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Introduction: The early transcription unit 3 (E3) of human adenoviruses (HAdVs)

encodes several immunoevasins, including the E3/49K protein, which is unique

for species D of HAdVs. It is expressed as surface transmembrane protein and

shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface

receptor CD45, thereby modulating activation of T and NK cells.

Methods:Considering that E3/49K represents themost polymorphic viral protein

among species D HAdVs, we demonstrate here that all tested E3/49K orthologs

bind to the immunologically important regulator CD45. Thus, this feature is

conserved regardless of the pathological associations of the respective

HAdV types.

Results: It appeared that modulation of CD45 is a unique property restricted to

HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR)

signaling and impaired BCR signal phenotypes. The latter were highly

comparable to B cells having defects in the expression of CD45, suggesting

E3/49K as a potential tool to investigate CD45 specific functions.

Conclusion: We identified B cells as new direct target of E3/49K-mediated

immune modulation, representing a novel viral immunosubversive mechanism.
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1 Introduction

Mucosal infections with human adenoviruses (HAdVs) are

highly prevalent (1). In human populations worldwide and at all

ages HAdV infections represent a significant source for morbidity

causing a broad range of severity, including rare fatal cases

especially in infants and immunocompromised individuals (2).

Phylogenetically, HAdVs belong to the genus Mastadenoviridae

and are classified into seven species (A-G) comprising more than

100 known types (3–6). Each HAdV species causes distinct profiles

of clinical symptoms related in part to specific tissue tropisms and

entry receptor utilization (7–9). By far the largest species comprises

the species D (5), which infects exclusively humans (10) and is

reported to be responsible for a variety of ocular pathologies (9).

While the genomes of HAdVs are well conserved among the

different species, most pronounced among the structural proteins,

all HAdVs contain a relatively variable region, called early

transcription unit 3 (E3). While this region is rather conserved

within each species (11), it differs significantly between species

encoding a number of different gene products (12, 13).

Interestingly, the E3 region is not required for viral replication in

vitro and therefore can be deleted without affecting virus replication

in tissue culture (14, 15). However, in vivo the E3 is suggested to

play an important role in viral fitness and pathogenesis, as E3 is

present in all HAdVs and encodes gene products with

immunomodulatory functions (12, 16–18) that seem to affect

xenograft transplant survival (19) and clinical effectiveness of

recombinant oncolytic HAdVs (20).

The largest group of E3 proteins belongs to the protein family of

conserved region 1 (CR1) viral proteins, consisting mainly of type I

membrane glycoproteins. Multiple members of this family can be

found in human and primate AdVs as well as in human and primate

cytomegaloviruses (here coined RL11 family). It can be assumed

that these genes originate from a common ancestor and have

evolved separately to execute diverse functions for the distinct

viruses (21).

The individual sets of species-specific CR1 open reading frames

(ORFs) show unique nucleotide compositions whereas some

restricted interspecies homologies are observable. Due to this

relation the diverse species can be grouped based on their E3

sequence composition and association with some group- specific

virus-host interactions and diseases patterns (12, 13, 17, 21). To

date, the functional knowledge about the CR1 proteins is still

limited. The species D CR1-b protein, also named E3/49K, for its

predicted molecular weight of 49kDa (12), is unique for this species.

It was among the first family members whose functional activity

could be characterized. E3/49K is the largest member of the

adenoviral CR1 family with an apparent molecular weight on SDS

PAGE of 80–100 kDa due to its extensive glycosylation (21). This

protein has been extensively studied for HAdV-D64, an EKC

causing type of species D HAdVs, which was previously called

Ad19a. Like most of the other CR1 proteins E3/49K is a type I

transmembrane protein starting to be expressed at early stages of

infection, but continues to be expressed throughout the infection

cycle (12, 13, 21, 22). At steady state, the E3/49K protein of HAdV-

D64 is shuttling between the cellular compartments of the
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endoplasmic reticulum, trans-Golgi network, plasma membrane,

and endosomes, eventually accumulating at late stages of the

infection in the lysosome (22, 23). At the cell surface the

ectodomain (ECD) of E3/49K is proteolytically processed close to

the transmembrane region by matrix metalloproteases, possibly

involving both ADAM-10 and ADAM-17, resulting in the shedding

of a 60–80 kDa extracellular fragment of the CR1-b protein. Shed

E3/49K (sec49K) represents the only secretory HAdV protein

known to date (23, 24). It is reported, like the membrane

anchored version, to bind to its host receptor, the surface protein

tyrosine phosphatase CD45 (23–25). Encounter with soluble E3/

49K inhibits the activation of human T and NK cells (23, 24, 26, 27).

During lymphocyte activation, the surface ligation by cognate

antigens initiates the intracellular signal transduction, involving the

orchestration of different downstream signaling pathways (28–30).

CD45 is a critical regulator in lymphocyte receptor signaling and

primes lymphocytes by removing inhibitory phosphate groups on

src-family kinases (SFKs), which were mainly analyzed in T cells of

human blood samples and in cell lines as well as mouse models (27,

31–33). Interestingly, neither the regulatory mechanism behind the

control of CD45 activity nor any physiological ligand for the

extracellular ECDs of CD45 has been established to date. What

complicates matters further is the expression of distinct alternatively

spliced CD45 isoforms on all leukocyte types. However, its

fundamental role within the immunological network has been

clearly established. This notion is supported by T and B cell

dysfunctions resulting in life-threating severe combined deficiency

syndromes (SCID) in patients lacking CD45 (34–37). Consistent but

also opposing findings were made in permanent genetic mouse

models with various gene deletions (27, 38, 39). Thus, one can

raise the question whether findings from mouse CD45 models can

be automatically applied to humans. This underlies the need for a tool

tomimic CD45 deficiency in humans allowing the detailed analysis of

CD45 in primary human cells (27).

This is especially evident for B cells, in which the role of CD45

has been poorly defined and appears to be more complex. In CD45

deficiency, T lymphocytes are more profoundly affected compared

to B lymphocytes resulting in an almost complete absence of T cells

in patients and mice lacking CD45. The reason seems to be the

severe impairment of T cell receptor (TCR) signaling resulting in a

drastic loss of T cells during thymic development. By contrast,

peripheral B cell numbers are actually elevated in CD45 deficiency

(39–43). While B cells from CD45 knockout mice also exhibit

abnormal BCR functions, but the impact is less severe relative to T

cells (43–45). In the mouse model, serum immunoglobulin levels

were relatively normal (46), but decreased with age in a reported

SCID child (35). In addition, B cells from CD45-deficient mice

respond normally to T cell-dependent and -independent stimuli

(39, 41, 43–45). These reports indicate that CD45 may have

different roles in the development and functions of T and B cells.

