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The intricate interplay between the gut microbiome and colorectal cancer (CRC)

presents novel avenues for early diagnosis and prognosis, crucial for improving

patient outcomes. This comprehensive review synthesizes current findings on

the gut microbiome’s contribution to CRC pathogenesis, highlighting its

potential as a biomarker for non-invasive CRC screening strategies. We explore

the mechanisms through which the microbiome influences CRC, including its

roles in inflammation, metabolism, and immune response modulation.

Furthermore, we assess the viability of microbial signatures as predictive tools

for CRC prognosis, offering insights into personalized treatment approaches. Our

analysis underscores the necessity for advanced metagenomic studies to

elucidate the complex microbiome-CRC nexus, aiming to refine diagnostic

accuracy and prognostic assessment in clinical settings. This review propels

forward the understanding of the microbiome’s diagnostic and prognostic

capabilities, paving the way for microbiome-based interventions in

CRC management.
KEYWORDS

colorectal cancer, gut microbiome, disease detection, disease progression,
health research
1 Introduction

Colorectal cancer (CRC) is a significant health challenge worldwide and is a leading

cause of cancer-related deaths globally (1, 2). According to a study, the link between gut

microbiota and CRC seems to be primarily present in the white population, and this

connection varies among different races. Certain bacteria are significantly associated with
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CRC in white women, while the link between Bacillus and CRC is

most prominent in black women (3). The development of the CRC

condition is influenced by genetic predisposition, lifestyle factors

like physical inactivity and smoking, dietary habits such as the

consumption of red and processed meats and alcohol, and exposure

to various environmental substances (4). Research has shown that

chronic psychosocial stress may increase inflammation, disrupt the

gut microbiome, and increase the risk of early-onset colorectal

cancer (5). All of these factors contribute to the complex nature of

the condition. Despite advances in screening and treatment, early

detection and accurate prognosis are crucial for improving survival

rates. Recent studies have shown that the gut microbiome plays a

pivotal role in CRC pathogenesis, indicating its potential for

developing non-invasive diagnostic and prognostic tool (6).

The gut microbiome is a complex group of microorganisms that

reside in the human gastrointestinal tract. It has been increasingly

recognized for its impact on host health and disease development,

including colorectal cancer. Studies have shown that an imbalance

of gut microbiota, known as microbial dysbiosis, is linked to the

initiation, progression, and treatment response of CRC (7). This

review aims to explore the current understanding of the gut

microbiome’s role in CRC, with a focus on how it can improve

diagnostic accuracy and prognostic assessment.

There is mounting evidence to suggest that the gut microbiota

plays a crucial role in the initiation, progression, and metastasis of

CRC (8–10). In terms of gene count, the human gut microbiota

surpasses the human genome, despite the vast array of

microorganisms present (11, 12). A healthy gut microbiota is

essential for various critical roles, such as energy acquisition,

defending against pathogens, shaping the intestinal epithelium,

and maintaining immune function (13–16). Dysbiosis of the gut

microbiota can disrupt host physiological functions, leading to

various diseases (17, 18). The gut microbiota is also influential in

several crucial physiological processes, including metabolism,

immunity, and the production of nutritional substances (19).

Kostic et al. proposed a mechanism in which Fusobacterium

nucleatum increases the concentration of immune cells that

infiltrate tumors, leading to the establishment of an inflammatory

environment that promotes the progression of CRC (20, 21). Wu

et al. reported that enterotoxigenic Bacteroides fragilis (ETBF)

secretes toxin BFT, which stimulates the translation and

transcription of the proto-oncogene c-Myc, resulting in sustained

cell proliferation (22). ETBF induces colitis, activates signaling

transducer and activator of transcription 3 (STAT3), and T-

helper 17 cell responses in multiple intestinal neoplasia (Min)

mice with colon tumors (23). Researchers have identified

cyclopropane rings in colibactin secreted by Escherichia coli,

which may induce DNA alkylation in vivo , potentially

contributing to the development of CRC (24). Rohani et al.

demonstrated at the genetic level that E. coli K-12 can be

considered an important probiotic that may reduce the risk of

CRC development (25). There is limited research on the role of

bacterial depletion in the development of intestinal tumors due to a

lack of appropriate technologies. The absence of certain bacterial

strains that are either protective or beneficial may be as crucial as

the overgrowth of bacteria associated with tumors (26). The gut
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microbiota’s diversity, relative abundance, and distribution differ

significantly between adenoma patients and healthy individuals

(27). CRC patients have alterations in the abundance of bacteria

such as Fusobacterium, Enterococcus, and Prevotella, which are

associated with mucosal gene expression patterns and may

contribute to CRC development. Studies have also shown an

increased incidence of CRC in individuals with Salmonella

enterica infection. The overall abundance of Enterobacteriaceae in

CRC tissues exceeds that in normal tissues by more than 400

times (28).

There are different theories about the relationship between CRC

and the gut microbiota. One of these theories is the alpha-bug

hypothesis, which suggests that certain bacterial groups can cause

cancer and change the bacterial community in a way that supports

cancer growth (23, 29–32). Another theory is the CRC gene driver-

passenger model, which divides microbiota into driver and passenger

bacteria and explains differences in research findings (33, 34).

We analyze how gut microbiota contribute to CRC by

examining the findings from recent metagenomic studies. We

explore their effects on inflammation, immune modulation, and

metabolic processes. Furthermore, we evaluate the potential of

emerging microbiome-based biomarkers for CRC screening and

prognosis. These biomarkers could complement existing diagnostic

methods and facilitate personalized treatment strategies. By

summarizing these advancements, we underscore the importance

of microbiome research in the quest for better cancer management

strategies. This introduction sets the stage for a detailed

examination of the gut microbiome’s diagnostic and prognostic

potential in CRC.
2 Deciphering the gut microbiome:
toward early detection and precise
prognosis in CRC

2.1 Underlying mechanisms: how the gut
microbiome influences CRC development

2.1.1 Inflammation and immune
Colorectal cancer (CRC) and inflammatory bowel disease (IBD)

are both characterized by ecological imbalances that can disrupt the

mucosal barrier, leading to inflammation and the development of

cancer. This ecological imbalance can create a positive feedback

loop, which forms the foundation of the inflammation dysplasia

cancer sequence (35). It is worth noting that the presence of IBD is

often linked to an increased risk of CRC in younger people, but it is

not a prerequisite for developing CRC (36–38). Inflammatory

reactions can break down the barrier and perpetuate the process

of inflammation by causing bacteria to migrate to the intestinal

cavity and initiate immunity and inflammation. Inflammatory cells

can promote the growth of CRC and induce maldevelopment.

