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Introduction: Precise staging and classification of liver fibrosis are crucial for the

hierarchy management of patients. The roles of lactylation are newly found in the

progression of liver fibrosis. This study is committed to investigating the signature

genes with histone lactylation and their connection with immune infiltration

among liver fibrosis with different phenotypes.

Methods: Firstly, a total of 629 upregulated and 261 downregulated genes were

screened out of 3 datasets of patients with liver fibrosis from the GEO database

and functional analysis confirmed that these differentially expressed genes

(DEGs) participated profoundly in fibrosis-related processes. After intersecting

with previously reported lactylation-related genes, 12 DEGs related to histone

lactylation were found and narrowed down to 6 core genes using R algorithms,

namely S100A6, HMGN4, IFI16, LDHB, S100A4, and VIM. The core DEGs were

incorporated into the Least absolute shrinkage and selection operator (LASSO)

model to test their power to distinguish the fibrotic stage.

Results: Advanced fibrosis presented a pattern of immune infiltration different

from mild fibrosis, and the core DEGs were significantly correlated with

immunocytes. Gene set and enrichment analysis (GSEA) results revealed that

core DEGs were closely linked to immune response and chemokine signaling.

Samples were classified into 3 clusters using the LASSOmodel, followed by gene

set variation analysis (GSVA), which indicated that liver fibrosis can be divided into

status featuring lipid metabolism reprogramming, immunity immersing, and

intermediate of both. The regulatory networks of the core genes shared

several transcription factors, and certain core DEGs also presented

dysregulation in other liver fibrosis and idiopathic pulmonary fibrosis (IPF)

cohorts, indicating that lactylation may exert comparable functions in various

fibrotic pathology. Lastly, core DEGs also exhibited upregulation in HCC.
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Discussion: Lactylation extensively participates in the pathological progression

and immune infiltration of fibrosis. Lactylation and related immune infiltration

could be a worthy focus for the investigation of HCC developed from

liver fibrosis.
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1 Introduction

Liver fibrosis, or hepatic fibrosis, often begins with a fibrous scar

arising from extracellular matrix (ECM) accumulation, especially

crosslinked collagens type I and type III (1). Fibrous scar formation,

in replacement of damaged normal tissue, is constantly triggered

following chronic liver injury. Viral infection (2), alcohol abuse (3),

metabolic dysfunction-associated steatohepatitis (MASH), and

metabolic-associated fatty liver disease (MAFLD) foster persistent

activation of inflammatory response and fibrogenesis, leading to the

development of liver fibrosis (4). Fibrosis progression from

reversible to advanced stage may deteriorate into cirrhosis, liver

failure, and portal hypertension (5). Cirrhosis is one of the

intermediate processes of liver diseases developing hepatocellular

carcinoma (HCC), no matter whether it originated from alcohol

abuse, hepatitis virus infection, or metabolic dysfunction (6). The

last decades have witnessed an epidemic of liver fibrosis, despite

social efforts on HBV/HCV (hepatitis B virus and hepatitis C virus)

delimitation. Non-viral etiology for liver fibrosis increased due to

superfluous living supplies. Infection rates of hepatitis virus,

prevalence of metabolism-related liver diseases, and per capita

consumption of alcohol in China surpassed those in other

countries and regions; moreover, liver fibrosis and cirrhosis

largely account for hospitalization of patients with liver disease

(7). Fibrotic progression to liver failure can only be treated by liver

transplantation (8), highlighting the hierarchical management of

patients with liver fibrosis. Therefore, reversing early-stage fibrosis

and curbing advanced fibrosis from progressing into liver failure is

one of the most urgent challenges for public health.

Recent studies underscore the roles of histone lactylation in

various diseases (9–11). Lactylation, a novel histone acetylation that

was newly defined in 2019, has emerged to the sight of researchers

with its modulatory roles in inflammation, fibrosis, cell

differentiation, and cancerous development (10). Lactylation can

exert reparative (12) and injurious (13) functions concerning all

kinds of immunocytes, stroma cells, and histiocytes (14–16).

