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Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-

conventional T cells characterized by multifunctionality. In addition to their

well-recognized antimicrobial activity, increasing attention is being drawn

towards their roles in tissue homeostasis and repair. However, the precise

mechanisms underlying these functions remain incompletely understood and

are still subject to ongoing exploration. Currently, it appears that the tissue

localization of MAIT cells and the nature of the diseases or stimuli, whether acute

or chronic, may induce a dynamic interplay between their pro-inflammatory and

anti-inflammatory, or pathogenic and reparative functions. Therefore,

elucidating the conditions and mechanisms of MAIT cells’ reparative functions

is crucial for fully maximizing their protective effects and advancing future MAIT-

related therapies. In this review, we will comprehensively discuss the

establishment and potential mechanisms of their tissue repair functions as well

as the translational application prospects and current challenges in this field.
KEYWORDS

mucosal-associated invariant T cell, tissue repair, chemotaxis, tissue phenotype,
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1 Introduction

Over the past three decades, innate-like lymphocytes such as mucosa-associated invariant

T (MAIT) cells, NKT cells, and gd T cells have emerged as a unique class of immune cells that

bridge innate and adaptive immunity. These cells acquire their effector functions during

development and stably reside in peripheral tissues, ready to respond immediately upon

recognizing primary antigens (1–5). MAIT cells (CD3+CD161hiVa7.2+) express a conserved
TCRa chain Va7.2-Ja33 (corresponding to mouse Va19–Ja33) (4–6), primarily recognizing

monomorphic MHC-1-related molecule (MR1). This recognition allows them to respond to

small molecule antigens such as 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-

RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), derived from the

riboflavin metabolic pathway produced by the microbiota (7, 8). Consequently, MAIT cells

are considered particularly dependent on the microbiota. In germ-free (GF) mice, the
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frequency of MAIT cells is significantly lower compared to those

raised under specific-pathogen-free (SPF) conditions (2, 9, 10).

In recent years, transcriptomic technologies have greatly

advanced the exploration of MAIT cell heterogeneity across

various contexts. Beyond their well-documented anti-infective

activities against bacteria and viruses (11–17), recent studies have

highlighted the crucial role of MAIT cells in tissue homeostasis and

repair (2, 18–22). Current research indicates that MAIT cells

contribute to tissue repair primarily through homing and

chemotactic migration. These cells interact with mucosal

microbiota or other immune cells, leading to the inhibition of

inflammatory responses or the secretion of repair mediators. This

process maintains mucosal barrier function and facilitates tissue

repair. The following discussion provides a detailed examination of

the significant properties of MAIT cells in tissue repair and their

potential future applications.
2 Tissue phenotype and
targeted chemotaxis

MAIT cells are enriched in human intestines (10%) (2, 23–27),

lungs (3%) (28), liver (10%-40%) (29), skin (0.5%-2%) (8) (Above

frequency as % of total T cells or abT cells.), as well as urogenital

tract (30–32). They constitute a crucial subset of immune cells

within mucosal tissues. These tissues are also colonized by diverse

microbial communities, which play a significant role in the

development, differentiation, and activation of MAIT cells (2, 15–

18, 33). MAIT cells are classified as MAIT1 and MAIT17 based on

the expression of transcription factors T-bet and RORgt,
respectively. However, in humans, MAIT cells exhibit a mixed

gene expression pattern without distinct functional subsets (34,

35). In naive SPF mice, tissue-resident MAIT cells are

predominantly RORgt+T-bet− (MAIT17), producing IL-17A,

while a minor population of circulating MAIT cells is T-bet

+RORgt− (MAIT1), producing IFN-g. Following intranasal

infection with pathogens such as Salmonella or Legionella, an

increase in RORgt+T-bet+ lung MAIT cells is observed. This

suggests that the diverse stimuli received by human MAIT cells

may explain some interspecies differences (36, 37). Additionally, in

the female reproductive tract and oral mucosa, barrier MAIT cells

predominantly exhibit a mature CD4−CD8− MAIT17 phenotype

with higher RORgt and lower T-bet expression (23, 38, 39). The

transcriptional profile of mouse tissues reveals specific differences

with lung tissue tending towards MAIT17 and liver tissue towards

MAIT1 (34), likely due to microbial exposure or other

environmental factors.