Under normal circumstances, epithelial cells reduce oxygen

utilization to create an anaerobic environment. However, chronic

inflammation leads to an increase in oxygen availability, creating an

ecological imbalance that allows pathogenic bacteria such as E. coli
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to proliferate. These bacteria produce colibactin, a toxin that can

destroy DNA and stimulate the growth of tumors. Colibactin

induces DNA double-strand breaks by alkylating DNA bases,

which triggers replication stress and promotes mutagenesis (39).

This direct DNA damage can accumulate over time, ultimately

driving tumorigenesis (40). In addition to being a direct DNA-

damaging agent, colibactin is linked to inflammation: colibactin-

induced DNA damage can activate inflammatory pathways, such as

NF-kB, triggering the release of inflammatory cytokines (41). This

sets off a feedback loop in which DNA damage triggers

inflammation (42), and inflammation further promotes bacterial

colonization and DNA damage (43). Over time, chronic

inflammation and DNA damage synergistically drive CRC by

enhancing cell proliferation and mutagenesis (44), and genomic

instability (45). As a result, the inflammatory environment in the

gut not only facilitates the colonization of colibactin-producing

bacteria but also amplifies DNA damage, further driving cancer

development. Moreover, ETBF produces a toxin that triggers

inflammatory signaling, promoting the growth of colorectal

cancer (Figure 1) (35). The toxin known as Bacteroides fragilis

toxin (BFT), also referred to as fragilysin (46). BFT is a

metalloprotease that specifically targets the E-cadherin protein,

which plays a critical role in maintaining tight junctions between

epithelial cells (47). The toxin cleaves E-cadherin, thereby
Frontiers in Immunology 03
disrupting the epithelial barrier and resulting in increased

intestinal permeability (48). This disruption triggers an

inflammatory response by activating the nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) pathway (49).

BFT’s activity can lead to diarrhea and inflammation, and it has

been linked to the promotion of colorectal cancer due to its role in

chronic inflammation and cellular alterations (50).

In patients with IBD, damage to the mucus layer allows bacteria

to penetrate the mucosa, resulting in hyperplasia and inflammation

(51). Inflammatory damage-induced mucosal disruption allows

more bacteria to enter, forming a malignant positive feedback

loop of antigen exposure and mucosal injury (52). ETBF is the

most common anaerobic bacterium, and its presence is positively

correlated with IBD and CRC (53). According to the research of

Appunni et al., the cocolonization of toxigenic E. coli and ETBF in

mice leads to increased generation of proinflammatory IL-17

followed by DNA damage, potentially accelerating CRC

development (Figure 2) (54). Currently, E. coli strains containing

pks islands express colibactin genes, which have certain effects on

the host’s DNA, genes, and chromosomes (Figure 1) (55). This may

be due to the association of E. coli effector proteins with the DNA

mismatch repair system (56). Recent findings have also identified

this pathogenic island in E. coli (57). Pks-positive E. coli promotes

the development of cancer by activating transforming growth factor
FIGURE 1

Mechanisms by which the intestinal flora affects the development of CRC. Escherichia coli and ETBF can cause DNA damage. The development of
colon tumors is closely associated with the activation of STAT3 and the Th17 response. BA, SCFAs, ETBF, and F. nucleatum can activate STAT3,
promoting tumor initiation and growth. However, STAT3 activation alone is not sufficient to trigger colon tumors. Escherichia coli participates in
tumor development through Th1 and Th17 immune responses, which induce inflammation. F. nucleatum inhibits NK cells by interacting with T-cell
immune receptors. After activating STAT3, some bacteria lead to IL-17-dependent NF-kB activation, resulting in CXCR2 expression and promoting
the recruitment of bone marrow cells. SCFAs produced through metabolism promote the differentiation of naive T cells into Th1 cells. BA induces
oxidative DNA damage and activates NF-kB, affecting overall immune function.
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b-activated kinase 1 and RhoA GTPase (58). Minute amounts of

Saccharomyces cerevisiae, a yeast, induce a Th-17 cell response and

proinflammatory cytokine secretion via the activation of signaling

pathways mediated by Toll-like receptors (TLRs) and nucleotide-

binding oligomerization domain (NOD)-like receptors. These

receptors, which act through NF-kB or STAT3, serve as primary

sensors for bacterial products and play crucial roles in the

prevention of CRC and the inhibition of inflammatory processes

(Figure 2) (59). According to previous studies, Streptococcus bovis

induces the release of inflammatory cytokines (TNF-a、IL-6、IL-

1b、IL-8) in CRC cells, creating a pro-inflammatory environment

that promotes tumor progression (60). Preliminary clinical trials

have demonstrated that ginger consumption leads to a notable

decrease in inflammatory markers among participants. While the

impact on the overall microbiome appears to be modest, there is a

significant reduction in certain microbial taxa, which correlates

with the observed anti-inflammatory effects (61). These findings

bring hope to those affected by this disease and emphasize the

significance of ongoing research on the interplay between

microorganisms and cancer cells. Partial inflammation-induced

disturbances in intestinal homeostasis directly affect the

development of colorectal cancer.

Immune system dysfunction in intestinal epithelial cells plays a

crucial role in maintaining the stability of the intestinal

microenvironment. Research indicates that infection-induced
Frontiers in Immunology 04
carcinogenesis is directly associated with endogenous T-cell

immune responses.