Immunocytes, in response to anti/pro-inflammatory and

angiogenetic signals, undergo metabolic reprogramming and a

drastic increase in glycolysis produces abundant lactide that fuels

histone lactylation and subsequent modulation of gene

expression (17).
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Lactylation in liver fibrosis is under intensive study but far from

fully elucidated. Liver fibrosis involves joint action from hepatic

stellate cells (HSCs), immunocytes, and hepatocytes (18). HSC

activation features dynamic glycolysis and entails histone

lactylation for transcriptional activation of key genes sustaining

fibrotic pathology (19, 20). However, lactylation of hepatocytes and

its impact on the infiltration and activation of immune cells has

been scarcely studied.

Enlightened by the prerequisite role of lactylation in HSC

activation and fibrotic phenotypes, the study aims to

comprehensively assess the activity and staging value of

lactylation in liver fibrosis. Combining the Gene Expression

Omnibus (GEO) database and documented lactylation-related

genes (21–23), we screened differentially expressed genes (DEGs)

with lactylation and tested their power to distinguish early and

advanced fibrosis. Functional and enrichment analyses as well as

immune infiltration analysis validated that the DEGs were closely

related to fibrosis progression and immune infiltration.
2 Method and materials

2.1 Data sources

Raw gene expression and stage data of patients with liver

fibrosis from three datasets, namely GSE130970, GSE84044, and

GSE49541 were downloaded from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/). In GSE130970, fibrosis was staged

by scoring tissue sections stained with Masson’s trichrome stain

using the NIDDK NASH CRN staging system, and stages 1a, 1b,

and 1c were classified as stage 1 (24). The dataset contained 23

control subjects, 28 fibrosis cases at stage 1, 9 at stage 2, 14 at stage 3,

and 2 at stage 4, and gene expressions were detected by Illumina

HiSeq 2500 (Homo sapiens) on the GPL16791 platform. GSE84044

provides data on 43 non-fibrotic livers, 20 fibrosis cases at stage 1,

33 at stage 2, 18 at stage 3, and 10 at stage 4 (25). The dataset applied

the Affymetrix Human Genome U133 Plus 2.0 Array [HG-

U133_Plus_2] on GPL570 for gene sequencing. A total of 40

control and fibrotic livers at stage 1 were grouped against 32

cases of fibrosis at stages 2 to 4 in GSE49541(GPL570[HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array).
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Therefore, we defined stages F0 to F1 as mild fibrosis and stages F2

to F4 as advanced fibrosis. Datasets were merged and batch effects

were adjusted using the limma and sva packages in R language. R

version 4.2.2 was used for all analyses in this article. The

FactoMineR and factoextra packages were utilized for principal

component analysis (PCA) and plotting to visualize the adjustment

on three-dimensional scatter plots.

To verify the generalization of core DEGs in fibrosis, GSE14323,

GSE103580, GSE110147, and GSE150910 from the GEO database

were collected. GSE14323 and GSE103580 provided liver specimen

expression data of patients with HCV-related and alcohol-related

cirrhosis, respectively. Gene expression of lung samples from

patients with idiopathic pulmonary fibrosis and normal controls

were gathered from GSE110147 and GSE150910.

Expression and survival data of patients with HCC (TCGA-

LIHC cohort) were obtained from the TCGA website (https://

www.cancer.gov/ccg/research/genome-sequencing/tcga).
2.2 Screening of differentially
expressed genes

A linear model for microarray data (LIMMA) package (26) from

R language was used for DEG screening. To improve the reliability of

differentially expressed genes, probe sets for which the adjusted P was

<0.05, and |logFC| was > 0.25 between mild and advanced fibrosis

were defined as significantly differentially expressing.
2.3 Functional analyses of DEGs and gene
set enrichment analysis

In order to investigate the biological functions of DEGs,

ClusterProfiler package (27) was utilized for functional analyses.

The analyses incorporated Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG), and the GO

category delineated functional pathways into three aspects

including biological processes (BP), molecular functions (MF),

and cellular components (CC). The P-value was adjusted using

the Benjamini–Hochberg approach or FDR for multiple testing

corrections. The threshold was set at FDR<0.05.