Characterizing the function of E3/49K of HAdV-D64 in T cells

revealed that the abolished T cell functions resulted from the

inhibition in the lymphocyte receptor signaling machinery (24,

25). Since E3/49K was shown to bind to (24) and modulate B cell

activation (47), it was suggested that these are direct effects of E3/

49K on B cells rather than a consequence of its known effect on T
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cells (24, 25). Therefore, the direct impact of E3/49K on human B

cells was further investigated in this study. Remarkably, the ECD of

the species D CR1-b protein exhibits the highest polymorphism of

the entire proteome of species D HAdVs, suggesting this protein to

be under enormous evolutionary pressure to vary, what is likely for

a soluble viral protein due to the high exposure to immunological

interference mechanisms (11). A recent study by Martinez-Martin

suggested that Fc-tagged ECDs of the species D CR1-b proteins may

bind apart from CD45 to other host cell surface proteins.

Furthermore, Fc-tagged E3/49K proteins from additional species

D types appeared to bind to CD45 too (48).

The presented study confirms the conserved activity of differing

species D CR1-b products. Due to its immunomodulatory functions it

was previously speculated that E3/49K of HAdV-D64 might be

involved in the disease process of the severe eye disease, epidemic

keratoconjunctivitis (EKC) (24, 48). To investigate this further, several

virus types from species D adenoviruses were selected that were either

associated with EKC or not to enable a comparative analysis at the

functional level. To avoid the use of different reagents for the different

HAdV-D types, we expressed N-terminally HA-tagged and codon-

optimized E3/49K (HA-49K) orthologs in stably transfected A549 cells.

Subsequently, the effect of the different orthologs was compared in

various cell-based assays. In addition, usage of soluble CD45, allowed to

assess the presence of a potential CD45-binding activity in species other

than species D during HAdV infection. Moreover, we identified that

targeting of B cells with E3/49K inhibits the BCR signaling. We

demonstrated that E3/49K mediates inhibition of MAPK pathway

signaling which is in agreement with previous observations in CD45-

deficient mice (43, 45, 49). On this basis we suggest E3/49K as potential

tool to investigate CD45-specific functions in human cells by inhibiting

CD45 activity, which can be controlled by addition of decoy receptors.
2 Materials and methods

2.1 Cloning and molecular
biology methods

Synthetic HA-tagged and codon-optimized E3 CR1-b protein

coding sequences of HAdV-D8 (Freiburg strain, GenBank

Accession Nr.: KP016737), -D19 (strain AV-587, AB448771),

-D36 (strain USA, GQ384080.1), and -D64 (ME strain,

CS301726) were cloned into the multiple cloning site of the pSG5

expression vector as before (22), using here EcoRI and BamHI sites

resulting in pSG5-D8-HA-49K, pSG5-D19-HA-49K, pSG5-D36-

HA-49K, and pSG5-D64-HA-49K, respectively. For codon

optimization of E3/49K constructs the service of GeneArt

(Thermo Fisher Scientific) was utilized. The HA-tag was inserted

into the optimized coding sequences N-terminally to the first amino

acid of the predicted mature protein after signal sequence cleavage

(Gly20 for HAdV-D8, -D19, -D64, and Asp21 for -D36). The

expression plasmids pSG5-D64–49KCO and pSG5-D64–49KCO-

AAA encoding the untagged control proteins, the wild-type E3/49K

and E3/49K-YA/LLAA mutant, respectively, were constructed in

the same way, but the codon-optimized E3/49K coding sequence of

HAdV-D64 was inserted into the pSG5 vector either unchanged or
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with a mutated tyrosine-based YxxF sorting motif encoding alanine

instead of Tyr416, Leu423, and Leu424 codons (23).
2.2 Cell culture, viruses and infection

A549 (ATCC, CCL-185) and 293A cells (Invitrogen R70507)

were maintained in Dulbecco’s modified Eagle’s medium (DMEM)

(Gibco (Life Technologies)) supplemented with 10% (v/v) fetal calf

serum (FCS) (PAN-Biotech GmbH), 100 U/ml penicillin (Gibco

(Life Technologies)), 0.1 mg/ml streptomycin (Gibco (Life

Technologies)) and 2 mM L-glutamine (Sigma-Aldrich). We also

established as control A549-based cell lines expressing codon-

optimized but untagged E3/49K (A549E3/49K CO7) and the tail-

mutant YA/LLAA (23) of HAdV-D64 described earlier. For

cultivation of stably transfected A549 cells additional 0.5 mg/ml

G418-disulphate (Formedium) was added to the medium for A549

cells. The lymphoid cell lines Jurkat E6–1 (ATCC, TIB.152TM) and

its CD45 knockout variant J45.01 (32), Ramos (ATCC, CRL-1923)

and Ramos CD45 knockout cells were cultivated in RPMI1640

medium ((Gibco (Life Technologies)) supplemented with 10% FCS,

100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2 mM L-

glutamine. The viruses HAdV-A12, -B3, -B35, -C5, -D8, -D19,

-D36 were obtained from the German Adenovirus Reference

Laboratory, Hannover Medical School, Germany. HAdV-D64

(50), -D64DE3 (50), -D64DE3 + 49K (50) have been constructed

as described previously and their properties published (23, 50).

HAdV-E4 was obtained from ATCC. All HAdVs were propagated

in either A549 or 293A cells. Viral titers were assessed via the AAV-

Gluc-B3 based conditional reporter expression system (51).

Routinely, A549 cells were infected with an MOI of 5 for 24 h. A

productive infection was performed, orientated on flow cytometry

analysis on the basis of an efficient detection of hexon capsomers.
2.3 Generation of the Ramos CD45 knock
out cell-line

Ramos WT cells with engineered B cell receptor (52) were used

to generate Ramos CD45 knockout cell line with gRNA CD45.1:

ACAACCACTCTGAGCCCTTC – TGG (target exon 7) and gRNA

CD45.2: GTATTTGTGGCTTAAACTCT – TGG (target exon 2).

CRISPR/Cas9 deletion of CD45 was carried out using the Neon

Transfection System (Invitrogen) to deliver the ribonucleoprotein

(RNP) into the cells according to the genome editing method of

Integrated DNA Technology (IDT). In brief: Ramos cell medium

was changed the day before transfection. 1x 106 Ramos cells were

pelleted by centrifugation and resuspended in 9 mL buffer R (Neon),

1 µL of RNP complex, and 2 µL of electroporation enhancer (IDT).

RNP complex contained diluted sgRNA (annealed crRNA and

tRNA in a 1:1 ratio in IDTE buffer) and Cas9 endonuclease in

buffer R (NEON). Electroporation was performed in 10 µL NEON

tips at 1350 V, 30 ms, with a single pulse. The transfected cells were

first recovered for 72 h at 37°C and 5% CO2 without antibiotics and

then subjected to complete RPMI medium. The Ramos CD45

knockout cell line was controlled in parallel by transfection of a
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negligible protein (p62). Successful transfected Ramos cells were

batch sorted using BioRad cell sorter in three different rounds.

Deletion of the target gene was verified by flow cytometry.
2.4 Stable transfection of A549 cells and
production and purification of soluble
E3/49K

For generation of stable HA-49K cell lines expressing the proteins

derived from HAdV-D8, -D19, -D36 and -D64 A549 cells were stably

transfected via electroporation with linearized pSG5 vectors containing

HA-49K constructs together with the linearized plasmid of pGCneo-

635 containing the resistance gene for G418-disulphate.

