
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hugo Kaneku,
University of Miami Health System,
United States

REVIEWED BY

Anil J. Trindade,
Vanderbilt University Medical Center,
United States
Howard J. Huang,
Houston Methodist Hospital,
United States

*CORRESPONDENCE

Ivan Barone

ivan.barone@unimi.it

RECEIVED 15 May 2024

ACCEPTED 14 August 2024
PUBLISHED 02 September 2024

CITATION

Righi I, Barone I, Rosso L, Morlacchi LC,
Rossetti V, Caffarena G, Limanaqi F,
Palleschi A, Clerici M and Trabattoni D (2024)
Immunopathology of lung transplantation:
from infection to rejection and vice versa.
Front. Immunol. 15:1433469.
doi: 10.3389/fimmu.2024.1433469

COPYRIGHT

© 2024 Righi, Barone, Rosso, Morlacchi,
Rossetti, Caffarena, Limanaqi, Palleschi, Clerici
and Trabattoni. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 02 September 2024

DOI 10.3389/fimmu.2024.1433469
Immunopathology of lung
transplantation: from infection
to rejection and vice versa
Ilaria Righi1, Ivan Barone2,3*, Lorenzo Rosso1,3,
Letizia Corinna Morlacchi2,3, Valeria Rossetti2,
Giovanni Caffarena3,4, Fiona Limanaqi5, Alessandro Palleschi1,3,
Mario Clerici3,6 and Daria Trabattoni5

1Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore
Policlinico, Milan, Italy, 2Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Milan, Italy, 3Department of Pathophysiology and
Transplantation, University of Milan, Milan, Italy, 4Department of Thoracic Surgery, IEO, European
Institute of Oncology IRCCS, Milan, Italy, 5Department of Biomedical and Clinical Sciences (DIBIC),
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Lung transplantation offers a lifesaving option for patients with end-stage lung

disease, but it is marred by a high risk of post-transplant infections, particularly

involving multidrug-resistant bacteria, Cytomegalovirus, and fungal pathogens.

This elevated infection rate, the highest among solid organ transplants, poses a

significant challenge for clinicians, particularly within the first year post-

transplantation, where infections are the leading cause of mortality. The direct

exposure of lung allografts to the external environment exacerbates this

vulnerability leading to constant immune stimulation and consequently to an

elevated risk of triggering alloimmune responses to the lung allograft. The

necessity of prolonged immunosuppression to prevent allograft rejection

further complicates patient management by increasing susceptibility to

infections and neoplasms, and complicating the differentiation between

rejection and infection, which require diametrically opposed management

strategies. This review explores the intricate balance between preventing

allograft rejection and managing the heightened infection risk in lung

transplant recipients.
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Introduction

Compared with other solid organ transplants (SOT), lung transplantation (LuTx) has a

higher post-transplant infection rate, which is characterized by a higher frequency of

multidrug-resistant bacterial infections, a heightened burden of cytomegalovirus (CMV)

infection, and a greater invasive fungal infection rate (1–3). In fact, differently from other
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SOT, lung allografts are in direct communication with the external

environment, thus being constantly exposed to air pollutants and

pathogens. The continuous contact with these agents, the impairing

of muco-ciliary clearance caused by the denervation of the

transplanted lung and the presence of bronchial anastomoses, as

well as the presence of large numbers of donor-derived dendritic cells,

leads to constant immune stimulation (4). This likely favors direct

and indirect recognition of antigens expressed on the transplanted

lungs by host alloreactive T lymphocytes, triggering alloimmune

responses against the graft (5). Preventing lung allograft rejection

requires suppression of both cell-mediated and humoral responses,

which can be achieved by potent immune suppressants, initiated

shorty before surgery and maintained throughout the recipient’s life

(6). Unfortunately, prolonged immunosuppression often results in

the generation of long-term toxicities and confers an augmented

susceptibility to infections and neoplasms (7, 8). Moreover,

differential diagnosis between lung allograft rejection and infection

can be challenging and, most importantly, therapeutic approaches for

both conditions differ much; the first requires maximization of

immunosuppression including high-dose glucocorticoids, whereas

the second needs targeted anti-microbial therapy plus tapering of

immunosuppressive drugs (9, 10). The objective of this review is to

elucidate the complex interplay between infection and rejection in

LuTx and the clinical conundrum posed by the necessity of balancing

risks for graft rejection against risks for infection, graphically

represented as a snake that bites its own tail (Figure 1).
Infection of the lung allograft as a
trigger for rejection