In gene set enrichment analysis (GSEA) for core DEGs, the

clusterProfiler package was utilized to calculate the enrichment

score of pathways with the given genes.
2.4 Selection of core DEGs

After intersection with the lactylation-related gene list, 12

candidates were subjected to two machine learning algorithms,

random forest (RSF) and support vector machine (SVM), for

characteristic gene selection. The harvested six genes were further

tested by least absolute shrinkage and selection operator (LASSO),

another machine learning algorithm characteristic of dimension
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reduction. LASSO analysis was implemented with a turning/penalty

parameter utilizing a 10-fold cross-verification via the glmnet

package (28). Receiver operating characteristic (ROC) curves and

the area under the curve (AUC) were used to estimate the

diagnostic efficacy.

In detail, to model the degree of liver fibrosis, we used the

“glmnet” function in LASSO regression and the variable type was

binomial. When performing 10-fold cross-validation using the

cv.glmnet function, the “coef” function was utilized to extract the

coefficients of the model. The parameter s=cvfit$lambda.min

specifies the coefficient corresponding to the minimum lambda

value selected using cross-validation.

This article uses two machine learning methods to screen key

genes, SVM and RSF. SVM and RSF are commonly used machine

learning methods. SVM is a supervised learning algorithm primarily

used for classification and regression problems. Its basic principle is

to find the optimal boundary between data points (hyperplane),

which can maximize the boundary distance between different

categories. SVM uses kernel functions to map data to high-

dimensional space to handle nonlinear separable problems. In

gene screening, SVM can be used to distinguish samples with

different biological characteristics or phenotypes by identifying

which genes are most important for classification. RSF is an

ensemble learning method based on decision tree construction. It

improves the accuracy and robustness of the model by constructing

multiple decision trees (forests) and voting or averaging their

results. Each decision tree uses a random subset of the dataset

during training (achieved through self-sampling), which increases

model diversity and reduces the risk of overfitting. An important

feature of RSF is its feature importance assessment, which can

identify the genes that impact classification most greatly. In gene

screening, RSF can be used to evaluate the contribution of genes to

sample classification and select key genes through feature

importance scores. Combining SVM and RSF can improve the

accuracy of predictions.
2.5 Immune cell infiltration analysis

Single-sample gene set enrichment analysis (ssGSEA) was

implemented to analyze the immune infiltration based on the

expression profiling of 29 immunity-relevant signatures. The

analyses were composed of reciprocal relevance between different

types of immune cells, differences in immune infiltration between

mild and advanced fibrosis, and correlation of immune cells with

core DEGs.

The ssGSEA function in the Gene Set Variation Analysis

(GSVA) package evaluates the degree of association between a

single sample and a predefined gene set. It is comprised of the

following key steps:

2.5.1 Immune cell infiltration analysis
Pre-processing of gene expression data: First, gene expression

data must be converted into a format suitable for GSVA analysis.
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2.5.2 Preparation of gene sets
The gene sets used in this article represent cell types

and pathways.

2.5.3 Non-parametric pathway
enrichment analysis

GSVA uses nonparametric methods to evaluate the degree of

association between each sample in the gene expression profile and

every certain gene set, and converts the associations into a

continuous score.

2.5.4 Kernel density estimation
GSVA estimates the expression distribution of gene sets

through kernel functions (Gaussian kernel in this paper).

2.5.5 Empirical cumulative distribution function
GSVA uses eCDF to evaluate the position of gene sets in gene

expression ranking lists.

2.5.6 Enrichment score
ES was calculated by taking the maximum absolute value of the

difference between the cumulative distribution function of all genes

in the gene set and the cumulative distribution function of the entire

gene set.

2.5.7 Statistical test
Finally, linear models and empirical Bayesian methods are used

to perform statistical tests on the ES to determine whether the

enrichment of the gene set is statistically significant.

The p-value ranged from 0 to 1, and less than 0.05 was

considered significant.
2.6 Unsupervised hierarchical clustering

The normalized expression microarray data for each patient

were collected and subjected to unsupervised hierarchical clustering

with the ConsensusClusterPlus package in R.
2.7 Gene set variation analysis

KEGG and Reactome pathways were downloaded from the

MSigDB database as the reference set. The GSVA scores of each

pathway were calculated using the ssGSEA function in the GSVA

package from R. The GSVA score denoted the degree of absolute

enrichment of each gene set, and was compared across two clusters

using the limma package.