In a study conducted by Wu et al., it was revealed that the Th17

response plays a significant role in the early stages of carcinogenesis

(23). This response is driven by STAT3 activation, which is closely

linked to the Th17 response. In mice, ETBF infection induces colitis,

strongly promoting colon tumor development. However, the IL-17-

mediated signaling pathway and the IL-23 receptor can be blocked

using antibodies to inhibit ETBF-induced colitis, colonic hyperplasia,

and tumor formation (26). The presence of ETBF can stimulate the

recruitment and growth of specific immune cells such as CD4+,

CCR6+, IL-17A+, and Th17 cells. This happens through the IL-17

signaling pathway, which can contribute to the initiation and growth

of tumors. However, while STAT3 activation is a necessary condition

for colon tumor development, it is not enough to trigger colon

tumors solely through ETBF (47, 62). IL-17-dependent NF-kB

activation leads to CXCR2 expression, promoting the recruitment

of myeloid cells and thus facilitating ETBF-mediated colon tumor

development (Figure 1) (63).

The reduction of ETBF toxin in T lymphocyte utilization of IL-2

promotes the polarization of Th17 lymphocytes and leads to colon

tumor development (64, 65). Research on other bacteria, such as

Citrobacter rodentium and E. coli, has also revealed their

involvement in tumor development through Th1/Th17 immune

responses, which induce inflammation (Figure 1) (66).
FIGURE 2

Inflammation. Escherichia coli and ETBF lead to increased generation of IL-17 followed by DNA damage. Additionally, pks-positive Escherichia coli
promotes the development of cancer through two pathways. S. cerevisiae induces TLRs and NOD. Thus, TH-17 cells and proinflammatory cytokines
are secreted. These receptors act through NF-kB or barrier STAT3.
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Fusobacterium nucleatum, through interaction with T-cell

immune receptors, inhibits the cytotoxicity of NK cells,

contributing to the regulation of tumor immunity (Figure 1) (67).

These studies provide a new perspective for in-depth exploration of

the regulatory network between the intestinal microbiome and the

immune system.

2.1.2 Metabolism
The development of tumors is accompanied by changes in

metabolic status that affect the microenvironment of the tumor

tissue and its surroundings. Both host and dietary components are

metabolized together, and the gut microbiota produces various

compounds that fulfill their survival requirements while

metabolizing different dietary and parasitic components. Diet, in

particular, has a significant impact on the metabolic output of the

gut microbiota. Bile acids (BAs) and short-chain fatty acids (SCFAs)

are important components that play a vital role in the interaction

between microorganisms and the host. They are the products of

metabolism and can act as protective or harmful agents in the

development of CRC (Figure 1) (68). The impact of metformin on

the gut microbiota has been reported, with some results indicating

that metformin increases the abundance of short-chain fatty acid-

producing bacteria and mucin-degrading bacteria, thereby

promoting the enrichment of beneficial bacteria through

metabolic processes (69). The immune system is triggered by the

interaction of immune cells with the microbiota in the intestine.

This interaction is facilitated by SCFAs produced by various types

of bacteria including Firmicutes, Bacteroides, Actinobacteria,

Proteobacteria, and Verrucomicrobia (70). SCFAs provide energy
Frontiers in Immunology 05
to intestinal cells in the host. The activation of immune cells by

SCFAs helps in the differentiation of naive T cells into Th1 cells

thereby enhancing immune defense. Additionally, dendritic cells

that are activated by SCFAs help guide the differentiation of naive T

cells into effector T cells thus affecting overall immune function

(Figure 3A) (71). There are certain bacteria, such as Fusobacterium

nucleatum and E. coli, which are related to colorectal cancer. These

bacteria impact tumor development and immune responses

through different mechanisms. Additionally, the Lingnan fungus

activates NF-kB, which in turn induces the proliferation of tumor

bone marrow cells in ApcMin/+ mice. Simultaneously, it modulates

the frequencies of regulatory T cells, Th-17 cells, and CD8+ T cells

(Figure 3C) (72). E. coli microbiota stimulation prompts colorectal

cancer cells to release chemokines, facilitating the recruitment of T

cells into the tumor tissue (73).

In the onset of tumors, metabolites from microbial metabolism

play a crucial role. Bacterial bile salt hydrolases catalyze the

conversion of primary bile acids into secondary bile acids,

including deoxycholic acid and lithocholic acid (74). Individuals

consuming high-fat diets commonly exhibit an increase in

secondary bile acid in the colon, which is correlated with an

increased risk of colon cancer. It contributes to oncogenesis

through distinct mechanisms. They directly damage the colonic

epithelial barrier, induce oxidative DNA damage, cause genomic

instability, and activate NF-kB, collectively facilitating the initiation
of tumors (Figure 3B). Specific secondary bile acids, such as

deoxycholic acid and lithocholic acid, accelerate carcinogen-

induced colon cancer, particularly in the presence of a functional

mutation in the Apc gene. However, ursodeoxycholic acid,
FIGURE 3

Metabolism. (A) SCFAs promote naive T cells to transform into Th1 cells. SCFA-activated dendritic cells direct the maturation of naive T cells into
effector T cells, influencing overall immune function. (B) The impact of a high-fat diet on the body. (C) Effect of Lingnan fungi on the proliferation of
tumor bone marrow cells.
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produced by Lactobacillus, plays a protective role in inhibiting CRC

development (59). Through comprehensive analyses of the gut

microbiota and metabolome, ongoing research continues to

unravel the intricate interplay between microbial communities

and dietary factors in the CRC environment (75, 76). Polyamines

are organic polycations involved in cell proliferation, differentiation,

tissue repair, apoptosis, angiogenesis, immune response, signal

transduction, and gene expression (77). Elevated levels of

polyamine metabolites in biofilms are linked with cell

proliferation and CRC. One particular polyamine metabolite,

which has been proposed as an early CRC marker, increases in

tumors regardless of the presence of biofilm. Compared to healthy

tissues, CRC tissues display increased polyamine concentrations,

and polyamines promote carcinogenic signaling (78). Current

evidence suggests that any polyamine from various sources, such

as diet, microbiota, or tissues, can drive tumorigenesis (79).

Lysophosphatidic acid (LPA), a promoter of cell proliferation and

cell cycle acceleration in CRC cell lines and organoids derived from

CRC patients, has emerged as a significant player in CRC

pathogenesis. Relevant analysis revealed a close association

between infective species and LPA, the metabolic product known

to stimulate proliferation (80). Distinct changes are observed in the

serum metabolome of CRC patients, particularly in amino acid

profiles. The levels of metabolites related to branched-chain amino

acids (BCAAs), aromatic amino acids, and phenylalanine typically

increase (81). However, evidence indicates that a higher intake of

dietary BCAAs may not be associated with an increased risk of CRC

but could be related to a lower risk of colorectal cancer (82).