Electroporation was performed with the Gene Pulser Xcell

Electroporator (Bio-Rad Laboratories, Inc.) at 227 V, 960 µF and

∞W. Selection of G418-resistant cell clones was executed by cultivation
in cell culture medium containing 1 mg/ml G418-disulphate and

utilization of cloning cylinders. To create HA-49K containing

supernatants stable cell lines were cultivated in 15 cm Ø dishes until

reaching full confluence. Plates were washed once with PBS and then

further incubated for 10 days with FCS-free DMEM. Cell supernatants

were collected by centrifugation at 2,000 g for 10 min at 4°C to get rid

of cell debris. Subsequently, supernatants were stored at 4°C. For HA-

49K protein purification, cell supernatants were incubated for 1 h

rolling at 4°C with Pierce® a -HA agarose (Thermo Fisher Scientific)

and eluted using 3 M sodium thiocyanate. Purified proteins were

obtained after rebuffering in PBS utilizing centrifugal concentrators

(Vivaspin 20, 30.000 MWCO PES, Sartorius AG), and filtration with

0.2 µm syringes filters (Pall Corporation). Thereafter, aliquots were

frozen at -80°C. A selection of the best producer cell clone for each

HA-49K type was performed using flow cytometry of cell surface

expressed HA-49K and target cell binding capacity as described below.
2.5 Cell lysis, SDS-PAGE, western
blot analysis

Cellular protein extracts were generated by lysis of cells using 50–

100 µl of cell lysis buffer (5 mM MgCl2, 20 mM Tris-HCl, 140 mM

NaCl, 1% NP-40, cOmplete™ Protease Inhibitor Cocktail (Roche

AG)). The cell suspension was frozen for 24 h at -80°C. After thawing,

the suspension was centrifuged at full-speed for 20 min at 4°C for

separation of the extract. Proteinaceous solutions were further

processed with SDS-PAGE and subsequently analyzed via

immunoblotting. For immunoblotting proteins were transferred

from SDS-PAGE to nitrocellulose membrane via western blotting

followed by immune detection. Detection of HA-tagged proteins was

performed, using an a-HA Ab. To control detection of HA-49K, the

HA-tagged multi-tag (MT) control protein was used (Absolute

Antibody). Blot development was performed with utilization of

SignalFire™ ECL Reagent (Cell Signaling Technology) and

monitored using Odyssey® FC Imaging System (LI-COR

Biosciences GmbH).
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2.6 Flow cytometry, E3/49K binding assay,
hCD45-Fc binding assay, calcium flux
assay and competition assay

Flow cytometry measurements were performed with 400,000

infected or non-infected A549 cells, stable transfectants or E3/49K

target cells. E3/49K binding assays were executed as described

previously (23–25). For detection of bound E3/49K versions an

indirect antibody (Ab) staining procedure was conducted. Abs were

incubated for 45 min at 4°C. HA-49Ks were detected via a-HA or

4D1 (24) monoclonal (mAbs), whereas for untagged E3/49K only the

4D1 Ab was used. To control detection of HA-49K, the HA-tagged

MT control protein was used (Absolute Antibody). Cell fixation using

4% paraformaldehyde was performed for HAdV infected cells as well

as for the assessment of cell surface upregulated CD69 (24). Following

fixation cells were quenched with utilization of 50 mM NH4Cl. For

internal staining, the buffer (PBS, 3% FCS) was supplemented with

0.1% saponin. To quantify the binding activity to human CD45,

infected cells or HA-49K producer cell lines were treated with 0.5 µg/

sample of recombinant human CD45-ECD with an IgG1 Fc-tag

(hCD45-Fc) (Sino Biological). Afterwards, CD45 binding was

detected via a-panCD45 mAbs MEM-28 and GAP8.3 (24).

Binding activity of the HA-49Ks was competed with an untagged

E3/49K of HAdV-D64 in consecutive incubations. To prevent E3/

49K functions, it was previously incubated for 30 min with hCD45-Fc

decoy receptors.

For assessment of the calcium flux response, 1x106 Ramos cells,

pre-incubated with HA-49Ks, were resuspended in 1 ml full

medium supplemented with 15 ml Indo-1 AM (Invitrogen) and

incubated for 45 min at 37°C. Subsequently, Ramos cells were

washed two times with PBS and resuspended in 1 ml full medium

directly before the calcium flux measurement. First, basal calcium

levels were acquired for 1 min. Subsequently, 10 µg/ml a-human

IgM was added to the cells for stimulation and calcium levels were

assessed for additional 3 to 4 min. Flow cytometry measurements

were executed with BD FACSCanto™ II or BD LSRFortessa™

instruments from BD Bioscience. The data were evaluated with the

FlowJo® v10.07.1 software from BD Bioscience.
2.7 Jurkat and Ramos cell stimulation

For phosphorylated extracellular signal-regulated kinases 1 and 2

(pErk1/2) analysis, Jurkat cells were stimulated with 1 µg/ml a-CD3
mAbs and Ramos cells with 1 µg/ml a-human lambda-L F(ab)

fragment (SouthernBiotech). Stimulation was performed with 2.5x

105 cell per sample for 2 min at 37°C and stopped by washing with

cold PBS. pErk1/2 detection was performed by immunoblotting

analysis using a-human pErk1/2 mAbs. To measure CD69

upregulation 4x105 Jurkat cells per sample were stimulated via 5 µg/

ml immobilized a-CD3 and soluble 1 µg/ml a-human CD28 mAbs for

6 h at 37°C. Stimulation was terminated by washing with cold PBS.

Subsequently, cells were fixed as described above.
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2.8 Primary B cell purification, stimulation
and lysis

Human peripheral blood mononuclear cells (PBMCs) were

isolated from whole blood derived buffy coats, which were isolated

by density gradient centrifugation using lymphocyte separation

medium (density: 1,077 g/ml, Anprotec) according to

manufacturer’s instructions. The buffy coats were taken off carefully

and washed with 2 mMEDTA in PBS solution. Then, the B cells were

isolated with the EasySep Human B cell isolation kit (STEMCELL

Technologies) according to the manufacturer’s protocol. For

stimulation of primary B cells, IgG positive B cells were stimulated

with 10 µg/ml a-human IgG (Jackson Immuno Research) for 5 or

10 min at 37°C. After that, stimulation was terminated immediately

by washing with cold 2 mMEDTA in PBS solution and centrifuged at

400 g for 7 min at 4°C. Cell were later lysed in RIPA Lysis and

Extraction Buffer (Thermo Fisher Scientific) and the lysate stored at

-20°C for downstream experiments.
2.9 Antibodies

For flow cytometry staining of E3/49K 4D1 mAb or a-HA (HA-7,

Sigma-Aldrich) Abs were used. For stimulation of Jurkat cells a-
human CD3 (OKT3, BioLegend) and a-human CD28 mAbs were

used (BD Biosciences). Isotype control IgG1 and isotype control IgG2

Abs were used from BD Biosciences. a-human CD69 mAbs (Miltenyi

Biotec) were utilized to assess activation levels. For staining of human

CD45, two pan-CD45 mAbs, MEM-28 (Biomol) and GAP8.3 (53)

(kindly provided by Dr. Peter Cresswell, Yale University), were applied.