The enrichment of MAIT cells within tissues is primarily due to

their high surface expression of various chemokine receptors and

tissue residency markers, such as CD69 and CD103 (23, 24, 29, 40).

The tissue homing process is driven by the master transcription

factor promyelocytic leukemia zinc finger protein (PLZF), which

decreases the expression of Klf2 and its target CD62L (7, 33, 40–45).

Within the thymus, MAIT cells acquire distinctive tissue residency

traits (33, 41–44) and exhibit high levels of CCR2, CCR8, and

CXCR6 expression. Upon exiting the thymus, these cells are
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directed towards different non-lymphoid tissues, with tropism

potentially varying among cell subsets (29, 33–35, 46). MAIT1

cells are primarily localized in the spleen, lymph nodes, and liver,

whereas MAIT17 cells are enriched in barrier tissues such as the

lungs, skin, and intestines (1, 33–35, 41–46), possibly driven by

differentiation programs involving the expression of T-bet and

RORgt and surface chemokine receptor profiles.

Single-cell sequencing data reveal that circulating MAIT cells

express various chemokine receptor receptors, including CCR2

(associated with inflammation tissue infiltration), CCR5, CCR8

(potentially targeting skin and lung tissues), CXCR3 (homing to

inflamed tissues), CCR6 (tropism towards skin, gut, and brain), and

CXCR6 (tropism towards gut-liver interfaces) (23, 28, 29, 33, 47).

CXCR3 is predominantly expressed in the MAIT1 subset,

facilitating their migration towards sites of infection or

inflammation (35, 45, 46, 48), while MAIT17 cells exhibit high

expression of CCR6 and CXCR6 (35, 45, 46, 49), associated with

mucosal migration to organs such as the liver (29, 50–52), intestines

(53), and lungs (28). This diversity leads to heterogeneity in MAIT

cell phenotypes and subsets between blood and tissues, as well as

within tissues themselves. However, it is currently unclear whether

tissue-resident mucosal MAIT cells can exit mucosal tissues

and recirculate.

Under pathological conditions such as mucosal inflammation

or tissue injury, MAIT cell numbers at the site of pathology rapidly

increase through both in-situ proliferation and recruitment from

circulation (Figure 1). For instance, in pulmonary infection with

Francisella tularensis live vaccine strain (LVS), CXCR6 facilitates

long-term retention of MAIT cells in affected tissues, where they

proliferate locally rather than being recruited from secondary

lymphoid tissues (28). Conversely, studies in mice have shown

that increased MAIT cells at the skin wound recruit from the

circulation system in a CXCR6-CXCL16-dependent manner and

initiate wound repair functions (54). Our studies using NOD-SCID-

IL-2Rg−/−(NSG) mouse transplant models simulated the dynamic

distribution of MAIT cells and indicated that circulating MAIT cells

may recruit to intestinal tissues via CXCR6 (55).

MAIT cell migration and chemotaxis are prominent in clinical

diseases. In immune-mediated diseases like primary Sjögren’s

syndrome (pSS) (56), primary biliary cholangitis (PBC) (57),

inflammatory bowel disease (IBD) (58–61), rheumatoid arthritis

(RA) (62), and type 1 diabetes (T1D) (63–65), the chemokine and

cytokine milieu in inflamed tissues drives MAIT cell via various

chemokine receptors such as CCR9, CXCR5, CXCR4, CXCR3,

CCR6, and CCR10 (Figure 1). For instance, in PBC, MAIT cells

accumulate in the liver through CXCL12-CXCR4 chemotaxis (57),

while in IBD, chemokines like CCL20, CXCL10, CXCL16, and

CCL25 might guide MAIT cells to the inflamed gut (58). In newly

diagnosed T1D children, the frequency of blood MAIT cells

positively correlates with CCR6 expression, suggesting a role for

CCR6 in their migration to inflamed tissues. CCR6-expressing cells

recognize CCL20 and b-defensins, which are elevated in the

pancreas and intestines of diabetic patients and mouse models

(66, 67). Other homing receptors like CCR10, CD49a, CD103, and

skin lymphocyte-associated antigen may direct MAIT cells to

dermatitis herpetiform lesions (24, 38, 68, 69). Additionally, in
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crescentic glomerulonephritis (cGN), MAIT17 cells interact with

pro-inflammatory myeloid cells in the kidney via the CXCR6–

CXCL16 axis, suppressing their tissue-destructive capabilities (70).