2.8 Construction of regulatory network

Regulator data concerning miRNA and transcriptional factors

were obtained from the regnetwork database(https: //

regnetworkweb.org/) for upstream prediction of core DEGs. The

regulatory network was constructed using Cytoscape software.
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2.9 Statistical analysis

All the statistical analyses were performed using R-4.1.3.

Heatmaps were plotted using R package “pheatmap”. The KM

method was performed using the R package “survminer”. LASSO

analysis was performed using the R package “glmnet”. The KM

plots, violin plots, volcano plots were plotted using the R package

“ggplot2”. For comparison between two groups, Student’s t-test

was performed.
3 Results

3.1 Integrating microarray datasets of
liver fibrosis

The three liver fibrosis datasets (GSE130970, GSE84044, and

GSE49541) were incorporated into the study and merged using the

limma and sva algorithms to remove batch effects. Distribution

patterns of the fibrotic cases before and after normalization were

visualized using principal component analysis (PCA)

(Figures 1A, B) and box plots (Figures 1C, D).
3.2 Differentially expressed genes between
mild and advanced liver fibrosis

After homogenization, the samples were subjected to variance

analysis using the limma package. Distinct gene expression patterns

between mild and advanced fibrosis were identified (adj.P.val <

0.05, and |log2FC| > 0.25), with 629 DEGs upregulated and 261

downregulated for liver fibrosis, as shown in the volcano plot and

heatmap (Figures 1E, F).
3.3 Enrichment analyses of DEGs

Next, we performed pathway enrichment analyses on the DEGs

of liver fibrosis. GO analysis revealed that these DEGs were enriched

in fibrotic processes, such as “cytokine–mediated signaling”, “cell

chemotaxis”, and “extracellular matrix organization” (Figures 2A–C).

KEGG analysis highlighted their involvement in “cytokine–cytokine

receptor interaction”, “chemokine signaling pathway”, “ECM–

receptor interaction”, etc (Figure 2D). Enrichment for these

pathways suggested that these DEGs were associated with

chemokine signaling and excessive production of extracellular

matrix, which are responsible for liver fibrosis.
3.4 Lactylation underscores the core
predictive DEGs in fibrotic livers

By intersecting these DEGs with 336 lactylation–modified genes

(21–23), we found that among the upregulated DEGs, 12 genes were

modulated by lactylation (Figure 3A), while none of the

downregulated DEGs were related to lactylation (Figure 3B). We
frontiersin.org
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further analyzed the 336 lactylation–related genes in patients with

or without liver fibrosis and the results validated that the expression

level of only these 12 upregulated DEGs fluctuated between fibrotic

and normal livers (Figure 3C). The 12 genes included S100A6,

HMGN4, IFI16, LDHB, S100A4, S100A11, VIM, TMSB4X, FABP5,

RACGAP1, CCNA2, and MNDA, and their expression patterns in

advanced fibrosis were distinct from mildly fibrotic livers

(Figures 3D, E). Thus, these genes might have crucial functions in

the pathology of liver fibrosis.

We applied two machine algorithms to screen out signature

genes from the 12 lactylation–related DEGs in liver fibrosis. Six
Frontiers in Immunology 05
candidates of predictive value for liver fibrosis were selected by

SVM (Figure 4A) and ten by random forest (Figure 4B). The

harvested key DEGs were further intersected (Figure 4C), which

returned six core candidates, namely S100A6, HMGN4, IFI16,

LDHB, S100A4, and VIM, with significantly and reciprocally

positive correlations (Figure 4D). We constructed a LASSO

regression model based on the six core genes (Figure 4E), which

manifested better predictive power than each single DEG as shown

by the ROC curve (Figure 4F), with the AUC reaching 0.828 in

LASSO model and ranging from 0.719 (VIM) to 0.773 (S100A6

and HMGN4).
FIGURE 1

Merging the database and screening differential expressed genes (DEGs). (A) Principal Component Analysis (PCA) of samples from the three
databases before data merging. (B) PCA of 274 samples covering 16,243 genes after data merging using the FactoMineR and factoextra packages
from R. (C, D) sample distribution before (C) and after (D) homogenization of the datasets using the preprocessCore package of R language. (E, F)
DEGs were screened using the limma package under the standard of adj.P.Val<0.05, and |logFC| > 0.25. Upregulated genes were plotted in red and
downregulated genes in blue in a volcano plot (E). The heatmap (F) displays a group of genes differentially expressed in mild and advanced fibrosis.
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3.5 Liver fibrosis progression involves
variations in immune infiltration and
gene expression