Ramos cells were stimulated via a-human lambda-L F(ab’)2 from

SouthernBiotech. Infection efficiency was quantified by staining for

HAdV hexon capsid components using mAb 2Hx-2 (hybridoma

supernatant, ATCC HB-8117). Human IgG positive B cells were

stimulated via a-human IgG (Jackson Immuno Research) polyclonal

Abs (pAbs) and identification of the B cell population was achieved

with a a-human CD19 (HIB19) mAbs from BioLedgend. In the

indirect staining setting rat Abs were detected with a-rat IgG

(Thermo Fisher Scientific) and mouse derived Abs recorded with

pAb a-mouse IgG (BD Biosciences) or mAbs (Thermo Fisher

Scientific). For immunoblotting analysis b-actin was used as loading

controls as detected with a-b-actin mAb (AC-74) from AC-74 Sigma-

Aldrich, a-human IgG (Jackson Immuno Research) and a-human

spleen tyrosine kinase (Syk)mAbs (C87C1, Cell Signaling Technology).

Phosphorylated human Syk (pSyk) was detected with a mAb from BD

Biosciences and human pErk1/2 with mAb from Santa

Cruz Biotechnology.
2.10 Statistics

For statistical analysis the two-way ANOVA test was applied.

Analysis and graphical illustrations were performed via GraphPad

PRISM® Version 8.1.0 (GraphPad Software Inc.). Flow cytometric

measurement was evaluated with FlowJo® v10.07.1 (FlowJo, LLC).
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3 Results

3.1 The A549-based expression system
provides processed products of HA-
49K orthologs

To date, the biochemical characteristics and the functional

activity of E3/49K is only described for HAdV-D64. Regarding

the other types of HAdV-Ds or other species, there are no data

existing. Windheim et al. (24) demonstrated that E3/49K is able to

bind to any CD45-expressing cell type. But today, the mechanism of

E3/49K caused immunomodulation, is merely described for T- and

NK cells. Species D CR1-b gene products are unique for this species

and differ significantly between different types. Interestingly, species

D shows also a type-specific disease spectrum, which may be related

to the distinct biochemical and/or functional properties of

individual E3/49Ks. To examine any putative relationship

between these phenomena and EKC disease four divergent E3/

49K orthologs were selected from HAdV-D8 and -D64 causing

EKC and -D19 and D36 not-causing EKC. Constructs of HA-49K

orthologs were prepared via cloning as described in the method

section and protein products were generated via stably transfected

A549 cells. HA-49K expression by producer cell clones was probed

by Western blot analysis (Figure 1A). The band positions and

apparent MWs correlated with the number of predicted N-glycans,

meaning that HA-49K of HAdV-D36 and -D64 with predicted 14

N-glycans, showed the highest molecular weight, compared to -D19

and -D8 proteins with 11 and 10 predicted N-glycans, respectively.

The presence of HA/49K orthologs was quantitatively assessed also

via intracellular flow cytometry measurement in comparison to the

tail-mutant HA-49K –D64 YA/LLAA (23) (Figure 1B). As

previously described for E3/49K of HAdV-D64 (22), all different

orthologs are expressed on the cell surface of transfected clones

(Figure 1C), although at different levels. This may be especially

important for the shedding process as described before for E3/49K

of HAdV-D64. For this reason, supernatants of HA-49K producer

cells were collected and examined for the presence of soluble HA-

49K versions by western blot analysis. Release of HA-49K was

indeed demonstrated case for all types (Figure 1D), indicating that

shedding of the ECD is a common property to all HA-49Ks tested.

Overall, the A549 expression system seems to provide sufficient

protein products of any HA-49K ortholog.
3.2 E3/49K orthologs share conserved
binding activity for CD45 receptors

Previous publications demonstrated that recombinant E3/49K

of HAdV-D64 produced in the A549 expression system is shed into

the cell supernatant and binds to CD45 expressing target cells (24).

According to metabolic labeling experiments with infected cells,

shed E3/49K was also found in the cell supernatant as well (22),

suggesting that both the viral and the recombinant sec49K bind to

CD45 expressing cells in trans. To verify that the maintained

activity of recombinant HA-49K is similar to that of nascent E3/
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49K produced during viral infection, we collected cell supernatants

from the A549-based expression systems and from infected cells

and incubated them with Jurkat T cell and Ramos B cell lines, which

either express CD45 or do not (CD45-/-). Supernatants from cells

infected with E3/49K competent HAdV-D64 or HAdV-D64DE3 +

49K viruses (50) as well as from the HA-49K producer cell line

exhibited a comparable binding activity to both target cells. Overall,

the binding activity to Jurkat cells tended to be stronger compared

to the binding to Ramos cells, correlating with the CD45 surface

expression levels of these cell lines (Supplementary Figure 1A). No

E3/49K binding at all was detected for both CD45-deficient cell

lines which were comparable to the controls of A549 cells or upon

infection with HAdV-D64DE3 which does not express E3/49K (50)

(Figure 2A). Thus, the A549-based expression system provides

functional products comparable to natural proteins produced

during infection. Including HA-49K of the types -D8, -D19 and

-D36 into the target cell binding system reveals a preserved specific

functional activity. Depending on the expression of CD45 all tested
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proteins were bound to T and B cell lines to a similar extend

(Figure 2B). Thus, the HA-tag is not affecting the binding activity to

CD45, since untagged and tagged recombinant E3/49K of HAdV-

D64 showed comparable binding levels (Figure 2C). Such untagged

E3/49K was used for further characterization of the binding activity

of the different orthologs. By competing the untagged E3/49K of the

type -D64 with the HA-tagged version in a two-step sequential

incubation series, applying an initial incubation with untagged E3/

49K and a subsequent incubation with HA-49K, resulted in a

drastically reduced binding activity of HA-49K in the Jurkat

target cell binding system. Previous incubation of untagged E3/

49K of HAdV-D64 is also blocking significantly the binding activity

of the other HA-tagged orthologs, revealing a conserved binding

site of HA-49Ks on CD45 receptors (Figure 2D). Since the

replacement levels are correlating with the overall HA-49K

content of the individual supernatant (Supplementary Figure 2), it

can be assumed that the tested orthologs share similar

binding affinities.
B
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FIGURE 1

Stable A549 transfectants express HA-49Ks both in intracellular and extracellular compartments. Selection of a set of producer cell lines for HA-49K
of HAdV-D8, -D19, -D36, and -D64 was previously carried out by quantitative flow cytometric analysis in at least three independent experiments.
Untransfected A549 cells and the stable transfectant expressing a tail-mutant version of HA-49K of HAdV-D64 YA/LLAA (23) were used as negative
and positive controls. 1 µg MT and recombinant His-tagged gp34 from HCMV (54) were utilized as protein controls in HA-based analysis. Cell lines
were lysed and HA-49K expression examined via SDS-PAGE and immunoblotting using a-HA Abs (A). Intracellular (B) and cell surface (C) expression
levels of HA-49K were determined by flow cytometry. The columns represent the mean fluorescence intensity (MFI) obtained in independent
experiments, each depicted as dots, error-bars represent the standard deviations. Equal volumes of cell supernatants from the cell lines indicated
were collected after 10 days of cultivation and examined for soluble HA-49K using HA-specific Abs and SDS-PAGE followed by immunoblotting (D).
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FIGURE 2