In some diseases like systemic lupus erythematosus (SLE), Type

2 diabetes, and obesity, MAIT cells exhibit an activated and

exhausted state (71–73). The decreased frequency of blood MAIT

cells may reflect their migration to inflamed tissues or exhaustion

upon activation. As inflammation progresses to chronic stages (74),

other unidentified signals might sustain the accumulation and

survival of MAIT cells in specific inflamed tissues. Although

specific subsets of MAIT cells that preferentially traffic to different

tissues have not been fully elucidated, their abundant expression of

chemokine receptors and migratory capacity are crucial for their

roles in tissue homeostasis and repair.
3 Maintenance and triggering of
tissue-protective functions

Similar to iNKT cells, MAIT cells can be activated via their

TCR, recognizing microbial riboflavin metabolism intermediates
Frontiers in Immunology 03
like 5-OP-RU bound to MR1, or independently by pro-

inflammatory cytokines (8, 18, 19, 75–77). These activation

mechanisms differ different kinetics: TCR-mediated activation

leads to rapid production of a broad array of pro-inflammatory

cytokines and chemokines, including IL-1A, IL-1B, IL-2, IL-22,

GM-CSF, CCL3, CCL4, and CCL20, with rapid IFN-g release within
6 hours. In contrast, MAIT cells activation by IL-12 and IL-18

primarily induces IFN-g production at 20-24 hours (18, 19, 75, 76).

Given their strategic location in mucosal tissues and activation

by microbial metabolites, MAIT cells play crucial roles in

maintaining tissue homeostasis. Previous studies indicate the

response of unconventional H2-M3-restricted Tc17 cells to

commensal S epidermidis, suggesting a role in regulating tissue

homeostasis similar to other innate-like T cells involved in barrier

surface homeostasis (36, 78, 79). Supported by a diverse gut

microbiome, MAIT cells, along with Vd2 unconventional T cells,

are supported by a diverse gut microbiome and associated with

favorable prognosis in patients post-allogeneic hematopoietic cell

transplantation (HCT) (79). In gut graft-versus-host disease

(GVHD) mouse models, Mr1-deficient mice lacking MAIT cells

exhibit reduced gut microbial diversity, akin to IL-17A-deficient
FIGURE 1

The mechanisms of MAIT cell accumulation at wound sites and their role in tissue repair. Circulating MAIT cells express various cytokine and
chemokine receptors, enabling them to target and migrate to different tissues. Upon tissue damage, MAIT cells accumulate at the site of wound
through chemotaxis or in-situ proliferation. The invasion of mucosal microbes or inflammatory stimuli rapidly activates MAIT cells, prompting them
to secrete tissue repair factors such as IL-17, IL-22, and Areg. These cells also interact with other immune cells to facilitate the repair of damaged
tissue. The dashed arrows in the Figure indicate that these processes require further experimental evidence for support. Created with
Biorender.com.
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animals (22), highlighting the protective role of MAIT cells in

intestinal inflammation. Recent findings by El Morr et al.

demonstrated that during intestinal inflammation, MAIT cells

detect microbiota-derived metabolites and promote tissue repair.

Under normal conditions, these metabolites from aerotolerant

bacteria in the colonic mucosa activate MAIT cells. During

inflammation, increased production of these ligands crosses the

intestinal barrier, activating MAIT cells to express repair genes and

produce barrier-enhancing mediators, facilitating colitis resolution

(80). Understanding these interactions between MAIT cells and the

microbiome is crucial for elucidating their role in maintaining

tissue homeostasis.

Transcriptional analyses in both mice and humans reveal a

strong enrichment of tissue repair signatures in MAIT cells,

particularly the MAIT17 subset [18,19,43,80]. In mucosal or

wound tissues, the predominant phenotype of MAIT cells is

MAIT17 (8), attributed to: ① Under steady-state conditions, the

microbial environment of mucosal barriers promotes the

differentiation of MAIT17 and the maintenance of its repair

functional programs; ② Under stress, recruitment of MAIT17

cells from circulation to wounds becomes predominant. The

functional effects of these transcriptional programs have been

demonstrated both in vivo and in vitro. Using an in vitro wound

healing assay with the Caco2 intestinal epithelial cell line, it was

found that MAIT cells trigger inducible tissue repair programs in an

MR1-dependent manner and accelerate wound closure in this

system (19). This was demonstrated in mouse models, where

Mr1-/- NOD mice exhibited increased intestinal permeability

compared to Mr1+/+ NOD mice, indicating a protective role of

MR1-mediated MAIT cells in maintaining intestinal homeostasis

(60). Similarly, in vitro human cholangiocyte cell line H69 wound

healing assay, MAIT cells showed wound healing characteristics

dependent on MR1-antigen-TCR interaction conduction (81).