Alanine, which was identified as relevant to CRC in one study,

has been reported to be a crucial survival signal in certain

gastrointestinal tumors (83). Lactobacillus subtilis has the ability

to break down tryptophan, thereby producing indole-3 -lactic acid

(ILA) that targets ROR g t. Through this action, it can effectively

inhibit Th17 differentiation, reduce IL-17 expression, and

potentially prevent the occurrence of colorectal cancer (84).

Metabolic changes in tumor cells can provide valuable

information for detecting biomarkers of tumor onset. These

changes can more directly reflect the state of tumor cells

compared to changes in the genome and proteome. We propose

that exploring the relationship between amino acid metabolites and

the gut microbiota can reveal distinctive characteristics across

various stages of CRC. Studies have suggested that the

metabolites produced by the gut microbiota can enter the

circulation and regulate distant organs. Therefore, investigating

serum metabolites that are closely associated with colorectal

cancer holds promise for developing novel diagnostic biomarkers.

Compared to changes in the genome and proteome, metabolic

changes can more directly reflect the state of tumor cells. This

makes them a promising source for detecting biomarkers of tumor

onset. We believe that by studying the relationship between amino

acid metabolites and the gut microbiota, we can identify distinct

characteristics at different stages of colorectal cancer. Several studies

suggest that metabolites produced by the gut microbiota can enter

circulation and regulate distant organs. Recent evidence indicates

that a relationship exists between sex hormones and the gut

microbiome. The gut microbiome’s composition and function, as
Frontiers in Immunology 06
well as its metabolites, are regulated by sex hormones, while the gut

microbiome significantly impacts sex hormone levels. A study has

revealed that estrogen may have a protective effect on female CRC

(85). Therefore, exploring serum metabolites closely associated with

colorectal cancer can hold promising potential for developing novel

diagnostic biomarkers. Potential biomarkers for early detection of

CRC based on gut microbiome are summarized in Table 1.
3 Microbiome-based diagnostics:
revolutionizing CRC detection

According to current research, biomarkers are classified into

three categories: highly evident, moderately evident, and

biomarkers with low sensitivity for CRC diagnosis, reflecting

varying levels of validation. An overview is provided in Figure 4.
3.1 Microbial biomarkers: pioneering
noninvasive screening and diagnosis
in CRC

3.1.1 Fecal metagenomic analysis
Studies of gut bacteria associated with adenoma and/or CRC

development are summarized in Table 2. CRC can be divided into

two types: early-onset (EO-CRC) and late-onset (LO-CRC)

colorectal cancer. Fecal metagenomic analysis showed that

perfluorobutane sulfonic acid (PFOS) continuously accumulated

in LO-CRC and BO-CRC samples, indicating potential ecological

toxicity (101). In both types of colorectal cancer, L-phenylalanine

and D-tyrosine levels increase significantly in amino acid

metabolism. However, only in EO-CRC samples, certain

amino acids and their microbial derivatives were enriched. In

fecal samples, a decrease in butyrate-producing bacteria

(Faecalibacterium, Rectalibacter, and Roseburia), a reduction in

short-chain fatty acid (SCFA) acetate, and downregulation of

GABA biosynthetic genes were observed in LO-CRC (102). Both

CRC types showed an increase in Clostridium difficile and

Helicobacter pylori, which had a negative correlation with

reduced SCFA acetate in LO-CRC (103, 104).

Apart from colorectal cancer, elevated levels of oral pathogens,

including Fusobacterium, Moryella, and Lachnoclostridium, were

found in the intestinal microbiota affected by colorectal adenomas,

indicating early events of intestinal dysbiosis in colorectal tumor

development (105). The enriched oral pathogens in CRC patients

include Fusobacterium, Gemella, and Streptococcus (106, 107).

Certain colon-resident bacteria, such as ETBF, pks+ E. coli, and

Enterococcus faecalis, are enriched in colorectal cancer patients

(108, 109). It has been established that certain bacteria are

associated with the development of colorectal cancer, but it’s not

clear whether they act alone or in combination with other

microorganisms to accelerate the disease. A combination of four

bacteria found in feces, namely Clostridium butyricum, Bacteroides

fragilis, Clostridium pathways, and an undefined species m7, only

slightly increased the ability to detect colorectal cancer.
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There is a hypothesis that certain beneficial probiotics could be

absent in the development of CRC. These probiotics could have

mutually exclusive relationships with pathogenic microbes and

could also engage in competitive or antagonistic interactions (110–

114). Research has aimed to identify factors influencing pathogenic

probiotics in the human body, to normalize gut microbiota, improve

gastrointestinal barrier function, reduce tumor formation, and inhibit

CRC cell proliferation, growth, and metastasis (115). Studies indicate

that alterations in the composition of intestinal fungi are associated

with colorectal cancer development. Complex relationships between

fungi and bacteria, including antagonistic interactions, may contribute

to the onset of colorectal cancer. Bacterial differential abundance

analysis revealed a significant mutual exclusion relationship only

between Geobacteraceae and bacteria. Changes in CRC-specific

intra- and interdomain ecological networks suggest coexistence and

antagonistic interactions within the bacteria-fungi network, with

potential contributions from fungal synergies to CRC development

(116). It’s worth noting that the gut microbiome of CRC patients

exhibits varying enrichments of specific bacteria based on their body

weight. In particular, Actinomyces, Desulfovibrio, and Bacteroides are

more prevalent in the gut microbiota of obese CRC patients, while

Bacteroides and Prevotella are more abundant in the microbiota of

CRC patients with normal body weight (117). Research on archaea

indicates an association between the enrichment of halophilic archaea

and the reduction of methanogenic archaea with CRC. Studies further

revealed mutualistic and antagonistic relationships between archaea

enriched in CRC and bacteria enriched or depleted in CRC,

collectively promoting CRC (84, 118). Research indicates that

bacteria linked to gum disease may spread to the colon, causing

microbial imbalance, compromising colonic defense mechanisms, and

elevating the levels of harmful metabolites and proteolytic activity,

resulting in inflammation and potentially cancerous growth (119).

