR results showed higher levels of TYK2 and

TRAF2 in MetS-RA-FLS, providing a potential novel serum

biomarker for the diagnosis of MetS-RA. The tyrosine kinase

encoded by the TYK2 gene, a member of the Janus kinase (JAK)

protein family, binds to cytoplasmic domains of type I and type II

cytokine receptors and transmits cytokine signals by

phosphorylating the receptor subunits. Currently, five different

JAK inhibitors have been marketed as molecular-targeted

compounds for RA as one of the therapeutic strategies for RA,

and four of them inhibit TYK2 (32). A Mendelian randomization

study suggested that TYK2 gene expression was closely associated

with RA, and TYK2 inhibition was associated with a reduced risk of

multiple autoimmune diseases (33). A recent review suggested that

MetS should be a new indication for JAK inhibitors, highlighting

the potential role of JAK inhibitors in reducing relevant

inflammatory processes, improving insulin sensitivity, and

resolving crosstalk with insulin pathways (34). The protein

encoded by TRAF2 is a member of the TNF receptor-associated

factor protein family. TRAF proteins are associated with members

of the TNF receptor superfamily and mediate relevant signal

transduction. Surveys such as that conducted by Potter et al. have

shown that TRAF2 activated the NF-kB and JNK signaling

pathways, which were involved in cell proliferation, cell

differentiation, apoptosis, and bone remodeling. Importantly, it

can further activate a variety of inflammatory and immune-

related processes induced by cytokines such as TNF-a and IL-1,

which play an important role in the pathology of RA (35). Likewise,

Wu et al. found that in synovium tissues and cells of RA patients,

TRAF2 methylation promoted sustained sensitization of NF-kB
signal transduction by inhibiting its proteolysis and enhancing its
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activity, thereby promoting and sustaining inflammation in the

joint (36). Interestingly, fisetin, a natural flavonoid drug that can

alleviate MetS, eliminates high-fat diet-induced cardiac tissue

inflammation induced by MetS via inhibiting TNFR1/TRAF2

signaling (37), suggesting that TRAF2 may be a key target in the

systemic inflammatory response caused by MetS. Previous studies

have screened many diagnostic biomarkers for RA and MetS

through integrated bioinformatics analysis. Zhang et al. found

that SLAMF8 can be used as diagnostic biomarkers for RA (38),

while Yu et al. confirmed that LSP1 and GNLY have high

predictability for RA (39). In the study by Li et al., FZD7, IRAK3,

KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4 were

screened as hub genes between OA and MetS (25). These hub

genes provide new evidence for future disease diagnosis of RA and

MetS, and our results also enrich the spectrum of diagnostic

biomarkers for RA and MetS.

Nowadays, three categories of disease-modifying anti-

rheumatic drugs (DMARDs) constitute the therapeutic

armamentarium of RA, including conventional synthetic

DMARDs which are small-molecular-weight synthetic drugs

with unclear anti-inflammatory mechanisms, biological

DMARDs which are mostly monoclonal antibodies that

specifically target an individual molecule, and targeted synthetic

DMARDs which target specific enzymes within cells (1). However,

the phenomenon of pathological metabolic changes caused by RA

treatment drugs is of great concern. Previous studies have

reported that rheumatoid cachexia can persist in RA patients

receiving biotherapy, even after arthritis symptoms improve, and

treatment with anti-TNF preparations and other biologic

therapies may result in elevated lipid subcomponents. In

addition, some medications can also improve insulin sensitivity

and have different effects on adipokines (4). Thus, it is necessary to

search for drugs that can both improve RA symptoms and

metabolic abnormalities. Small molecule compounds exhibit

several advantages, including high tissue penetration, a tunable

half-life, and oral bioavailability, making them more effective (40).