Direct application of 5-OP-RU on injured skin was also sufficient

to expand MAIT cells and accelerate tissue repair in mice (10).

However, in a recent human-like mouse model of full-thickness skin

excision, MAIT cells in the skin express tissue repair programs in a

steady-state, but the recruitment and tissue repair functions of

MAIT cells do not depend on MR1-mediated antigen presentation

(54). The potential reasons for this contradictory result include,

firstly, the need for additional signals to initiate and amplify tissue

repair programs, apart from solely relying on MR1 molecules (18,

19, 82–86). Secondly, pro-inflammatory cytokines, along with TCR

signaling, trigger robust and sustained effector functions of MAIT

cells, which are not only reflected in the upregulation of repair

factors but also in the release of various cytokines such as IFN-g and
TNF-a (18, 19, 82–86), affecting the inflammation response and

immune cell activity, thereby helping to regulate the level of

inflammation during tissue injury and repair processes. Lastly,

classical TCR signaling through CD3/CD28 stimulation also

increases the expression of mucosal protective factors such as IL-

17A (84), although possibly to a lesser extent than activation via the

MR1 pathway.

In summary, tissue repair is a complex process regulated by

various factors. When MAIT cells are stimulated through TCR

without pro-inflammatory cytokines, they secrete epithelial repair
Frontiers in Immunology 04
factors, contributing to the maintenance of homeostatic barriers.

However, in the presence of cytokines accompanying wounds or

inflammation, MAIT cells initiate additional anti-infective

responses, aiding in emergency barrier repair and bolstering host

defense mechanisms (19). This dual role underscores the versatility

and adaptability of MAIT cells in maintaining tissue integrity and

responding to different challenges.
4 Immunoregulatory effects

Upon activation at mucosal or pathological sites, MAIT cells

exert their effects through two pathways (Figure 1): direct action by

secreting tissue repair factors to promote wound healing and

indirect action by influencing other immune cell subsets

through immunoregulation.

Transcriptomic studies of MAIT cells from human and mice

have revealed shared expression of genes involved in tissue

protection and repair. These genes include immune genes (TNF,

PTGES2, TGFB1, CCL3, HMGB1), proteases (Furin, MMP25),

growth factors (GM-CSF, M-CSF, PDGFB, LIF), and angiogenic

genes (HIF1A, VEGFB) (10, 18–20). In the latest study by Sayaf. K

et al., the MAIT cell stimulation leads to the production of growth

factors, potentially mediating their critical role in tissue repair and

regeneration following injury through the VEGF-VEGFR2

signaling pathway (87).

The roles of IL-17 (22, 88, 89) and amphiregulin (Areg) (54, 90)

in tissue repair have been well studied. Areg is an epidermal growth

factor-like molecule, mediates keratinocyte proliferation (90).

During the skin injury repair, MAIT cells induce wound healing

by secreting Areg (54). MAIT cells also play a crucial role in

maintaining intestinal mucosal integrity by producing IL-17 and

IL-22 (21, 22). In Type 1 Diabetes (T1D), a reduction in IL-17 and

IL-22 production by MAIT cells leads to compromised mucosal

barrier integrity and increased intestinal permeability (23, 63–65,

89, 91–93). This can trigger local intestinal inflammation and

facilitate the translocation of bacterial compounds to the liver or

pancreatic lymph nodes, exacerbating autoimmunity and disease

progression (63, 64). In a mouse transplant model, residual

intestinal MAIT cells from recipient mice secrete IL-17 to

maintain intestinal integrity and suppress gut GVHD (22, 94). IL-

22 promotes the survival and proliferation of epithelial cells, while

IL-17 regulates tight junction proteins to prevent excessive barrier

permeability during epithelial injury (89, 95, 96). Additionally,

MAIT cell-deficient mice have been shown to develop intestinal

leakage, though underlying mechanisms require further

investigation (63).