In LuTx, infections can be derived from the donor, be reactivated

latent infections of the recipient, or be newly acquired (11). Bacterial

pneumonia and bronchitis are the most common, but infections
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caused by fungi, CMV, other viruses, and mycobacteria collectively

contribute to the burden (12–14). Infection of the lung allograft can

be the trigger of immunological interactions between donor and

recipient, which is the basis of the processes that then lead to acute

and chronic rejection (15, 16). The most accepted hypothesis is that

tissue damage to the lung allograft induces the production of

pathogen-related molecules, capable of abnormally stimulating

innate and adaptive immune responses (17).

Furthermore, it seems that the time from LuTx at which

infection occurs influences the quality of the ensuing immune

response. Infections occurring before transplantation stimulate

heterologous immunity, a process resulting from previous

immunological exposure and mediated by memory cross-reactive

T cells that may influence future immune response to unrelated

pathogens (18, 19). This phenomenon is supported by the presence

of environmentally primed T cells in the recipient that cross-react

with donor antigens. Studies have shown that these pre-transplant

donor-specific T cells, which can be identified by their IFN-g
production, correlate with a higher post-transplant risk of acute

rejection episodes (20). The environmental antigen exposure of the

recipient is independent of HLA mismatches between donor and

recipient, highlighting the role of pre-existing immune memory in

rejection risk. On the other hand, infections occurring late after

transplantation may elicit pro-inflammatory signals, such as IL-17

and IFN-g, which activate resting T cells and favor their escape

from immunosuppression, thereby precipitating rejection (21).

Notably, a critical threshold of memory T cells, particularly CD8+

central memory T cells, is needed to promote rejection. These cells

are primarily responsible for the strong immune responses seen in

these scenarios and can significantly hinder tolerance induction

(19). For these reasons, infections in LuTx are categorized

differently whether they occur less than one month after LuTx,

between one to six months, or after more than six months from

LuTx (Figure 2).
FIGURE 1

Management of the net state of immunosuppression in lung transplantation. The necessity by clinicians to decrease the immunosuppressants
dosage, due to the onset of an infection or drugs’ side effects, could trigger rejection with a “snake who bites its own tail” effect. The figure
describes at a glance the difficult to obtain balance between the risk of infection and rejection in lung transplant.
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Bacterial infections

Bacterial infections are the most common early infectious

complications after LuTx. In addition to pneumonia, LTR are at

heightened risk of other types of infection, including empyema,

bloodstream infection, and wound infection (22, 23). The

pathogens most frequently responsible for pneumonia in

LTR are Pseudomonas aeruginosa, Staphylococcus aureus and

Enterobacteriaceae (24). Pseudomonas aeruginosa, in particular, is

able to trigger potent innate immune responses mediated by

the granulocyte-colony stimulating factor (G-CSF), promoting

allograft neutrophil infiltration. Additionally, Pseudomonas

aeruginosa infection induces allograft-infiltrating neutrophils to

upregulate B7 molecules (CD80 and CD86), which may enhance

alloantigen-specific T cell responses through B7 costimulation.

These findings underscore the potential of Pseudomonas

aeruginosa to exacerbate alloimmune responses, potentially

contributing to antibody-mediated rejection (AMR) and chronic

lung allograft dysfunction (CLAD) post-transplantation (25). It has

also been demonstrated that the activation of toll-like receptors by

bacterial colonization of the donor airways prevents the induction

of lung allograft tolerance through a process mediated by recipient-

derived monocytes, thus facilitating allograft rejection (26). In

murine models in which lung tolerance was established,

neutrophil B7 expression induced by Pseudomonas aeruginosa

invalidated tolerance through promoting T cell trans-

costimulation, showing again the importance of toll-like receptors

in regulating organ tolerance (27).
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Cytomegalovirus infection

CMV is the second most common cause of infection in LTR

after bacterial pneumonia (28). CMV is known for its capability to

establish lifelong latent infections. Its effects on T-cells are

significant and multifaceted, impacting both the immune

response to the virus itself and the broader immune system.