Analysis of mouthwash samples through 16S rRNA gene sequencing
Frontiers in Immunology 07
indicated that oral pathogenic taxa positively and negatively impact

CRC development (120). Several studies, including the one conducted

by Flemer et al., have identified particular oral bacteria linked to CRC.

They analyzed microbial communities in oral, colonic mucosal tissues,

and fecal samples from CRC patients to make these findings.

Additionally, after radiotherapy, patients with rectal cancer may

experience changes in their oral microbiota due to damage to the

intestinal mucosal barrier (121).
3.1.2 Fecal immunochemical test
In CRC screening , the per formance of the feca l

immunochemical test (FIT) is somewhat limited due to the

influence of the critical value of hemoglobin, with a sensitivity

ranging from 91% to 71% (123).

3.1.3 Nanogold particles
GNPs have attracted significant interest in disease detection

because of their distinctive properties. Colloidal gold

immunological analysis technique is a crucial technology in FIT.

It serves as a linking scaffold to improve the collective detection

sensitivity of DNA and antibodies (124). The colloidal gold

approach primarily involves utilizing primary and related

secondary antibodies to achieve sensitivities and specificities

exceeding 80% for detecting colorectal cancer. Therefore, the

colloidal gold method has become one primary approach for

colorectal cancer diagnosis (125). Comparing several bacterial

species using FIT and fecal occult blood tests revealed that

incorporating F. nucleatum screening can enhance the accuracy

and sensitivity of FIT. When combined with other bacterial strains,

it showed increased sensitivity and specificity. SEPTIN9 combined

with FIT improved the sensitivity of CRC detection to 94.4-98%,

while maintaining a specificity of 69%. Fecal microbial markers
TABLE 1 Potential biomarkers for early detection of CRC based on gut microbiome.

Marker Mechanism/Role in CRC Potential Application References

Fusobacterium nucleatum
Promotes inflammation, immune evasion, and tumor growth via adhesion to
E-cadherin and modulation of the immune system

Early detection, prognosis (20, 86)

Enterotoxigenic
Bacteroides fragilis (ETBF)

Produces Bacteroides fragilis toxin (BFT), disrupting epithelial integrity and
inducing chronic inflammation

Biomarker for CRC risk in
inflammatory conditions

(87, 88)

Escherichia coli (pks+)
Induces DNA double-strand breaks through colibactin, promoting genomic
instability and mutagenesis

Early detection in high-
risk individuals

(89, 90)

Bacteroides spp.
Dysbiosis in gut microbiome leads to imbalance in short-chain fatty acids and
promotes carcinogenesis

Detection of early dysbiosis linked
to CRC

(91)

Short-chain fatty
acids (SCFAs)

Anti-inflammatory properties; SCFA dysregulation associated with CRC
Biomarker for microbial dysbiosis and
CRC risk

(92, 93)

Lipopolysaccharide (LPS)
Pro-inflammatory component that stimulates immune response; elevated in
CRC patients

Biomarker for gut inflammation and
CRC development

(94)

Akkermansia muciniphila
Modulates mucin production and maintains gut barrier function; low levels
linked to inflammation and CRC development

Prognostic marker for
disease progression

(95, 96)

Streptococcus gallolyticus
Associated with CRC through bacterial adhesion, triggering inflammation and
promoting carcinogenesis

Marker for CRC risk, especially in
CRC-associated bacteremia

(97, 98)

Faecalibacterium
prausnitzii

Anti-inflammatory properties through butyrate production, maintaining
epithelial barrier integrity

Lower abundance associated with
CRC; marker for gut health

(99, 100)
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FIGURE 4

Categorization of biomarkers for colorectal cancer diagnosis. Biomarkers for colorectal cancer (CRC) diagnosis can be categorized into three levels
of evidence based on their sensitivity and specificity. The "Highly Evident Biomarkers" group includes Fusobacterium nucleatum, frequently enriched
in CRC patients and shown to enhance the sensitivity of the fecal immunochemical test (FIT) when used in conjunction with other diagnostic tools.
Additionally, Clostridium difficile has been found to increase in both early- and late-onset CRC cases, suggesting a strong correlation with CRC
development. Oral pathogens such as Fusobacterium, Gemella, and Streptococcus are also strongly associated with CRC. In the "Moderately Evident
Biomarkers" category, Clostridium butyricum, Bacteroides fragilis, and Clostridium pathways—along with an undefined species, m7—provide
moderate detection capabilities, albeit less prominent than the highly evident group. Elevated levels of L-phenylalanine and D-tyrosine are observed
in amino acid metabolism specific to early-onset CRC samples. Furthermore, enriched bacteria such as enterotoxigenic Bacteroides fragilis (ETBF),
pks+ Escherichia coli, and Enterococcus faecalis are found in CRC patients, though their independent or synergistic roles in CRC development are
not fully understood. Lastly, the "Low Sensitivity Biomarkers" category includes reduced levels of Faecalibacterium, Rectalibacter, and Roseburia in
late-onset CRC cases, though their absence alone is insufficient for a definitive diagnosis. Geobacteraceae, which exhibits a mutual exclusion
relationship with other bacteria, shows weaker evidence for CRC detection. Finally, the fecal occult blood test (FOBT) has limited sensitivity and
specificity, often yielding false positives, making it a less reliable biomarker.
TABLE 2 Studies of gut bacteria associated with adenoma and/or CRC development.

Indicators/
Discoveries

Colorectal
Cancer
Types

Relevant Information/Trends

Perfluorooctane Sulfonic
Acid (PFOSA)

LO-CRC Accumulates continuously in LO-CRC and BO-CRC samples, with potential ecological toxicity (101).

Amino Acid Metabolites EO-C O-CRC
Levels of L-phenylalanine and D-tyrosine significantly increased in both CRC types, while specific amino acids and

their microbial derivatives were enriched only in EO-CRC samples (102).