MAIT cells also maintain tissue homeostasis at the meningeal

barrier by expressing antioxidant molecules such as Selenop and

Fth1, which enhance the expression of cell adhesion molecules like

E-cadherin and Claudin11, contributing to meningeal barrier

integrity (97). These findings highlight the crucial protective role

of tissue repair factors secreted by MAIT cells in mucosal

homeostasis and repair.

In addition to direct tissue repair, MAIT cells exert

immunomodulatory effects indirectly. They trigger dendritic cells
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(DCs) maturation in a CD40L and GM-CSF-dependent manner,

inducing anti-inflammatory macrophage polarization and

promoting B cell differentiation and antibody production (62, 98–

100). In experimental autoimmune encephalomyelitis (EAE),

MAIT cells inhibit disease development by modulating pro-

inflammatory molecules and promoting IL-10 production by B

cells, reducing disease severity (6). Activated MAIT cells can induce

differentiation of monocytes/macrophages into an M2 phenotype in

vitro (50) and promote long-term survival of neutrophils and their

differentiation into APC-like neutrophils via TNF, IFN-g, and GM-

CSF mediation (101–103). By modulating neutrophils and DCs,

MAIT cells increase the number of effector and memory

conventional CD4+ and CD8+ T cells at infection sites and new

arrivals (62, 101). They may also recruit other tissue repair immune

cells such as macrophages by producing chemotactic factors like

CCL3 (19, 104, 105). Additionally, MAIT cells can inhibit CD4+ T

cell proliferation in vitro (88–90). In an allogeneic reaction in vitro

model, MAIT cells effectively control or delay the occurrence of

GVHD through immunosuppressive effects (106–108), correlating

with reduced infiltrating human T cell numbers, proliferation, and

effector function in diseased mouse tissues, along with reduced

circulating levels of IFN-g and TNF-a and increased levels of IL-10

(108). In summary, MAIT cells can engage in repair or

antimicrobial responses within mucosal tissues through cross-talk

with other immune cells. However, detailed studies using mucosal

tissue samples, such as those from the gastrointestinal tract, are

necessary to better understand this phenomenon.

Recent evidence shows that MAIT cells play a significant role in

the immune response to SARS-CoV-2. In COVID-19 patients,

circulating MAIT cells significantly decrease and become enriched

in the airways (109–114). The remaining blood MAIT cells are

activated, with increased CD69, CD38, HLA-DR, CD56, and

granzyme B expression, along with decreased CXCR3 expression.

Airway MAIT produce IL-17A and TNF, associated with

chemokines like CXCL10 and CX3CL1 (109, 112). Regarding

clinical outcomes, current research shows inconsistent results.

Parrot T et al. found that high CD69 and low CXCR3 expression

on MAIT cells are associated with mortality (112). In contrast,

research by Jouan Y et al. indicated that CD69 expression on MAIT

and iNKT cells at admission is associated with improved

oxygenation on day 7 and increased discharge from intensive care

by day 15 (113), suggesting a beneficial role for MAIT cells in

COVID-19. The data suggest MAIT cell dual role in contributing to

inflammation and aiding in disease resolution. Additionally, during

SARS-CoV-2 infection, SARS-CoV-2-infected macrophages can

activate MAIT cell through MR1-dependent degranulation or the

cytokine IL-18 (114). In severe COVID-19 patients, IL-10

suppresses monocyte HLA-DR expression, leading to MAIT cell

dysfunction (115). Overall, the balance between protective and pro-

inflammatory roles of MAIT cells, and their potential tissue repair

function, remains unclear, but their distinct changes during SARS-

CoV-2 infection underscore their significant role.

In summary, in chronic pathological conditions like viral

infections and autoimmune, inflammatory, and metabolic

diseases, MAIT cells can exert pathogenic effects through

sustained inflammation and cytotoxicity. The balance between
Frontiers in Immunology 05
their pathogenic and protective roles may depend on factors such

as activation status, tissue localization, cytokine profile, and disease

chronicity (24). In conditions of chronic inflammation, tissue-

resident MAIT cells may lose their homeostatic function,

contributing to barrier integrity disruption.
5 Future outlook and
outstanding issues

MAIT cells’ significant roles in maintaining homeostasis and

promoting tissue repair in the intestinal mucosa, meningeal barrier,

and skin have garnered increasing attention. Beyond their well-

established antimicrobial responses, there is a growing interest in

their regulatory role in wound healing. From a translational

medicine perspective, efforts are being made to utilize the unique

homeostatic functions of MAIT cells to address chronic

inflammation and restore tissue integrity. For example, chronic

skin wounds such as leg ulcers, sacral pressure sores, or burns could

potentially benefit from local reintroduction of symbiotic organisms

capable of synthesizing riboflavin or the application of synthetic

MAIT cell ligands (98).