HA-49K orthologs from the A549-based expression system function comparably to natural E3/49K and exhibit a consistent binding activity to CD45
expressing target cells. Cell supernatants containing individual E3/49K variants were incubated together with target cells and bound E3/49K was measured
via flow cytometry. Binding activity of HA-49K of HAdV-D64 from the A549-based producer cell line was compared to E3/49K obtained from cells infected
with HAdV-D64, HAdV-D64DE3 and HAdV-D64DE3 + 49K viruses (49). Supernatants were incubated with wild-type Jurkat (red), Ramos (blue) and the
CD45-deficient Jurkat (orange) and Ramos (light blue) cells, respectively. The grey dashed vertical line separates results obtained from transfected cells (left)
from those of infected cell lines (right). Binding of HA-49K and E3/49K was detected with 4D1 mAb (A). Binding activity to Jurkat and Ramos cell lines of
recombinant HAdV-D64 HA-49K of was compared with HA-tagged orthologs of HAdV-D8, -D19 and -D36, respectively. Binding was determined with the
target cell system as applied in the previous experiment using a-HA Ab (B). Contrasting the binding of HA-49K and untagged E3/49K from the A549-based
expression system to Jurkat cells reveals no negative influence to the binding activity by the HA-tag. Bound E3/49K versions were detected using HA-
specific (blue) or E3/49K-specific (4D1, red) mAbs (C). The binding specificity of HA-49K orthologs was further characterized by competition with untagged
E3/49K of HAdV-D64. Residual binding activity of HA-49K orthologs was monitored by flow cytometry using a-HA Abs and a two-step sequential
incubation of Jurkat cells with supernatants, containing E3/49K variants. The order of the individual incubations for competition is indicated within the figure.
Significant differences to single incubations were analyzed (D). Cell supernatants from normal A549 cells were utilized as negative controls. The columns
represent the mean-MFIs obtained in independent experiments, each depicted as dots, and error-bars represent the standard deviations. Statistical
significance (****P<0.0001) was determined via the two-way ANOVA test and is indicated within the panel (D).
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3.3 Inhibition of leukocyte activation by
HA-49K orthologs is conserved functional

Prior studies showed that Jurkat cells treated with E3/49K

express lower levels of the early activation marker CD69 and

pErk1/2 upon CD3 cross-linking (24, 25). Having determined a

conserved binding property for all tested HA-49K types, we asked

whether these potential immunoevasins also exhibit a similar

activity to modulate immune cells. As before for E3/49K of

HAdV-D64, we tested the functions of recombinant HA-49Ks

first in the Jurkat T cell model. After pre-treatment of Jurkat cells

with HA-49K containing supernatants and CD3/CD28 stimulation,

the number of activation marker CD69 positive cells were

quantified using flow cytometry. Similar to E3/49K of HAdV-D64

also the other tested HA-49K types caused a reduction of CD69

levels to a comparable magnitude by some 30% (Figure 3A). To

verify this immune suppressive effect of HA-49Ks, we tested their

role in the modulation of TCR signaling after binding to CD45.

CD45 deficiency causes an overall impairment of TCR transduction

in Jurkat cells, preventing e.g. downstream signals dependent on the

mitogen-activated protein kinase (MAPK) pathway (Figure 3B) (32,

55, 56). Accordingly, treatment of Jurkat cells with HA-49K

containing supernatants resulted in a clear impairment of Erk1/2-

phosphorylation upon activation via CD3 cross-linking to

comparable levels across the tested types (Figures 3B, C). Thus,

the published functional activity of HA-49K of the type -D64 could

be reproduced and in addition also determined for the other tested

types, suggesting a conserved biological activity for all species D

CR1-b products.
3.4 BCR signaling of Ramos B cells is also
targeted by E3/49K

E3/49K of HAdV-D64 inhibits T- and NK cell signaling and

immune functions (24, 48). However, E3/49K of HAdV-D64 binds to

all CD45 expressing leukocytes, including B cells (24). This scenario

was confirmed here for the different HA-49K types tested (Figure 2B).

Therefore, we asked whether B cells also serve as targets of E3/49K-

mediated immune inhibition similar to T cells and focused here on

BCR signaling. BCR signaling events were first investigated in Ramos

B cells. BCR-mediated signaling is crucial for the activation and

differentiation of B cells, involving several downstream signaling

pathways (28, 29). Murine CD45-deficient B cells are characterized

to exhibit defects in their calcium flux and MAPK pathway signaling

(43, 45, 49). Therefore, Ramos cells were first pre-incubated with

different HA-49K types and subsequently signaling events were tested

after BCR cross-linking. Calcium flux measurements revealed

reduced calcium flux responses compared to control after the

stimulation of these HA-49K-treated cells (Figure 4A).

Subsequently, we tested for Erk1/2 phosphorylation by Western

blotting. Treatment of Ramos cells with different HA-49K types

resulted in a clear impairment of pErk1/2 phosphorylation
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compared to controls (Figures 4B, C). Interestingly, in Ramos cells

Erk1/2 phosphorylation seemed to be more sensitive to E3/49K

mediated inhibition than in Jurkat cells. Comparable to CD45-

deficient Jurkat cells (Figure 3B) Erk1/2 phosphorylation is absent

in CD45-deficient Ramos cells (Figure 4B), suggesting that CD45

plays a crucial role in the regulation of the MAPK pathways in B cells.

This E3/49K-mediated inhibition of MAPK pathway signaling is in

agreement with previous observations in CD45-deficient mice (43,

45, 49). To assess E3/49K activity, we tested E3/49K binding can be

titrated by supplementation of decoy receptors. Therefore,

supernatants containing HA-49K-D64 (Figure 4D) and purified

proteins (Figure 4E) were titrated and incubated with a constant

amount of hCD45-Fc. Mixed reagents were incubated together with

Ramos cells HA-49K-D64 binding was detected, showing that

samples with decoy receptors prevented efficiently E3/49K binding

at a dilution of 1:16 for the supernatant and a concentration of 4 µg

per sample for the purified protein, whereas without decoy receptors

E3/49K binding was still possible. These conditions were also used to

characterize whether decoy receptors can restore Erk1/2

phosphorylation of HA-49K-D64 treated Ramos cells during

stimulation (Figure 4F). HA-49K-D64 from supernatants or

purifications efficiently inhibited the formation of pErk1/2 which

was rescued by administration of hCD45-Fc decoy receptors.
3.5 E3/49K also inhibits BCR signaling in
primary B cells

Based on the impact of E3/49Ks on signaling in the human B

cell line Ramos, we aimed to verify these findings using primary

human B cells as targets. Antigenic stimulation induces SFK activity

in B cells provoking the recruitment and activation of Syk (57, 58).