Butyrate-Producing Bacteria EO-CRC Decreased in fecal samples, including fecal Enterobacter, rectal Clostridium, and Roseburia (102).

Short-Chain Fatty Acids
(SCFAs) Acetate

LO-CRC Decreased in LO-CRC, negatively correlated with increased frail spore rods and Helicobacter pylori (103, 104).

GABA Biosynthetic Genes LO-CRC Downregulated in LO-CRC (102).

Oral Pathogens CRC
Elevated levels in the gut microbiota of colorectal adenoma patients, including Clostridium difficile, Moryella, and

Lachnoclostridium species (105).

Enriched Oral Pathogens CRC Enriched in colorectal cancer patients, including Clostridium difficile, Micrococcus, Streptococcus, etc (106, 107).

Colorectal Resident Bacteria CRC
Specific colon-resident bacteria enriched in colorectal cancer patients, such as enterotoxigenic frail rod-like bacteria,

pks+ Escherichia coli, lithocholic acid chain cocci, etc (108, 109).

Bacterial
Combination Testing

CRC
Slightly improved sensitivity in detecting CRC, including Fusobacterium, Bacteroides, Haemophilus, and an

undefined species.

Depleted Probiotics CRC
Includes thermophilic Streptococcus, Streptococcus salivarius, Lactobacillus gallinarum, butyric acid bacillus, and malt-

flavored meat rod bacillus, These probiotics engage in competitive or antagonistic interactions with pathogenic
microorganisms (110–114).

Fungal Colonization CRC
Continuously enriched fungi include Rhizopus oryzae, and Cordyceps, while continuously decreased fungi include

Aspergillus. Coexistence and mutual exclusion patterns exist between fungi and bacteria (84, 116).

Archaea CRC
Patient's fecal samples have more halophilic archaea and fewer methane-producing archaea, halophilic bacteria,

etc (122).
F
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have demonstrated potential in detecting colorectal adenomas, with

a combination of several bacteria obtaining an area under the curve

(AUC) of 0.90 (126, 127). The determination of differences in BAs

and SCFAs in CRC patients provides a direction for further large-

scale clinical studies (68).

3.1.4 Fecal occult blood test based on guaia
wood resin

There are two methods: the FIT and the fecal occult blood test

(FOBT). It can be utilized to detect the presence of blood in the

feces. FOBT has benefits including speed, convenience, and

noninvasiveness, however its sensitivity and specificity are rather

limited. FOBT utilizes tetramethylbenzidine (TMB) as a

chromogen, enabling quick findings for at-home testing.

However, its drawbacks consist of dietary constraints and a

potential for false positive results (128, 129).

In addition to the conventional detection methods mentioned

above, we have also summarized some new biomarker methods

in Table 3.
4 Prognostic power of the
microbiome: shaping CRC outcomes

The most effective diagnostic techniques for CRC are intrusive

and expensive. Developing sensitive, noninvasive, and cost-effective

approaches for detecting and predicting the outcome of colorectal

cancer is crucial to improve the likelihood of a cure (137).
4.1 Survival insights: the microbiome’s
prognostic significance in CRC

Mima et al.’s research found that elevated nuclear F. nucleatum

levels in colorectal cancer tissues were linked to negative clinical
Frontiers in Immunology 09
outcomes, such as reduced survival periods and unfavorable

prognoses (138). Recent research has sought to validate the

hypothesis that greater amounts of F. nucleatum nuclear DNA in

tissues may be correlated with adverse clinical outcomes in patients

with colorectal cancer. By examining databases of 1,069 CRC

patients from two nationwide prospective cohort studies in the

United States, it was found that increased amounts of nuclear F.

nucleatum nucleoplasmic DNA were associated with increased

colorectal cancer-specific mortality rates. Recent research suggests

that F. nucleatum may promote the development of colorectal

cancer through the expression of the virulence factor FadA.

Moreover, this study indicated that tissue-resident F. nucleatum

may inhibit T-cell-mediated immune responses, which is correlated

with unfavorable clinical outcomes in patients with colorectal

cancer. These findings support the notion that high F. nucleatum

expression may indicate a more invasive subtype of colorectal

cancer. Future research may need to further explore the impact of

tissue-resident F. nucleatum on T-cell-based immunotherapy.

Overall, nuclear DNA may serve as a biomarker for CRC

prognosis, but further validation in other populations is needed.

These findings provide insights for developing colorectal cancer

prevention and treatment strategies targeting the microbiota (138).

Wang et al.’s study showed that combining regorafenib with

toripalimab is safe, effective, and improves survival in colorectal

cancer patients. The study indicated that the results of the gut

microbiota, particularly the negative correlation between

Bacteroides and response and survival rates, provided a combined

treatment option for refractory metastatic colorectal cancer

patients (139).

This prospective study aimed to explore the role of the gut

microbiota in predicting the response to neoadjuvant

chemoradiotherapy (nCRT) in locally advanced rectal cancer

(LARC) patients. Yuxi Yi et al. constructed a random forest

classifier that successfully predicted the nCRT response using 10

microbial biomarkers. These findings suggest that the gut
frontiersin.org
TABLE 3 Other biomarkers.

Biomarker
Detection
Method

CRC
diagnosis
AUC

Research Findings

GMSM Model
LASSO algorithm
selects
metabolite features

0.93 (early-
stage CRC)

The GMSM model, correlating serum metabolites with colorectal cancer and adenoma, accurately
distinguishes patients from healthy individuals. Its performance significantly exceeds that of CEA and FOBT,
holding promise as a noninvasive method for colorectal cancer and adenoma detection (130, 131).

Targeted
Metabolite
Analysis

Orthogonal partial
least squares
discriminant analysis
and ROC analysis

0.969

Metabolomic analysis reveals different enrichment pathways of intestinal metabolites in colorectal cancer and
adenoma. Combined analysis effectively distinguishes patient populations. Certain metabolites, such as 9,10-
dihydroxy-12-octadecenoic acid and cholesterol esters, can be used to differentiate colorectal cancer from
healthy controls. Relevant metabolites correlate with patient survival (132).