Our study identified a potential small molecule compound CPT

targeting MetS-RA based on MetS-RA related pathogenic genes

through CMap analysis, providing a new research perspective for

the treatment of MetS-RA. CPT is a natural compound originally

derived from the Asian camptotheca acuminata, synthesized by

Wall and Wani in 1966. CPT is a topoisomerase I inhibitor

originally used as an anti-cancer drug, blocks DNA synthesis

and cell division leading to programmed cell death by inhibiting

topoisomerase I-DNA complex (41). An in vitro study conducted

by Jackson et al. proved that CPT could inhibit synovial cell

proliferation, angiogenesis, and collagenase expression, with

potential anti-arthritic effects, supporting the explorative use of

topoisomerase I (especially CPT) and II inhibitors as potential

agents against RA (23). And Koo et al. also performed a study in

vivo demonstrated that subcutaneous injection of low-dose CPT

could reduce joint inflammation in collagen-induced arthritis

mice (42). In line with previous studies, we also confirmed that

CPT significantly inhibited the cell migration and angiogenesis of

MetS-RA-FLS in vitro.
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There is a large number of published studies on the analysis of

immune cell infiltration in RA synovium have shown that there was

accumulation of various types of immune cells in RA synovium,

including T cells, B cells, macrophages, NK cells, mast cells, and

dendritic cells (39, 43, 44). CD4(+) T cells account for a large

proportion of the immune cells invading the RA synovium and

participate in the pathological process of RA. T follicular helper

(Tfh) cell is a subtype of CD4(+) T cells, whose main functions are

assisting B cells and regulating the production of antibodies. Tfh cell

surface and secreted molecules, including CXCR5, ICOS, and PD1,

are involved in the development of RA. Regulatory T (Treg) cells

control an excess of T-cell-mediated immune responses, and Treg

cell dysfunction can lead to the development of autoimmunity (45).

CD8(+) T cells have anti-inflammatory properties that may help

reduce ongoing autoimmune reactions in RA joints (46). NK cell-

derived cytokines and their cytotoxic functions through induction

of apoptosis take part in the regulation of the immune responses

and could contribute to the pathogenesis of RA (47). Macrophages

in the synovial membrane of RA are mainly differentiated into M1

type, which has a pro-inflammatory effect, and participate in the

pathological process of RA by secreting cytokines to recruit

mononuclear or neutrophilic granulocytes, activate T cells, and

promote FLS proliferation and activation to promote inflammation

(48). B cells in RA synovium induce the production of cytokines

such as IL-1a, IL-23, IL-12, IL-6, and TNF-a, causing bone damage,

inflammation, and immune disorders (49). Mast cells are tissue-

resident cells of the innate immunity, they are present in synovium

and their activation has been linked to the potentiation of

inflammation in the course of RA (50). In addition, dendritic cells

also have been shown to play an important role in the development

of RA (51). In this study, immunoinfiltration analysis of RA

synovium showed that CD4(+) T cells, T follicular helper cells, T

gamma delta cells, NK cells, and M1 type macrophages increased,

which was consistent with previous studies. In addition, our results

showed that CD4(+) T cells and NK cells were higher in MetS

PBMC than in controls, suggesting abnormal immune cell

regulation in the peripheral blood of MetS patients. Therefore, a

comprehensive understanding of immune cell infiltration

associated with RA synovium is essential to explore novel

diagnostic or prognostic biomarkers for RA and to further search

for therapeutic targets.

Although bioinformatics is widely applied to screen disease

diagnostic markers, however, due to individual differences in

samples, diagnostic biomarkers may produce false positive or

false negative results, leading to insufficient sensitivity and

specificity of the biomarkers. Therefore, future research should set

more standards to reduce the heterogeneity between samples and

ensure the reliability of diagnostic biomarkers.
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Camargo C. An image J plugin for the high throughput image analysis of in vitro
scratch wound healing assays. PloS One. (2020) 15:e0232565. doi: 10.1371/
journal.pone.0232565

22. Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube
formation on gelled basement membrane extract. Nat Protoc. (2010) 5:628–35.
doi: 10.1038/nprot.2010.6