Syk represents a critical factor within the BCR signaling network

and functions as signal component and amplifier (59, 60). Based on

these facts, we measured Syk activation by detecting pSyk using flow

cytometry in a-IgG stimulated primary B cells under HA-49K

treatment. The primary B cell pool was isolated from fresh blood

samples and cells were treated with various HA-49K types.

Following a-IgG stimulation to activate IgG positive memory B

cells, pSyk was measured via flow cytometry. HA-49K treatment

resulted in a clear reduction of pSyk by approximately 50% on

average for all HA-49K types (Figure 5A). Western blot analysis

from cell lysates of such treated B cells verified the previous

observation of impaired Syk activity (Figure 5B). Comparable to

Figure 5A residual pSyk is still detectable. Using cell lysates from

processed B cells for assessing of the pErk1/2 as in the previous

experiment identified an even more drastic inhibition of Erk

phosphorylation by HA-49K treatment compared to the Ramos

cell model (Figure 5C). Consistent with the above data in the Ramos

cells and previous observations in CD45-deficient mice (43, 45, 49),

we could demonstrate that E3/49K mediated modulation of CD45

efficiently inhibits BCR dependent Syk and MAPK signaling in

primary human B cells.
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FIGURE 3

Activation of Jurkat T cells is inhibited by HA-49K orthologs to an equal extent. Jurkat cells were previously incubated with cell supernatants (red)
containing HA-49K orthologs. Cells were washed and stimulation was conducted via receptor cross-linking using immobilized a-CD3 and soluble
a-CD28 Abs for 6h. After cell fixation the activation level was determined by flow cytometry-based monitoring of the cell surface expression of the
early activation marker CD69. Relative numbers of CD69 positive cells were normalized to CD3/CD28 stimulation control (not shown). Untreated
(unstim.) and isotype control (ISO) treated samples were used as negative controls (grey). To show the efficiency of the CD3/CD28 stimulation we
treated the cells also with 50 ng/ml Phorbol-12-myristate-13-acetate and 1 µg/ml ionomycin (PMA/Iono, blue). Administration using CD3/CD28
stimulation and unreactive A549 supernatant was utilized to control the effect of the supernatant on CD3/CD28 stimulation (A549, blue) (A). pErk1/2
levels were identified by immunoblot analysis upon CD3 stimulation of Jurkat cells with 1 µg/ml for 2 min. Sample loading was controlled by
detection of b-actin. One representative blot for Jurkat and CD45-/- Jurkat is shown (B) and the relative expression levels of pErk1/2 to b-actin
ratios were normalized to the pos. ctrl. (C). The columns represent the mean of 3 individual experiments (dots), the error-bars represents the
standard deviation for A and (C) Statistical differences compared toPMA/ionomycin treatment in (A) and CD3-stimulation in the presence of A549
supernatants in (C) positive controls were analyzed using the two-way ANOVA test. Only significant results were indicated in the figure.
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FIGURE 4

Ramos B cell signaling is inhibited by HA-49K orthologs to comparable levels. Ramos B cell signaling was determined to assess the inhibitory
potential of HA-49K orthologs in B cells. Previous incubation of Ramos cells with cell supernatants (red) containing various HA-49K
orthologs was performed. Unstimulated cells (unstim.) were used as a negative control (grey), co-incubation with unreactive A549
supernatant (A549) served as a positive control indicated in blue. Cells were washed and stimulated via receptor cross-linking using a-l Abs.
The cellular calcium-response was detected by flow cytometry and the mean peak Ca2+-levels (columns) of 3 individual experiments (dots)
including standard deviation are shown. Statistical differences compared to A549 were analyzed using two-way ANOVA test (A). Immunoblot
analysis of pErk1/2 levels upon BCR stimulation of Ramos B cell lines with 1 µg/ml a-l Abs for 2 min. Unstimulated cells (unstim.) served as
negative control while a-l treated cells (pos. crtl.) and co-incubation with A549 supernatant (A549) served as positive controls. Detection of
b-actin levels was used as loading control. One representative blot for Ramos and CD45-/- Ramos cells is shown (B). The relative detection
levels of pErk1/2 to b-actin ratios in Ramos cells were normalized to the positive ctrl. The mean (columns) of 3 individual experiments (dots)
including standard deviation is shown. Statistical differences to the positive ctrl. were analyzed using the two-way ANOVA test. Only
significant results were indicated in the panel (C). A two-fold dilution series of cell supernatants containing HA-49K-D64 (D) and purified HA-
49K-D64 proteins starting at 8 µg per sample (E) was performed. Samples were either supplemented with 0.5 µg per sample hCD45-Fc
(+hCD45-Fc, red) or without (hCD45-Fc, blue). After a 1 h incubation period, the binding of HA-49Ks to Ramos cells was detected using a-
HA-based flow cytometry. Undiluted supernatant from untransfected A549 cells (A549) or the 8 µg MT protein were utilized as negative
controls and shown as single values at the end of the x-axis separated by the grey dashed line. The mean MFI of 3 individual experiments is
displayed for each, including standard deviation in the form of error bars. Erk1/2 phosphorylation was analyzed to investigate the prevention
of the inhibitory effect HA 49K-D64 by hCD45-Fc receptors via immunoblotting. The supernatant containing HA-49K-D64 proteins was
diluted 1:10 and 4 µg purified HA-49K-D64 proteins were incubated for 1 h with 500 ng hCD45-Fc decoy receptors as indicated in the figure.
Subsequently, reagents were incubated with Ramos cells for 1 h Cells were lysed after BCR stimulation with 2 µg/ml a-l Abs for 2 min.
Sample loading was controlled by the detection of b-actin levels. One representative blot is presented (F).
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3.6 CD45 modulation via binding to its
ectodomain is unique for HAdV species D

To date, a CD45 modulatory activity via binding to its ECD is

only described for HAdV-D64 (24). As shown above, we

demonstrated that E3/49Ks of further species D types tested, all

shared this capability. Whether such a CD45 modulation activity

can also be demonstrated for the remaining non-E3/49K expressing

HAdV species remains unanswered. To address this question, we

established a new methodology that allows the identification of the

cell surface expression of CD45-ECD binding molecules, which can

be detected by the recruitment of the soluble CD45-ECD to the cell

in question. We validated this method using HA-49K producer cell

clones as positive control (Supplementary Figure 3). This technique

was applied to detect the expression of any binding activity to

recombinant CD45-ECDs after productive infection of A549 cells

with representatives of the different HAdV species and was

controlled by staining of hexon capsomers at late times

(Figure 6A). Apart from species D no other HAdV species

exhibited such an activity (Figure 6B), confirming a unique

immunoevasive property for HAdV of species D. Detected

binding of CD45 proteins correlated with the cell surface

expression patterns of E3/49K of the HAdV-D64 variants and of

HA-49K of the HAdV-D64 producer cell line (Supplementary

Figure 4). In addition, the detection of this effect could be

inhibited with the pan-CD45 specific mAb GAP8.3, which

competes with E3/49K for the binding site on CD45 (ref. 24 and

Supplementary Figure 5). Taken together, our data provide
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evidence that the distinct CD45-E3/49K interaction is responsible

for the determined binding activity specific for species D.
4 Discussion

In this study we extended our analysis of the HAdV-D64 E3/

49K protein (22) that was shown to bind and inhibit various

leukocyte functions (22, 24) to E3/49Ks of other species D types.