Blood
cfDNA
Detection

Detects tumor cells,
organotypic DNA,
and donor DNA in
tumors, using
CRISPR technology

0.96

Engineered bacteria are employed to detect colorectal cancer cells, organotypic DNA, and donor DNA. This
approach holds promise in the diagnosis and treatment of colorectal cancer. Clinically occult and
radiologically undetectable minimal residual disease (MRD) during surgery is considered a major source of
disease recurrence. Compared to the traditional blood marker CEA, preoperative ctDNA exhibits higher
sensitivity, allowing more accurate prediction of recurrence risk (133).

Methylation
Biomarker
MYO1-G

ddPCR and
ROC analysis

0.94

The MYO1-G methylation biomarker, detected using ddPCR technology, accurately distinguishes colorectal
cancer patients from normal controls. It is also correlated with disease progression and treatment response.
Postoperative monitoring reveals a correlation between methylation levels and patient treatment response and
survival, providing a new biomarker for colorectal cancer diagnosis and monitoring (134–136).

https://doi.org/10.3389/fimmu.2024.1431747
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1431747
microbiota may serve as a potential biomarker for predicting nCRT

response in LARC patients, with clinical significance for their

management (140).

While re-establishing the microbiota following intensive

antibiotic treatment is a critical step, limited attention has been

directed toward understanding the state of health after microbiota

cultivation. In the context of clinical trials evaluating microbiota-

based therapies , whether employing fecal microbiota

transplantation (FMT) or engineered microbial consortia, it is

imperative to incorporate comprehensive, long-term studies of

the microbiota. Appropriate metrics for such studies may involve

monitoring microbial diversity, examining the existence of

multidrug-resistant microorganisms, and determining the

prevalence of antibiotic-resistant genes. Assessing the

carcinogenic potential of the microbiota may be possible one day,

and once validated, these indicators should be incorporated (141).

Marıá Antonia Martıńez-Sánchez et al. provided the initial study

assessing the effect of preoperative nutritional intervention based on

high-fiber intake and high levels of polyunsaturated fatty acids

(PUFAs) on changes in the intestinal microbiota and their link

with postoperative complications, particularly anastomotic leakage,

and site infection. The regulation of the microbiota through dietary

intervention has been proven in recent explorations of human testees

(142–144). In this way, the consumption of a diet that contains a large

amount of PUFAs regulates the composition of the gut microbiota

(145). It also favors the development of protective bacteria such as

Bifidobacterium and Lactobacillus while reducing the presence of

pathogenic bacteria such as Pseudomonas (146–148). In summary,

they hypothesize that consuming a diet that has a large content of

fiber and PUFA before CRC surgery may result in changes in the

intestinal microbiota, making it more balanced and potentially

reducing postoperative complications.

Lelde Lauka et al.’s systematic review comprehensively analyzed

the relationship between gut microbiota and short-term and long-

term outcomes after colorectal cancer surgery. This study revealed

that specific bacteria, such as F. nucleatum and Co-abundance

Groups, may be independent predictors of prognosis and

postoperative complications in colorectal cancer patients. However,

due to limited data and the influence of confounding factors, more

research is needed to further explain these findings. Overall, this

research emphasizes the importance of comparing the microbiota

composition before and after surgery, providing insights into how the

gut microbiota is linked to the underlying mechanisms of colorectal

cancer. When interpreting the results, heterogeneity in studies,

sample sources, and analysis methods should be considered.

Although evidence is limited, this field holds potential clinical

importance for improving colorectal cancer surgery outcomes (149).

Although the value of bacterial markers in colorectal cancer

diagnosis still requires further research, this direction provides a

promising area due to the wide range of microbes and fewer

interfering factors. Future study can go deeper into the utilization

of microbiota in diagnosing and predicting outcomes of CRC,

particularly in the realms of personalized medicine and

microbiome intervention treatment. The efforts will reveal the
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intricate connection between the microbiota and survival rates in

colorectal cancer patients, offering more accurate targets for future

treatment options.
4.2 Association of the gut microbiota with
colorectal cancer disease progression

The gut microbiota has a substantial impact on the initiation,

growth, and treatment outcomes of CRC (150). Research in this

field involves exploring the potential applications of microbial

markers in CRC screening and prognosis. Disease recurrence and

metastasis are also being explored.

In addition to their potential applications in CRC screening,

microbial markers can also serve as prognostic biomarkers for CRC.

In colorectal tissue samples, Fusobacterium nucleatum (Fn) is one

of the most common microbes, and it is associated with resistance

in colorectal cancer (151, 152). Studies suggest that the enrichment

of Fn in colon tissues is correlated with poor prognosis in right-

sided colon cancer patients, while Fn-negative right-sided colon

cancer patients have a prognosis comparable to that of left-sided

colon cancer patients (153). This indicates that Fn may undergo

stage-specific changes during colorectal cancer recurrence and

metastasis, impacting the response to systemic chemotherapy in

palliative treatment settings.
4.3 Dysbiosis of the gut microbiota and
CRC development

CRC is associated with an imbalance in the gut microbiota, with

proximal feces reflecting changes in structure and metabolism (154).

Analyzing fecal metabolites in CRC patients and comparing them

with healthy subjects may identify potential biomarkers related to

CRC and explore the impact of metabolites on CRC progression (65).

The progression of colorectal tumors along the adenoma-carcinoma

sequence disrupts the homeostasis of intestinal metabolites, leading to

significant changes in key metabolic pathways, such as the

upregulation of cholesterol metabolites and sphingolipids, which

are associated with increased fat intake and cholesterol during CRC

development (155, 156).
4.4 Reprogramming of amino acid and
lipid metabolism in CRC development

In the tumor microenvironment, the reprogramming of

amino acid and lipid metabolism contributes to the growth of

cancer cells and tumor formation. Metabolomic analysis

revealed the enrichment of various metabolites, such as 2-

aminoethylphosphonic acid salts and amino acid derivatives,

in the CRC group, which is crucial for promoting cancer cell

proliferation (157, 158). The presence of these metabolites may

serve as potential markers for CRC development.
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4.5 Detection of microbial translocation in
blood and its association with
CRC prognosis

The detection of microbial translocation in the blood of CRC

patients has prognostic significance. Studies have identified key

biological associations with CRC through the grouping of OCS,

inferring the metabolic potential of OCS, and emphasizing the

association between grouping and disease prognosis (159). Changes

in the gut microbiota associated with colorectal cancer, demonstrated

through microbial markers, show excellent performance in the early

detection of CRC in the precancerous stage with high accuracy (160).