CMV infection induces a robust and sustained expansion of

CMV-specific T-cells. These cells can constitute a significant

portion of the total T-cell population, particularly in older adults.

CMV-specific CD8+ T-cells can become highly expanded, often

dominating the CD8+ T-cell repertoire (29, 30). These cells are

important for controlling viral replication through their cytotoxic

functions. CMV-specific CD4+ T-cells are also expanded and play a

critical role in supporting CD8+ T-cell responses and antibody

product ion . CMV infec t ion has been impl ica ted in

immunosenescence, the gradual deterioration of the immune

system associated with aging. This is partly due to the chronic

antigenic stimulation by CMV (31, 32). Over time, there is an

accumulation of highly differentiated effector memory T-cells and

effector T-cells, many of which are specific for CMV. The large

clonal expansion of CMV-specific T-cells can reduce the diversity of

the T-cell repertoire, potentially impairing the ability to respond to

new infections or vaccinations (33). Despite their strong functional

capabilities, CMV-specific T-cells can also express markers of

cellular exhaustion and senescence, such as PD-1 and KLRG1,

altering the broader immune regulatory environment (34, 35).

Managing CMV-specific T-cell responses is crucial in SOT. CMV
FIGURE 2

Timing of bacterial, viral and fungal infections in lung post-transplantation. CMV, Cytomegalovirus; CoNS, Coagulase-negative staphylococci; CRBSI,
Catheter-related bloodstream infection; HSV, Herpes simplex virus;.
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reactivation is controlled by cytotoxic CD8+ T-cells; in patients

treated with immunosuppressants the immune control is ineffective

and the stimulated CMV replication shifts towards clinically

significant reactivation (36), so anti CMV prophylaxis is

necessary, eventual ly in combination with anti-CMV

immunoglobulins supplementation as suggested by several studies

(37). CMV reactivation and disease associated with tissue injury

represent a major risk factor for acute and chronic rejection, in part

by promoting several other opportunistic infections (38). These

data support the control of viraemia in recipients even in the

absence of symptoms and the long-lasting Valganciclovir

prophylaxis especially in CMV-positive donor and recipients.
Other viral infections

A wide range of other viral infections also complicate LuTx.

Among these, community-acquired respiratory viruses (CARV)

(e.g., influenza virus, respiratory syncytial virus, adenovirus,

parainfluenza virus, human metapneumovirus, rhinovirus etc.),

herpes simplex virus and varicella-zoster virus are frequently

responsible for lung allograft infection in LTR (39, 40). CARV

infections in LTR have a high rate of progression to pneumonia and

can be a trigger for immunologically mediated lung allograft injury

(41, 42). Inflammation mediated by viral infections involves

chemotactic cytokines, such as IL-1, TNF, IL-6, and IL-8, which

recruit alloreactive leukocytes to the site of infection. This creates an

environment that is conducive to immune-mediated injury and

allograft rejection (43). Furthermore, respiratory viral infections

post-LuTx induce circulating exosomes containing lung self-

antigens, viral antigens, and 20S proteasome. These exosomes

trigger immune responses to self-antigens, leading to CLAD as

observed in immunized mice, highlighting a potential mechanism

for increased rejection risk in transplant recipients with

symptomatic viral infections (44). A literature review conducted

by de Zwart and colleagues showed a high incidence of CLAD

following infection with human metapneumovirus, influenza virus,

and respiratory syncytial virus, despite an overall low incidence of

30-day mortality (45).
Mycobacterial infections

Infection by Mycobacterium tuberculosis in SOT can be a

reactivation of a primary infection, donor-transmitted, or a

primary infection (46). Diagnosing pulmonary tuberculosis in

SOT is difficult due to atypical clinical presentations and

increased chances of false negativity during testing for disease

(47–49). Studies have shown that rejection was more frequent in

recipients with tuberculosis, and that both patient survival and graft

survival times were shorter compared to recipients without

tuberculosis (50, 51). Treatment challenges include interactions

between immunosuppressive and antitubercular medications,

allograft-related drug toxicities, and inadequate immune

responses due to exogenous immunosuppression (52, 53). As for

non-tuberculous mycobacteria (NTM), the incidence rates of
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infection in LTR range from 1.5% to 22.4% (54), with species