To this end, we constructed HA-tagged versions of genetically

diverse E3/49K proteins derived from HAdV-D8, -D19, -D36 and

-D64. All these HA-tagged e3/49Ks bound exclusively to CD45

expressing cells (Figure 2B). After deletion of CD45 in T and B cell

types, we did not detect significant residual binding of any of the

CR1-b orthologs tested. Furthermore, the E3/49K orthologs

derivedfrom different HAdV-D types tested, either associated or

not with EKC, shared a similar binding activity and modulation of

CD45 signaling, suggesting that it may be a common feature for

probably the entire species D, since binding of E3/49K ectodomain

from other types of HAdV species D has also been demonstrated

(48). Moreover, we could not obtain evidence for the existence of

any type-specific secondary receptor for CR1-b proteins, as

previously proposed by Martinez-Martin (48), and the common

binding activity, independent of the individual disease association

of the corresponding virus types. This suggests that the previous

assumption that certain E3/49Ks might be associated with EKC

disease is unlikely (24, 48). Moreover, our results suggest that CD45

modulation via binding to its ECD is a uniquel feature of species D
B
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FIGURE 5

HA-49Ks also efficiently suppress the phosphorylation of signaling components during BCR stimulation in primary human B cells. Primary human B
cells were isolated from PBMCs (n=4 donors, each depicted as single dots). B cells were treated with HA-49K orthologs (red) or left untreated (used
as positive control, blue) and stimulated with 10 µg/ml a-IgG Abs. Unstimulated cells and 1 µg MT treated cells, as an unrelated protein control,
functioned as negative controls (grey). The number of cells positive for phosphorylated Syk was measured by flow cytometry. To identify CD19+ live
cells in PBMCs, cell fraction was selected and debris excluded using the forward scatter area (FSC-A) vs the sideward scatter area (SSC-A). Cell
doublets that deviated from the linear correlation between the FSC-A and the forwscatter height (FSC-H) were excluded from downstream analysis.
Identification of live cells was done by gating for FSC-A vs live/dead staining. B cells were identified using FSC-A vs CD19 plots. The columns
indicate mean MFIs measured for B cells using the anti-phosphorylated Syk staining with error-bars depicting the standard deviation. Statistical
analysis was performed using the two-way ANOVA test. Only significant differences (****P<0.0001) to the positive control are indicated in the panel
(A). From this setting lysates of primary B cells were generated and examined by immunoblotting for the phosphorylation of Syk (B) and Erk1/2 (C).
Total Syk and IgG served as a loading controls. One representative blot of each is shown.
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(Figure 6A). One can speculate that this may be due to a potentially

superior adaptation to and better coexistance with the human

population, which is thought to be the original ancestral reservoir

for species D (10). In addition to being the largest and most rapidly

emerging group of HAdVs, species D is the only strictly human-

specific species (3, 10, 61). Since CD45-based immune evasion

serves a suitable target for several pathogens (27, 62–64), we assume

that our newly developed technique for detection of CD45-ECD

ligands can be applied to other CD45 ligands as well, such as

HCMVs UL11 (65), or utilized for the discovery of novel viral

CD45 ligands.

According to a recent hypothesis for the mechanism of E3/49K-

mediated inhibition of CD45 by soluble E3/49K of HAdV-D64, E3/

49K has two binding sites for CD45 molecules, which provokes the

dimerization of CD45, causing the inhibition of CD45 function

(25). The decrease of active CD45 results in increased levels of

inactive Lck containing the inhibitory pY505 phosphorylation and

finally an impairment of TCR signaling (25). This is in agreement

with previous reports describing that during the CD45-CD45

interaction a juxta-transmembrane wedge within the CD45

molecule sterically blocks the catalytic site of its binding partner

and thereby prevents SFK-substrate phosphorylation resulting in a
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negative regulation in T and B cell receptor signaling (66–69)

(Figure 7A). In this regard, it can be hypothesized that B cells

treated with E3/49K exhibit a phosphorylation pattern tending to

inactive Lyn (Figure 7B), the complementary SFK in B cells, similar

to inactive Lck in T cells. CD45 numbers and BCR signaling

capacity are correlating with the expression of activated Lyn

kinases. B cells that are CD45-deficient or have a low expression

of CD45 exhibited inactive Lyn, having pronounced inhibitory

phosphorylation at position Y507 and low activating

phosphorylation at position Y397 (70). CD22 is an inhibitory co-

receptor that contains immunoreceptor tyrosine inhibitory motifs

(ITIMs) in its cytosolic segment. Phosphorylation of the ITIMs by

Lyn facilitates the recruitment of the SHP-1 and SHIP1

phosphatases (71). Important for the inhibitory function of CD22

is its cell surface organization, in close proximity to the BCR it

antagonizes BCR signals, sequestered from the BCR nanoclusters,

BCR signaling is enhanced (72). CD45 is reported to form

heteromultimeric interactions in cis with CD22 via the

ectodomains of both proteins. Thus, this non-enzymatic function

of CD45 may be involved in the cell surface regulation of CD22

independent of its catalytic domain (73). The E3/49K-CD45

interaction may disrupt the interaction between CD45 and CD22,
B
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FIGURE 6

Only HAdV-D infected A549 cells bind soluble hCD45-Fc. A549 cells were infected with HAdV-A12, -B7, -B35, -C5, -D8, -D19, -D36, -D64 and
-D64DE3 and -E4, viruses with an MOI of 5 for 24 h Efficient infection was confirmed by internal hexon protein expression (red) using 2Hx-2 mAbs
in comparison to isotype control staining (grey) of infected A549 cells in flow cytometry. Displayed are representative histograms of productive
infections (A). Infected cells were treated with +/- (red/blue) 0.5 µg hCD45-Fc per sample. Bound CD45 molecules were detected by CD45-ECD
staining using a-human pan-CD45 MEM-28 in flow cytometry. Mock infected cells as well as cells infected with HAdV-D64DE3 virus served as
negative controls. As positive control the cell clone stably expressing HA-49K of HAdV-D64 was applied. The mean of 3 individual experiments
(columns) from (dots) including standard deviation, presented as error bars, is shown. Significant differences between +/- hCD45-Fc treatment were
determined using the two-way ANOVA test and are indicated in the panel (B).
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which may enhance the inhibitory effect of CD22 (Figure 7C). One

indication could be provided by antibody-mediated cross-linking of

CD45, resulting in physical sequestration from CD22, leading to an

increase in tyrosine phosphorylation of CD22 and activation of

SHP-1 (74). The effect of E3/49K on CD22 function should be

further analyzed in the future.