We continued to investigate the immune infiltration in the

fibrotic livers. Cross infiltration of all kinds of immune cells

revealed the intertwined inflammatory status along fibrotic

progression (Figure 5A), especially the strongly significant

coexistence of activated B cells with activated CD4, CD8 T cells,

and gd T cells that are responsible for the pro-inflammatory process,

as well as the myeloid-derived suppressor cells (MDSCs) and

regulatory T cells that exert immunoregulatory functions.

Moreover, infiltration of immunocytes presented distinctive

alterations along the progression of liver fibrosis (Figure 5B). Most

immunocytes, including activated B cells, activated CD4 and CD8 T

cells, dendritic cells, gd T cells, MDSCs, and regulatory T cells

increased while macrophages and neutrophils decreased along with

fibrosis advancement. Moreover, infiltration of different

immunocytes was associated with the core DEGs (Figure 5C).
Frontiers in Immunology 06
Typically, activated CD4 T cells were the top immunocyte

correlated with HMGN4, IFI16, and LDHB, while MDSCs and

mast cells were closely related to S100A4, S100A6, and VIM. In

addition, immunocytes that distinctively infiltrated in mild and

advanced fibrosis also exhibited significant correlations with the

core DEGs. These results suggested that not only did immune

infiltration participate in fibrotic progression, but also certain core

genes might be involved in the proportion variation of immunocytes.
3.6 Phenotyping power of the core DEGs
in liver fibrosis

In order to catalog liver fibrosis with core DEGs, we screened

genes notably related to each core DEG (Figure 6), which were

sequentially subjected to GSEA (Figure 7). Per the aforementioned

results that these DEGs were linked to immune infiltration in liver

fibrosis (Figure 5), genes screened by their relationship with core

DEGs were enriched in pathways involving immune responses and
FIGURE 2

GO Annotation and KEGG Enrichment analyses of DEGs. (A–C) GO annotation of the DEGs in association with annotated (A) biological process (BP),
(B) cellular component (CC), and (C) molecular function (MF). (D) demonstration of KEGG enrichment results. Pathways were ranked according to
their GeneRatio, and the sizes of the bubbles represent the number of enriched genes, and the colors represent p values.
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chemokine signaling including “immunoregulatory interactions

between a Lymphoid and a non-Lymphoid cell”, “neutrophil

degranulation”, “interferon signaling”, “neutrophil degranulation”,

“cytokine signaling in immune system”, and “chemokine receptors

bind chemokines”.
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We then classified 274 samples from three databases into three

phenotypes according to their expression of core DEGs (Figure 8A).

The PCA results confirmed that these samples were discriminately

stratified (Figure 8B). In detail, advanced fibrosis accumulated in

clusters B and C more than in cluster A; furthermore, cluster A
FIGURE 3

Lactylation of DEGs in mild and advanced fibrotic livers. (A, B) Venn plot displaying the intersection of upregulated (A) and downregulated (B) DEGs
with lactylation–related genes. (C) a volcano plot displaying the expressions of lactylation–related genes in mild and advanced fibrotic livers.
(D, E) heatmap (D) and boxplot (E) displaying the expression patterns of the 12 lactylation–related genes in mild and advanced fibrotic
livers. ****p<0.001.
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featured low expression of the core DEGs, which were moderately

upregulated in cluster B and drastically increased in cluster C

(Figures 8C, D). GSVA revealed that pathways related to immune

response, such as “primary immunodeficiency”, and “cytokine

receptor interaction” were enriched in clusters B and C

(Figure 9A); also, clusters A and B were characterized by

activated lipid metabolism and signaling, including pathways

involving “peroxisomal lipid metabolism”, and “fatty acids”.