23. Jackson JK, Higo T, Hunter WL, Burt HM. Topoisomerase inhibitors as anti-
arthritic agents. Inflammation Res. (2008) 57:126–34. doi: 10.1007/s00011-007-7163-6
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1431452/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1431452/full#supplementary-material
https://doi.org/10.1016/S0140-6736(23)01525-8
https://doi.org/10.3389/fmed.2022.855141
https://doi.org/10.1016/S0140-6736(05)66378-7
https://doi.org/10.1038/nrrheum.2014.121
https://doi.org/10.3390/nu15224756
https://doi.org/10.1136/ard.2006.053488
https://doi.org/10.1016/j.cmet.2017.02.006
https://doi.org/10.1016/j.cmet.2017.02.006
https://doi.org/10.1016/j.phrs.2018.01.009
https://doi.org/10.1016/j.bcp.2019.03.030
https://doi.org/10.1038/ng1570
https://doi.org/10.1146/annurev.bioeng.8.061505.095802
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1186/1471-2105-13-335
https://doi.org/10.1186/1471-2105-13-335
https://doi.org/10.1002/imt2.36
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.3390/molecules200713384
https://doi.org/10.3390/molecules200713384
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1371/journal.pone.0232565
https://doi.org/10.1371/journal.pone.0232565
https://doi.org/10.1038/nprot.2010.6
https://doi.org/10.1007/s00011-007-7163-6
https://doi.org/10.3389/fimmu.2024.1431452
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1431452
24. Zhu E, Shu X, Xu Z, Peng Y, Xiang Y, Liu Y, et al. Screening of immune-related
secretory proteins linking chronic kidney disease with calcific aortic valve disease based
on comprehensive bioinformatics analysis and machine learning. J Transl Med. (2023)
21:359. doi: 10.1186/s12967-023-04171-x

25. Li J, Wang G, Xv X, Li Z, Shen Y, Zhang C, et al. Identification of immune-
associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated
bioinformatics analysis and machine learning. Front Immunol. (2023) 14:1134412.
doi: 10.3389/fimmu.2023.1134412

26. Luo P, Xu W, Ye D, Chen W, Ying J, Liu B, et al. Metabolic syndrome is
associated with an increased risk of rheumatoid arthritis: A prospective cohort study
including 369,065 participants. J Rheumatol. (2024) 51:360–7. doi: 10.3899/
jrheum.2023-0349

27. Li Y, Wang F, Imani S, Tao L, Deng Y, Cai Y. Natural killer cells: friend or foe in
metabolic diseases? Front Immunol. (2021) 12:614429. doi: 10.3389/fimmu.2021.614429

28. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in
adipose tissue macrophage polarization. J Clin Invest. (2007) 117:175–84. doi: 10.1172/
JCI29881

29. Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque
SM, et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity.
Front Immunol. (2019) 10:82. doi: 10.3389/fimmu.2019.00082

30. Yokota K, Sato K, Miyazaki T, Aizaki Y, Tanaka S, Sekikawa M, et al.
Characterization and function of tumor necrosis factor and interleukin-6-induced
osteoclasts in rheumatoid arthritis. Arthritis Rheumatol. (2021) 73:1145–54.
doi: 10.1002/art.41666

31. de Oliveira PGFP, Bonfante EA, Bergamo ETP, de Souza SLS, Riella L, Torroni
A, et al. Obesity/metabolic syndrome and diabetes mellitus on peri-implantitis. Trends
Endocrinol Metab. (2020) 31:596–610. doi: 10.1016/j.tem.2020.05.005

32. Kubo S, Nakayamada S, Tanaka Y. JAK inhibitors for rheumatoid arthritis.
Expert Opin Invest igat ional Drugs . (2023) 32:333–44. doi : 10.1080/
13543784.2023.2199919

33. Yuan S, Wang L, Zhang H, Xu F, Zhou X, Yu L, et al. Mendelian randomization
and clinical trial evidence supports TYK2 inhibition as a therapeutic target for
autoimmune diseases. EBioMedicine. (2023) 89:104488. doi: 10.1016/j.ebiom.2023.104488

34. Collotta D, FranChina MP, Carlucci V, Collino M. Recent advances in JAK
inhibitors for the treatment of metabolic syndrome. Front Pharmacol. (2023)
14:1245535. doi: 10.3389/fphar.2023.1245535