This study, employing rigorous validation methods, identified

biomarkers derived from the microbiota. This discovery instills

optimism for the prospect of noninvasive diagnosis of colorectal

adenomas and, in the future, may emerge as a promising target for

the treatment of colorectal cancer (161).
5 Conclusion and future perspectives

In-depth research has been conducted on the gut microbiota of

CRC patients. The key role of the gut microbiota in the three

carcinogenic processes of CRC has been revealed. First, the

continuous proliferation of the gut microbiota during inflammation

disrupts the intestinal ecological balance and damages the mucosal

barrier, allowing more bacteria to enter and form a vicious positive

feedback loop that accelerates the progression of colorectal cancer.

Second, certain metabolites of the gut microbiota, such as polyamines

and secondary bile acids, participate in carcinogenic signal

transduction, leading to tumor formation. Third, the gut

microbiota induces the recruitment and proliferation of immune

cells by mediating cytokines, which contribute to tumor initiation and

growth. Research in this area reveals that there are distinct variations

in the prevalence of particular bacterial species, a reduction in

microbial diversity, and changes in metabolites in the gut

microbiome of patients with colorectal cancer. They also identified

biomarker associations between the gut microbiome and CRC. The

tight interaction between these bacteria and host epithelial cells

impacts the development of CRC.

The gut microbiota once referred to as the forgotten organ, has

gradually unveiled its mysterious nature. Studies indicate that the

gut microbiome is crucially involved in the pathogenesis of CRC.

The occurrence of CRC has been consistently associated with the

gut microbiota in numerous clinical studies and experimental

models. Robust functional data have reliably demonstrated

microbial involvement in the pathways and molecular

mechanisms that lead to CRC. Despite achieving preliminary

success, a deeper exploration is still needed to determine whether

the gut microbiota is a predictor and/or prognostic biomarker for

CRC. Conducting thorough longitudinal studies to monitor the

alterations in the gut microbiota of colorectal cancer patients over a

prolonged period and analyzing these changes in relation to patient

outcomes can aid in pinpointing particular compositional aspects of
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the gut microbiota that may be linked to survival rates, recurrence

rates, and other prognostic indicators in colorectal cancer patients.

Metabolomics has become an effective method for detecting

tumors. Subsequent research can establish a CRC detection model

through metabolomic analysis, increasing the probability of

diagnosing CRC and predicting favorable outcomes (162).

Interventional studies, such as those involving probiotics,

prebiotics, and fecal microbiota transplantation, can be conducted

to observe their impact on the prognosis of colorectal cancer

patients, thereby validating whether the gut microbiota could

serve as a potential therapeutic target. Mutual recognition plays a

role in identifying potential agonistic and antagonistic interactions,

and if a breakthrough is made in this area, it can facilitate the

detection of pathogens and subsequent drug research (59).

The utilization of noninvasive biomarkers in current practice,

coupled with the repeated improvement in the AUC, highlights

ongoing progress in understanding the correlation between the gut

microbiota and CRC incidence. Experimental findings employing

predictive random forest classifiers underscore a close association

between alterations in the gut microbiota and the initiation of

carcinogenesis (140).

Microbiome research, confronted by the challenge of limited

samples and a multitude of features, innovates logistic regression

techniques with penalty methods such as least absolute shrinkage

and selection operator (LASSO), ridge, and elastic net methods. In

studying tumor microbiota communities, the integration of

artificial intelligence (AI) and high-throughput sequencing aims

to identify at-risk individuals early, emphasizing significant features

such as mutations, methylation, and structural variations.

Unsupervised learning methods, encompassing clustering and

dimensionality reduction, aid in feature selection and visualization.

Techniques such as random forest (RF), support vector machine

(SVM), and penalty regression explore the relationships between

microbiota species and CRC features. Time-event machine learning

algorithms, including random survival forest (RSF), gradient boosting

machine (GBM), Cox-time, and neural multitask logistic regression

(N-MTLR), predict CRC-specific survival potential, providing

transparent and interpretable models. These models assist clinicians

in accurately predicting patient survival rates, formulating personalized

treatment plans, and ultimately enhancing patient outcomes (162, 163).

Although the carcinogenic potential of specific bacterial genera,

such as Fusobacterium nucleatum, pks-positive E. coli, and

Bacteroides fragilis, has been established, the oncogenic properties

of other related genera remain unclear. Research confirms the close

relationship between CRC and the gut microbiota, emphasizing the

need for further exploration of microbial communities in the tumor

microenvironment and their impact on CRC. The dynamic

interaction between these microbes and host epithelial cells

significantly influences CRC development.

During the literature search, it was noted that relevant clinical

data are limited. Future studies should focus on multidisciplinary

approaches and extensive clinical data analysis to explore the

complex link between the gut microbiota and CRC, leading to

improved treatment strategies. Challenges in clinical practice, such

as individual variations, tumor staging, and cross-species
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translation, need to be overcome when exploring more accurate

diagnostic and prognostic biomarkers.

Therefore, despite promising initial findings, continuous efforts

are needed in future preclinical and clinical research to better

comprehend the connection between the gut microbiota and

CRC. Overall, the study of the gut microbiota provides

unprecedented opportunities to explore new diagnostic,

therapeutic, and prognostic strategies for colorectal cancer.
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107. McCoy AN, Araújo-Pérez F, Azcárate-Peril A, Yeh JJ, Sandler RS, Keku TO.
Fusobacterium is associated with colorectal adenomas. PloS One. (2013) 8:e53653.
doi: 10.1371/journal.pone.0053653

108. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ,
et al. Intestinal inflammation targets cancer-inducing activity of the microbiota.
Science. (2012) 338:120–23. doi: 10.1126/science.1224820

109. Boleij A, Tjalsma H. The itinerary of Streptococcus gallolyticus infection in
patients with colonic Malignant disease. Lancet Infect Dis. (2013) 13:719–24.
doi: 10.1016/S1473-3099(13)70107-5
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