from the Mycobacterium avium complex (MAC) being the most

common findings, followed by Mycobacterium abscessus (14, 55).

When treating NTM infection in LTR, generally a course of

approximately one year of treatment following negative cultures is

recommended, with adjustments for medication intolerance (56).

Significant drug interactions, particularly with antimycobacterial

agents like rifampin and clarithromycin, and immunosuppressive

medications, further complicate treatment and can expose to

the risk of lung allograft dysfunction (57). If possible,

immunosuppression should be reduced, weighing the decision

against the potential risk of organ rejection and allograft

dysfunction. If immunosuppression reduction is not feasible or if

there is a high disease burden (such as disseminated disease or

smear-positive lung disease), prolonged therapy should be

considered (58).
Fungal infections

Invasive fungal infections usually occur within the first 3 to 12

months after LuTx (59) with an incidence of 8,6% in the first year

after surgery (60). Aspergillus species and Candida species are the

most common fungal pathogen observed and are responsible for the

majority of infections that occur after transplant (61). Invasive

fungal infections, particularly invasive aspergillosis, are linked to

chronic allograft rejection (62). Aspergillus colonization, even

without invasive infection, has also been linked to Bronchiolitis

Obliterans (BOS) and BOS-related mortality, independent of

rejection (63). Aspergillus colonization is linked to gene

expression profiles that are involved in defense mechanisms,

particularly cytokine signaling. The process of epithelial

wounding, along with the innate immune response to chitin

found in the fungal cell wall, may play crucial roles in connecting

Aspergillus colonization to CLAD (64). As per other pathogens,

allograft rejection and the consequent need for immune

augmentation are a known risk factor for invasive fungal

infections (65).
Lung allograft rejection as a result
of infection

Lung allograft rejection encompasses a spectrum of immune-

mediated responses that compromise graft function. Rejection

episodes after LuTx are defined by the nature of the prevailing

immune response and can be divided into different categories

depending on the immunological pattern of rejection (Table 1).

Infection is a critical factor in triggering lung allograft

rejection due to its impact on the recipient’s immune system.

Reducing the risk of rejection while maintaining immune

competence towards infection can be achieved through a better

understanding of lung allograft immune tolerance. Key players

include T regulatory lymphocytes (Treg), which suppress effector

T cells that target donor major histocompatibility complex

(MHC) molecules, thereby promoting graft acceptance (66, 67).
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Additionally, immune checkpoint molecules such as PD-1/PD-L1

are crucial in regulating T cell activation thresholds, balancing

immune tolerance and activation (68). Experimental models have

demonstrated that manipulating costimulatory pathways, such as

B7-CD28 and CD40-CD40L interactions, can induce long-term

tolerance of lung allografts by preventing full T cell activation and

subsequent immune-mediated damage (69). Clinical strategies

leveraging donor bone marrow infusion have shown promise in

promoting donor-specific hyporeactivity, potentially allowing for

reduced immunosuppression post-transplantation while

maintaining graft integrity (70).
Acute cellular rejection

ACR is a T-cell mediated organ damage commonly found

shortly after LuTx, with 34% of the cases occurring in the first

year post-LuTx (71). While most episodes of ACR respond to first-

line immunosuppressive treatment (72), it constitutes one of the

main risk factors for subsequent CLAD development (73, 74).

Infection of the lung allograft is a major risk factor for ACR due

to the exposure of donor antigens from epithelial injury, leading to

allo-sensitization (75). In addition to pulmonary infection, non-

immunological processes like ischemia-reperfusion injury can

activate local innate immunity, leading to acute rejection (76).