(Figure 9B). In light of this, we named cluster A as “metabolic

phenotype, C as “immune phenotype”, and B as “mixed

phenotype”. These results indicated that fibrotic livers presented

crosswise variances and similarities; accordingly, classification into

three clusters might help distinguish different phenotypes.
3.7 Upstream regulators of core DEGs and
their expression evolution along
liver pathology

With the help of the regnetwork database(https://

regnetworkweb.org/) and cytoscape software, we mapped the

regulatory network of core DEGs in liver fibrosis (Figure 10).

Core DEGs shared several transcriptional factors, namely E2F4,

MAX, TP53, USF1, MXI1, CLEC5A, SP1, E2F1, and JUM. As liver
Frontiers in Immunology 08
fibrosis arises from various etiologies and leads to cirrhosis once it

progresses towards irreversible stages, we examine the roles of core

DEGs in different etiologies. By comparing their expression in

HCV- and alcohol-related cirrhosis, we found that most of the

core DEGs were significantly upregulated in HCV- and alcohol-

related cirrhosis; specifically, S100A4 and S100A6 were upregulated

in HCV-related cirrhosis but presented comparable expression in

alcoholic cirrhosis and control livers (Figures 11A, B). These results

indicated that they might exert distinct functions in liver fibrosis of

different origins. As for fibrosis in other tissue types, idiopathic

pulmonary fibrosis (IPF), for instance, manifested another

expression pattern of the core DEGs against liver cirrhosis.

S100A6, VIM, S100A4, and HMGN4 were downregulated or

unchanged, while LDHB was upregulated or remained unchanged

in IPF. Only IFI16 was upregulated in both IPF and liver cirrhosis,

indicating that it was universally activated in fibrosis

(Figures 11C, D).
3.8 Tumorigenic roles of core DEGs

As the core DEGs function universally in fibrotic pathology, we

hypothesized that they might participate in fibrotic progression to

liver tumors as well. By comparing their expression in tumor and
FIGURE 4

Key DEG screening using machine learning. (A) key DEGs screened by SVM (support vector machine) using the kernlab package from R. (B) key
DEGs elected by random forest using the randomForest package of R and ranked in order of their importance. (C) key DEGs selected by SVM and
random forest were intersected and six candidates were obtained. (D) chord diagram displaying the correlation of six core DEGs. Positive
correlations were plotted in red and negative in green. (E) the LASSO coefficient profiles of the six core DEGs in predicting liver fibrosis plotted by
the glmnet package from R. (F) ROC (receiver operating characteristic) curve of the six core DEGs and their LASSO model in predicting disease
occurrence plotted using the pROC package from R. AUC, area under the curve.
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non-tumor tissues from the TCGA-LIHC database, we found that

all core DEGs were upregulated in tumoral specimens (Figure 12A);

moreover, HMGN4 (log-rank p= 0.039) and S100A6 (log-rank p=

0.014) expressions in HCC patients were significantly correlated

with their overall survival (Figure 12B), suggesting their

tumorigenic potential in liver fibrosis progression.

VIM and S100A4 were upregulated in liver fibrosis but

downregulated in IPF; we further collected mice fibrotic livers to

examine their expression. As expected, fibrotic mice presented
Frontiers in Immunology 09
higher expression of VIM and S100A4 in the liver than normal

mice (Figure 12C).
4 Discussion

Staging of liver fibrosis currently relies upon liver biopsy and

noninvasive imaging is increasingly applied for screening and

diagnosis (29, 30). Fibrosis staging indicates the severity of the
FIGURE 5

Immune infiltration in fibrotic livers and its correlation with core DEGs. (A) correlation heatmap displaying the correlation of various immune cells in
the aspect of their proportion in fibrotic livers. (B) differences in immunocyte infiltration between mild and advanced fibrosis. Ns, not significant,
*p<0.05, **p<0.01, ***p<0.001. (C) associations between the degree of immune infiltration and each core DEG were plotted using the ggplot2
package on R. Immunocytes with p values less than 0.05 are displayed, sizes of the bubbles represent correlation coefficients and colors represent
p values.
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FIGURE 6

Association of core DEGs with genome variants. Correlation heatmaps illustrating the association between a single core DEG and 50 top-
related genes.
FIGURE 7

GSEA of genes correlated with core DEGs. GSEA was performed based on the genes selected by correlation analysis using clusterProfiler from R.
Top20 Reactome pathways of GSEA results are plotted with the enrichment score on the x-axis.
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condition and the study proposed a model for fibrosis classification

that also reflected the immune and metabolic status of the nidus.