In this study we demonstrated that, despite the high structural

diversity between E3/49K types (11), they share the conserved activity

to bind to CD45 on all cells tested. All E3/49K types mediated

inhibition of BCR- and TCR signaling, as suggested by an

impairment of signaling components, which might be due to

negative regulation of SFKs. Here, our primary aim was to test

whether the different orthologues have comparable or divergent

effects. As we found that the different orthologues from distant

types of HAdV species D share most likely the binding site and act

very similarly, we focused only testing basic effects for already

described target cells such as T- and NK-cells. Accordingly,

reduction of CD69 surface upregulation upon TCR stimulation of

Jurkat cells could be reproduced for HA-49K of -D64 (24, 25) and

applied to all other tested HA-49K types. Moreover, impairment of

the phosphorylation of Erk1/2 in Jurkat cells could be verified (24, 25)

also for the remaining HA-49Ks tested. Defective CD69 induction in

T cells from CD45-deficient mice has been previously described (75).

The induction of CD69 surface expression in T-cells (76, 77) has been

previously linked to the MAPK pathway, providing evidence for

reduced CD69 levels in combination with impaired pErk1/2 signals.

However, induction of CD69 is not exclusively regulated by the

MAPK pathway and can be caused from canonical NF-kB signaling

as well, mediated for example by CD28 stimulation (78, 79). Thus,

remaining CD69 surface expression upon HA-49K treatments could

be explained independent from defects in Erk1/2 signaling (80). On

the other hand, especially the above mentioned pErk1/2 signal is
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clearly impaired upon stimulation of T cells, as a result of treatment

with HA-49Ks, replicating previous studies with E3/49K of HAdV-

D64 (24, 25). Suppression of pErk1/2 acquired by negative regulation

of CD45, via E3/49K, reflects interestingly the state of TCR receptor

signaling events in Jurkat cell lines and T cells frommice having both

defects in the expression of CD45. By this means, E3/49K treatment

phenocopied the TCR signaling capacity of mice expressing only

3–7% of total CD45 (CD45low) compared to wild-type (70, 81, 82)

and to some degree in CD45-deficient mice (32, 55, 56, 68).

Such phenotypic mimicry with utilization of E3/49K as tool to

generate conditions under defective CD45 expression could be

consequently subjected in the case of BCR signaling events and

can be controlled by supplementation of E3/49K decoy receptors.

Binding of E3/49K of HAdV-D64 to B cells was previously

demonstrated (24), suggesting a potential immunomodulatory

effect on B cells. Indeed, the HA-49K types tested here provoked

a drastic impairment of pErk1/2 in Ramos and primary B cells after

BCR stimulation, which is consistent with results from B cells

originating from CD45-deficient (43, 45, 49) or CD45low mice

(70). Comparable to data from mice lacking or having a diminished

expression of CD45, we observed a dampened calcium flux response

in Ramos cells during BCR stimulation upon HA-49K treatment

(43, 44, 70). Accordingly, Syk activity was reduced in stimulated B

cells after treatment with HA-49Ks, reflecting data from CD45-

deficient mice and J558L mu m3 plasmacytoma cells (73, 83).

Calcium flux events are downstream from Lyn- and Syk-derived

activities. Interestingly, Syk signaling can occur, independent from

SFK activity via a different pathway (83–85). Another possibility for

the maintenance of pSyk and calcium flux is provided by the

existence of a second distinct phosphatase called CD148, that has

overlapping functions to CD45 in the initiation of BCR signaling in

conventional B cells (46, 49). Clearly, to describe the detailed mode
B CA

FIGURE 7

Graphical abstract of the putative functional mechanism of E3/49K action in B cells. During BCR antigen ligation, the catalytic activity of CD45 shifts
the equilibrium of functional Lyn toward activated Lyn (Lyn Y396). The removal of the inhibitory phosphate group from Y507 sites primes the auto-
phosphorylation of Lyn at Y396 sites to induce Lyn kinase activity. Active Lyn promotes phosphorylation of ITAMs and pITAM-attached Syk to
facilitate BCR signal transduction. pSyk initiates several signaling pathways, including the MAPK pathway. pErk1/2 and the calcium flux results in
transcriptional and cellular activation (A). E3/49K-mediated dimerization of CD45 molecules prevents the catalytic activity of CD45. As a result, the
equilibrium of functional Lyn is shifted toward inactive Lyn (Lyn Y507), increasing the activation threshold during BCR stimulation. As a result of
reduced Lyn kinase activity, less pSyk, pErk1/2, and calcium flux are generated, resulting in decreased transcriptional and cellular activation (B).
Dimerization of CD45 by E3/49K may disrupts CD22-CD45 interaction. Active Lyn induces CD22 which enhances its inhibitory effect in reducing
BCR signals by affecting pErk1/2 and calcium flux (C). The figure was created with BioRender.com.
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of action and functional consequences of E3/49K interaction further

studies are required with expansion of detailed studies on more

compelling primary B cell models.

Taken together, these data demonstrated the potential of an E3/

49K mediated immunosuppression of B cells by inhibiting the BCR

signaling capacity and complement the recent observations of

reduced B cell activation and antibody production during E3/49K
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expression in porcine cells (47). Moreover, B cells were shown to be

critical in the clearance of AdVs in the mouse model in vivo (86),

our findings identify E3/49K as the first viral immunoeavasin

affecting directly this important cell type. However, further

investigations are required to characterize the functional effects

on B cell caused by E3/49K. If an attenuated adaptive immune

response is provoked as a result of E3/49K-caused effects HADV of
FIGURE 8

Graphical representation about E3/49K functions. CD45 modulation via binding of E3/49K proteins to its ECD is a common feature of HAdVs of
species D. E3/49K ECDs are shed from infected cells and bind to and inhibit CD45 positive target cells. Based on the current hypothesis, inhibition is
mediated by enforced dimerization of CD45 (25), which inhibits leukocyte receptor signaling. B cells are here identified as a new target for E3/49K-
mediated immune evasion. Since there are more CD45 expressing leukocytes existing, it is hypothesized that they serve as targets for E3/49K as
well. The figure was created with BioRender.com.
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species D could have a striking advantage compared to the other

species, potentially playing a role in the dominance of species D

types among HAdVs. Dampening the humoral immune response

probably prevents efficient HAdV clearance, prolonging shedding

of infectious viruses and thereby aid persistent infection at sites

which are inefficiently controlled by cell mediated immune

responses. This is consistent with the observation of higher and

longer-lasting viral loads and disease progression in eye infections

of species D compared to other species (87). Elaborating this

further, one can suggest that treatment of E3/49K potentially

causes poor proliferative response and maintenance of germinal

center reactions as a result of impairment of CD45 as previously

reported in CD45-deficient mice (40, 41, 45). It can be speculated

that during E3/49K exposure IgM production will be mainly

generated by the T cell independent B1 B cell subset, which can

function independent from CD45 (88).

Based on these data, we propose that E3/49K treatment of

immune cells mirrors defects in CD45 expression as in CD45-

deficient or reduced expression conditions. The availability of E3/

49K as tool to inhibit CD45 opens a new window to investigate

CD45-specific functions which are still poorly characterized, for

example in B cells or especially in leukocytes of the myeloid linage

(46). This would allow further investigations directly in human

cells, apart from mouse models and cells lines, to identify and

characterize in greater detail direct functional impacts. Since there

are more CD45 expressing cell types existing that can be bound by

E3/49K (Figure 8), we expect that E3/49K has even more cellular

targets for CD45-based immune evasion.
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