Recent research indicates that MAIT cells lack alloreactive

potential (116, 117), suggesting potential for developing universal

MAIT cell adoptive therapy to overcome HLA disparities. Strict

regulation of cell surface MR1 during allo-HSCT can minimize the

risk of off-target effects of MAIT cells (75, 118). Additionally, due to

their natural tropism for mucosal tissues, MAIT cells can effectively

target mucosal tissues such as the gut and skin (118, 119). This

highly conservative MR1 regulation makes allogeneic MAIT cell

transplantation less likely to induce severe GVHD. Leveraging the

effector or tissue repair/regulatory properties of MAIT cells in

adoptive immunotherapy offers novel clinical strategies for

treating GVHD. MAIT cell transplantation has been preliminarily

validated in mouse models and could readily transition to clinical

trials. Overall, the tissue repair and regulatory functions of MAIT

cells open new avenues for clinical benefits. Furthermore, these

characteristics make MAIT cells highly promising candidates for

engineered chimeric antigen receptor (CAR)-MAIT therapy.

However, challenges remain, particularly in obtaining human

mucosal tissue and developing ex vivo research models that accurately

simulating in vivo disease environments. This limitation hinders

comprehensive investigations into the reparative mechanisms of

MAIT cells across different diseases or microenvironments. At

present, MAIT cells can toggle between pro-inflammatory and

anti-inflammatory, or pathogenic and reparative functions,

depending on tissue localization and disease types (21, 57, 59, 60).

Therefore, several potential obstacles must be addressed before

successful clinical translation. Firstly, in-depth exploration of MAIT

cell tissue localization and maintenance of repair functions, as well as

the conditions or mechanisms triggering them, is crucial for

developing targeted therapies for wounds. Secondly, studying the

functions and tissue localization of different MAIT cell subtypes is

necessary to determine the optimal cell type for transplantation.

Finally, a thorough investigation into the antigens or stimuli present

in healthy and different diseased tissue microenvironments is
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essential to understand how these conditions affect MAIT cell

functional differentiation, thereby guiding the development of

MAIT cell-related therapies conducive to disease recovery in

various scenarios. It is noteworthy that understanding the degree of

crosstalk between MAIT cells and other immune/non-immune cells

and symbiotic microorganisms under normal conditions or when

activated in disease microenvironments is also necessary.

To advance the study of MAIT cell reparative functions, it is

imperative to develop novel ex vivo research models. For instance,

fully utilizing current organoid culture techniques may be

beneficial. Organoids, self-organizing, miniaturized organs derived

from a series of stem cells, replicating key structural and functional

features of their in vivo counterparts (109, 120–124). Constructing

3D models of human ex vivo skin, gastrointestinal tract, and other

organoids, and exploring the interaction between co-culture

systems and immune cells, can provide deeper insights into the

functional aspects of MAIT cells in organoid models under different

disease conditions. This includes migration, cytokine production,

tissue repair, and antimicrobial activity (109). Additionally, these

models can help describe the crosstalk between MAIT cells and

resident mucosal immune cells and the consequent impacts on

mucosal integrity and immunity. Recently, this technology has been

applied to study MAIT cells in acute intestinal inflammation (125).

In patient-derived appendiceal organoid (PDAO) models,

circulating MAIT cells upregulated chemokine receptors and

showed enhanced E. coli-pulsed PDAO infiltration in a CCR1-,

CCR2-, and CCR4-dependent manner (125). This serves as an

excellent preclinical model for investigating the roles of MAIT cells

in mucosal organs. It is anticipated that this approach will be

applied to other clinical disease models involving MAIT cells in

the future, further advancing the clinical translation of MAIT

cell research.
6 Conclusions

In conclusion, this review outlines the tissue repair effects of

MAIT cells and their involvement in various diseases, summarizing

current MAIT-related researches. We envisage using organoid

models to enhance understanding the interactions between MAIT
Frontiers in Immunology 06
cells and different disease microenvironments. This approach

provides a more robust theoretical basis and preclinical research

means for the development of MAIT cell therapies.
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