We screened lactylation-related core DEGs between mild and

advanced fibrosis and discovered that fibrosis stages are

associated with immune infiltration. One of the core DEGs, IFI16,

might also play certain roles in lung fibrosis as suggested by its

upregulation in IPF.

The model integrated the feature of disease progression with

immunity and metabolism as constructed with concerns of fibrotic
Frontiers in Immunology 11
stage and lactylation activity. The phenotypes cataloged by the model

exhibit varied inclinations in immune infiltration and metabolic

reprogramming. The metabolic phenotype features activated lipid

metabolism, the immune phenotype involves more immune

components, and the mixed phenotype stands as the intermediated

state of both clusters. As early-stage samples made up the majority of

the metabolic phenotype and advanced fibrosis mainly fell under the

immune phenotype, we inferred that the main cause of fibrotic

pathology begins at lipid metabolic reprogramming and turns to
FIGURE 8

Phenotype clustering by the expression of core DEGs. (A) consensus clustering on liver fibrosis samples based on the six core DEGs using the
ConsensusClusterPlus package from R. (B) PCA of the sample distribution across different phenotypes. (C) heatmap showing the association
between gene expression and different phenotypes plotted by pheatmap from R. (D) expression distinction of core DEGs across different
phenotypes. ***p<0.001.
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immune response, which might enlighten our presupposition of

fibrosis progression and direct further investigation.

The study found that immune infiltration exhibited distinct

patterns in mild and advanced fibrosis (Figure 5B). Besides the relay

of metabolic reprogramming and immunity, the discrepancy might

also result from the deterioration of etiology such as the progression

of MAFLD to MASH (4, 31, 32). B cells, CD4 T cells, CD8 T cells,

and dendritic cells were activated in advanced fibrosis, accompanied

by increased infiltration of gd T cells, MDSCs, and natural killer T

cells (NKTs), and most of these are established pro-fibrosis

immunocytes (31, 33, 34). In contrast, macrophages and

neutrophils, mediators of tissue repair (31), were reduced in

proportion during disease advancement. These findings not only

correspond to previous reports but also summarize cell types with

pro/anti-fibrotic functions.

In corroboration of our hypothesis that lactylation might

influence the infiltration and activation of immune cells, core

DEGs sifted from lactylation-related genes demonstrated

significant correlations with immune infiltration and functioning
Frontiers in Immunology 12
(Figures 5C, 7). Lactylation-related core genes were subjected to

ssGSEA (Figure 5C) and GSEA (Figure 7) to examine the pathways

mediating the crosstalk between gene expression and immune cell

infiltration. For example, almost all core DEGs were found to be

closely related to activated CD4 T cells, natural killer T cells,

MDSCs, regulatory T cells, and so forth (Figure 5C). In the GSEA

results (Figure 7), “Immunoregulatory interactions between a

Lymphoid and a non-Lymphoid cell” and “Interferon Signaling”

pathways, which involve the interaction between the above cells and

mediate the killing activity of T cells, were enriched for the core

DEGs. Therefore, lactylation might modulate the inclination

between immune killing and immune regulation through these

core DEGs. Histone lactylation has been widely documented with

immunoregulatory functions. For instance, glycolysis was boosted

by STAT5 (signal transducer and activator of transcription 5A) in

acute myeloid leukemia (AML) cells to provide excessive lactide for

lactylation of PD-1, making tumor cells susceptible to immune

checkpoint inhibitors (ICIs) (35). Activated glycolysis facilitated

H3K18la lactylation at the promoter region of FOXP3 to
FIGURE 9

Pairwise GSVA between different clusters. KEGG (A) and Reactome (B) pathways enriched for indicated clusters. GSVA package in R was used to
compare pathway enrichment reciprocally between each two clusters. Pathways with significant differences were plotted on heatmaps using the
pheatmap package from R. The color columns represent enrichment scores for the pathways in each cluster.
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compromise the immune killing of NKT-like cells (36). Our analysis