35. Potter C, Eyre S, Cope A, Worthington J, Barton A. Investigation of association
between the TRAF family genes and RA susceptibility. Ann Rheum Dis. (2007)
66:1322–6. doi: 10.1136/ard.2006.065706

36. Wu W, Wang J, Xiao C, Su Z, Su H, Zhong W, et al. SMYD2-mediated TRAF2
methylation promotes the NF-kB signaling pathways in inflammatory diseases. Clin
Transl Med. (2021) 11:e591. doi: 10.1002/ctm2.591

37. Hu L-F, Feng J, Dai X, Sun Y, Xiong M, Lai L, et al. Oral flavonoid fisetin
treatment protects against prolonged high-fat-diet-induced cardiac dysfunction by
regulation of multicombined signaling. J Nutr Biochem. (2020) 77:108253. doi: 10.1016/
j.jnutbio.2019.108253
Frontiers in Immunology 18
38. Zhang C, Huang H, Zhang J, Huang Y, Qin Y, Li X. SLAMF8 as a potential
biomarker for rheumatoid arthritis identified by comparing peripheral blood
mononuclear cells, fibroblast-like synoviocytes, and synovial tissue using
bioinformatics analysis. Rheumatol Autoimmun. (2024) 4:99–108. doi: 10.1002/
rai2.12117

39. Yu R, Zhang J, Zhuo Y, Hong X, Ye J, Tang S, et al. Identification of diagnostic
signatures and immune cell infiltration characteristics in rheumatoid arthritis by
integrating bioinformatic analysis and machine-learning strategies. Front Immunol.
(2021) 12:724934. doi: 10.3389/fimmu.2021.724934

40. Zhang B, Dömling A. Small molecule modulators of IL-17A/IL-17RA: a patent
review (2013-2021). Expert Opin Ther Pat. (2022) 32:1161–73. doi: 10.1080/
13543776.2022.2143264

41. Stewart L, Redinbo MR, Qiu X, Hol WG, Champoux JJ. A model for the
mechanism of human topoisomerase I. Science. (1998) 279:1534–41. doi: 10.1126/
science.279.5356.1534

42. Koo OMY, Rubinstein I, Onyüksel H. Actively targeted low-dose camptothecin
as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm
Res. (2011) 28:776–87. doi: 10.1007/s11095-010-0330-4

43. Ao Y, Wang Z, Hu J, Yao M, Zhang W. Identification of essential genes and
immune cell infiltration in rheumatoid arthritis by bioinformatics analysis. Sci Rep.
(2023) 13:2032. doi: 10.1038/s41598-023-29153-3

44. Zhou S, Lu H, Xiong M. Identifying immune cell infiltration and effective
diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis. Front
Immunol. (2021) 12:726747. doi: 10.3389/fimmu.2021.726747

45. Kondo Y, Yokosawa M, Kaneko S, Furuyama K, Segawa S, Tsuboi H, et al.
Review: transcriptional regulation of CD4+ T cell differentiation in experimentally
induced arthritis and rheumatoid arthritis. Arthritis Rheumatol. (2018) 70:653–61.
doi: 10.1002/art.40398

46. Carvalheiro H, da Silva JAP, Souto-Carneiro MM. Potential roles for CD8(+) T
cells in rheumatoid arthritis. Autoimmun Rev. (2013) 12:401–9. doi: 10.1016/
j.autrev.2012.07.011

47. Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, et al.
The role of natural killer cells in autoimmune diseases. Front Immunol. (2021)
12:622306. doi: 10.3389/fimmu.2021.622306

48. Boutet M-A, Courties G, Nerviani A, Le Goff B, Apparailly F, Pitzalis C, et al.
Novel insights into macrophage diversity in rheumatoid arthritis synovium.
Autoimmun Rev. (2021) 20:102758. doi: 10.1016/j.autrev.2021.102758

49. Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, et al. B cells in rheumatoid arthritis:
Pathogenic mechanisms and treatment prospects. Front Immunol. (2021) 12:750753.
doi: 10.3389/fimmu.2021.750753