Interestingly, in recent years, changes in the lung microbiome,

particularly microbial dysbiosis and the enrichment of certain

bacteria, have been linked to post-transplant complications. In

particular, dynamic shifts in microbial diversity and taxonomic

trajectories in the lower airway have been associated with ACR,

suggesting that microbial signatures could serve as potential

biomarkers for rejection risk (77, 78). Conversely, risk factors for

infections occurring more than six months post-transplant include

early acute rejection, recurrent CMV infection, and prior bacterial

infections (24, 79).
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Antibody-mediated rejection

AMR in LuTx is caused by donor-specific antibodies (DSA)

directed against human leucocyte antigens (HLA) expressed on the

donor lung (80), triggering the complement cascade and causing

acute injury. This may lead to hyperacute rejection, characterized by

graft thrombosis and necrosis, often resulting in short-term poor

prognosis (81, 82). Advances in HLA antibody detection prior to

transplantation have enabled virtual cross-matching, reducing the

incidence of hyperacute rejection by ensuring donor-recipient

compatibility (83). On the other hand, AMR is currently

recognized as a relevant form of graft rejection beyond the

immediate post-transplant period. In this setting, AMR is driven by

newly-formed DSA that target endothelial cells, leading to capillaritis

and microvascular injury over time. Lung allograft infections can

exacerbate this process by causing tissue injury, which exposes donor

antigens to the recipient’s immune system, thereby stimulating the

production of DSA (25). Additionally, epithelial damage caused by

these bacteria results in increased HLA-DR expression and soluble

HLA class I release, further promoting alloreactive lymphocyte

activation (15). Notably, more than half of LTR develop de novo

DSA within three months post-transplantation (84). As literature

suggests that AMR might promote the development of CLAD (85–

87), many authors warrant strict DSA screening after LuTx and favor

the use of preemptive antibody-directed therapy (88–90).
Chronic rejection

Chronic rejection is a definition that includes different variants

of chronic dysfunction of the lung allograft grouped under the term

Chronic Lung Allograft Dysfunction (CLAD). CLAD usually results

in permanent lung allograft damage and ultimately in the

deterioration of lung function (91). It has at least four different

subtypes: Bronchiolitis Obliterans Syndrome (BOS) (70% of cases),
TABLE 1 Overview of the different forms of rejection in Lung Transplantation.

Form of Rejection Description Expected Timeframe Physiopathologic Features

Acute Cellular Rejection
(ACR)

T-cell mediated lung allograft damage. Shortly after transplantation, with peak
incidence during the first year.

Perivascular and peribronchiolar
lymphocytic infiltration.

Antibody-Mediated Rejection
(AMR)

Allograft dysfunction caused by
circulating donor-specific antibodies,
either pre-formed (hyperacute AMR) or
newly-formed (late AMR)

- Hyperacute AMR: hour to days after
transplantation
- Late AMR: weeks to months after
transplantation, contributes to chronic
rejection over time.

Complement-driven endothelial
damage, capillaritis and thrombosis,
with evidence of circulating donor-
specific antibodies.

Chronic Rejection (CLAD) Chronic lung allograft dysfunction
including several subtypes.

Develops in about 50% of lung
transplant recipients within 5 years
after transplantation.

Persistent low-grade T-cell and
antibody responses cause chronic
inflammation and fibrosis. Alloimmune
responses and repeated injuries (e.g.,
infections) contribute.

Bronchiolitis Obliterans Syndrome
(BOS)

Subtype of CLAD characterized by
airflow obstruction.

Lymphocytic bronchiolitis, fibrotic
obliteration of small airways.

Restrictive Allograft Syndrome
(RAS)

Subtype of CLAD characterized by
restrictive ventilatory defect and ground
glass opacities on lung CT scan.