of immune infiltration in liver fibrosis unveiled the association of

lactylation with mast cells and MDSCs, which has barely been

reported. There is a high probability that lactylation extensively

functions in all kinds of immunocytes to participate in their

immune responses, which are commonly accompanied by

activated glycolysis (9, 37). Thus, research to expand our

knowledge on the crosstalk between lactylation and immunocytes

and delineate the underlying mechanisms might be promising in

the field of immunoregulation.

In addition, lactylation might have universal impacts on fibrotic

pathologies. Most core DEGs were upregulated in HCV-related and

alcohol-related cirrhosis except S100A4 and S100A6 (Figures 11A, B).

Though sharing some common pathology concerning inflammation

(38), fibrosis originating from hepatitis viral infection or alcohol
Frontiers in Immunology 13
abuse might manifest some inclination to immune response, lipid

toxicity, and oxidative stress (39). Thus, a variety of gene functions in

cirrhosis with different etiologies is not uncommon. For example, the

genetic variant rs738409 (G) in the PNPLA3 gene was an

independent risk factor for the development of HCC in patients

with alcoholic cirrhosis but showed no influence in the progression of

HCV-related cirrhosis to HCC (40). At the same time, fibrosis in the

liver and lungs also share certain functional molecules such as TGF-b
(41) and serotonin (5-hydroxytryptamine(5-HT)) (42). In the study,

we found that most core DEGs manifested dysregulation in IPF,

especially IFI16, the expression of which was increased in both

validation datasets (Figures 11C, D). IFI16 has been previously

reported to function in lung cystic fibrosis (43), while its role in

liver fibrosis has scarcely been researched (44). Therefore, our data

excavated a profibrotic gene with pan-tissue potential.
FIGURE 10

Upstream regulatory network of core DEGs. Core DEGs (red) and their predicted upstream regulators (blue) in the regulatory network constructed
by Cytoscape software.
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FIGURE 11

Expression of core DEGs in fibrosis, cirrhosis, and IPF. Differences in core DEG expressions in HCV-related cirrhosis (A), alcoholic cirrhosis (B), and
IPF (C, D) were compared with the control. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001, and ns, non-significant.
FIGURE 12

Expression and prognostic values of core DEGs in patients with HCC. (A) expressions of core DEG in the TCGA-LIHC patients. (B) overall survival of
HCC patients with high or low expression of core DEGs. Only genes with significant association with survival are displayed. (C) mRNA expressions of
VIM and S100A4 in normal and fibrotic mice detected by RT-qPCR. *p<0.05.
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Last but not least, the expression of the core DEGs also reflected

the tumorigenic risks underlying liver fibrosis (Figure 12). HCC is

one of the most unfavorable outcomes of liver fibrosis and cirrhosis,

and there might be shared molecules that function throughout

fibrosis to tumorigenesis. For example, depletion of Apobec1

complementation factor (A1CF) in a mouse model upregulated

genes responsible for oxidative stress, inflammatory response,

extracellular matrix organization, and proliferation, resulting in

spontaneous fibrosis, dysplasia, and HCC (45). On one hand, genes

with accepted fibrotic roles might exert certain functions in

hepatocellular carcinoma; on the other hand, our results

underscore the consistent involvement of lactylation in liver

fibrosis advancement and HCC development (46, 47). During the

process, immunocytes might be the main executive component

(48). Therefore, it would be worth investigating the roles of

lactylation-associated immune infiltration in liver fibrosis

progression to HCC for precise treatment (49, 50).

In summary, the study constructed a phenotyping model of

liver fibrosis with lactylation-related DEGs between early- and later-

stage patients, which can classify the cases into metabolic, immune,

and intermediate clusters as well as predict the tumorigenic

potential of liver fibrosis. The distinct inclination of the clusters

revealed the interplay of metabolism and immunity in the

progression of fibrotic pathology. To what extent these two forces

function at different stages of liver fibrosis and how they are poised

for HCC development may be interesting propositions in

future investigations.
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