50. Rivellese F, Nerviani A, Rossi FW, Marone G, Matucci-Cerinic M, de Paulis A,
et al. Mast cells in rheumatoid arthritis: friends or foes? Autoimmun Rev. (2017)
16:557–63. doi: 10.1016/j.autrev.2017.04.001

51. Wehr P, Purvis H, Law S-C, Thomas R. Dendritic cells, T cells and their
interaction in rheumatoid arthritis. Clin Exp Immunol. (2019) 196:12–27. doi: 10.1111/
cei.13256
frontiersin.org

https://doi.org/10.1186/s12967-023-04171-x
https://doi.org/10.3389/fimmu.2023.1134412
https://doi.org/10.3899/jrheum.2023-0349
https://doi.org/10.3899/jrheum.2023-0349
https://doi.org/10.3389/fimmu.2021.614429
https://doi.org/10.1172/JCI29881
https://doi.org/10.1172/JCI29881
https://doi.org/10.3389/fimmu.2019.00082
https://doi.org/10.1002/art.41666
https://doi.org/10.1016/j.tem.2020.05.005
https://doi.org/10.1080/13543784.2023.2199919
https://doi.org/10.1080/13543784.2023.2199919
https://doi.org/10.1016/j.ebiom.2023.104488
https://doi.org/10.3389/fphar.2023.1245535
https://doi.org/10.1136/ard.2006.065706
https://doi.org/10.1002/ctm2.591
https://doi.org/10.1016/j.jnutbio.2019.108253
https://doi.org/10.1016/j.jnutbio.2019.108253
https://doi.org/10.1002/rai2.12117
https://doi.org/10.1002/rai2.12117
https://doi.org/10.3389/fimmu.2021.724934
https://doi.org/10.1080/13543776.2022.2143264
https://doi.org/10.1080/13543776.2022.2143264
https://doi.org/10.1126/science.279.5356.1534
https://doi.org/10.1126/science.279.5356.1534
https://doi.org/10.1007/s11095-010-0330-4
https://doi.org/10.1038/s41598-023-29153-3
https://doi.org/10.3389/fimmu.2021.726747
https://doi.org/10.1002/art.40398
https://doi.org/10.1016/j.autrev.2012.07.011
https://doi.org/10.1016/j.autrev.2012.07.011
https://doi.org/10.3389/fimmu.2021.622306
https://doi.org/10.1016/j.autrev.2021.102758
https://doi.org/10.3389/fimmu.2021.750753
https://doi.org/10.1016/j.autrev.2017.04.001
https://doi.org/10.1111/cei.13256
https://doi.org/10.1111/cei.13256
https://doi.org/10.3389/fimmu.2024.1431452
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Identification of diagnostic genes and drug prediction in metabolic syndrome-associated rheumatoid arthritis by integrated bioinformatics analysis, machine learning, and molecular docking
	Introduction
	Materials and methods
	Microarray data collecting and processing
	Differentially expressed genes analysis
	Functional enrichment analysis
	Weighted gene co-expression network analysis
	Machine learning
	The construction of nomogram, the assessment of diagnostic marker prediction model, and the evaluation of diagnostic models in the external cohort
	Protein-protein interaction network analysis and cluster analysis
	Connectivity map analysis
	Molecular docking
	Immune cell infiltration analysis
	Demographic and metabolic characteristics of RA patients
	Human synovial sample collection and RA-FLS isolation
	The validation of the expression of hub genes
	The effect of small molecule compounds on cell function
	Cell counting kit-8 for cell viability
	Wound-healing assays
	Angiogenesis experiments
	Statistical analysis

	Results
	Data processing, identification of DEGs and GSEA enrichment analysis
	Construction of WGCNA and identification of key module genes in MetS dataset
	MetS key genes screening and enrichment analysis
	MetS-RA key genes screening and enrichment analysis
	Screening of hub genes for MetS-RA diagnosis via machine learning
	Identification of candidate small molecule compounds and molecular docking
	Validation of the expression of hub genes and the effect of camptothecin on cell migration and angiogenesis of MetS-RA-FLS
	Immune cell infiltration and correlation analysis in MetS and RA

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