Diffuse alveolar damage, fibrosis,
thickened alveolar walls.
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Restrictive Allograft Syndrome (RAS), mixed forms and undefined

phenotypes (92). As mentioned above, both ACR and AMR

increase the risk of developing CLAD (93, 94). Immunological

pathways leading to CLAD and more specifically BOS, are

significantly influenced by infection and the resulting

inflammatory responses. For example, Pseudomonas aeruginosa

and Staphylococcus aureus are key pathogens that interact with

chemokine receptors, notably CXCR1/2, leading to increased

recruitment of neutrophils and lymphocytes into the lung

allograft. This recruitment is driven by ELR+ chemokines such as

CXCL1, CXCL5, and CXCL8, which are elevated in response to

these infections (15). More generally, respiratory infections,

regardless of pathogen type, strongly expose to the risk of CLAD

development, with a single infection episode increasing CLAD

occurrence significantly. In a study by Shino et al., the severity of

the immune response, indicated by elevated bronchoalveolar lavage

fluid CXCL9 levels during infection, correlated with higher CLAD

risk, highlighting a dose-response relationship (95).
Immunosuppression in lung
transplantation and the risk
of infection

Risk of rejection is highest earlier after LuTx, thus requiring

stronger immunosuppression immediately post-transplant,
Frontiers in Immunology 06
differently from maintenance immunosuppressive therapy which

becomes less intense over time (96). Immunosuppressive agents

may lead to adverse effects, including drug-induced toxicity and

opportunistic infections (97). Although immunosuppressive

protocols vary from center to center, most of them use induction

therapy, which is given peri-operatively to reduce the risk of acute

rejection, and it consist in polyclonal antibody preparations such as

antithymocyte globulin (ATG), alemtuzumab, interleukin 2

receptor antagonists (IL2RAs) as basiliximab, or tocilizumab (8,

97, 98). Conventional maintenance therapy consists of triple-drug

therapy with a calcineurin inhibitor such as cyclosporine or

tacrolimus, an antiproliferative agent such as azathioprine,

mycophenolate, sirolimus, everolimus, and a corticosteroid (8).

The most common regimen both at 1- and 5-years’ follow-up is

tacrolimus, mycophenolate, and prednisone, though it is not

uncommon for patients to require the switch to alternative

immunosuppressive regimens based on individual tolerability

(99). A graphical summary of the main mechanisms of action of

these drugs is provided in Figure 3.
Antithymocyte globulin

ATG is a polyclonal antibody resulting in a dose-dependent

depletion of T cells both in the periphery and secondary lymphoid

organs. It also causes CD20+ cells (B cells) and CD16+/56+ cells
FIGURE 3

Molecular targets of immunosuppressive drugs in lymphocytes. AP-1, Activator protein 1; ATG, Anti-thymocyte globulin; CDK, Cyclin-dependent
kinases; HLA, Human leukocyte antigen; IKK, Inhibitor of nuclear factor-kB kinase; MAPK, Mitogen-activated protein kinase; MHC, Major
histocompatibility complex; mTOR, Mammalian target of rapamycin; NFAT, Nuclear factor of activated T-cells; NF-kB, Nuclear factor kappa-light-
chain-enhancer of activated B cells; TCR, T-cell receptor.
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(NK cells) levels to decrease (100). Immunosuppression induction

with ATG is associated with a higher risk of infections, as

documented in LTR developing coronavirus disease-2019

(COVID-19), Enterococcus infection, or Klebsiella pneumonia

(101). This effect is augmented when ATG is combined with

other immunosuppressant. Induction therapy with ATG, along

with steroid maintenance, high calcineurin inhibitors doses, and

CMV infection is associated with late-occurring pneumonia in

post-transplant patients (102). Infectious risks are heightened

when antilymphocyte therapies are used for treating graft

rejection compared to induction immunosuppression, warranting

appropriate monitoring and prophylaxis for Pneumocystis carinii

pneumonia, CMV, and fungal infections, along with EBV and BKV

monitoring (103).
Alemtuzumab

Alemtuzumab is a humanized monoclonal antibody leading to

profound depletion of T cells, and to a lesser degree B cells and

monocytes. Notably, this drug was also shown to induce the

proliferation of Treg cells (99, 104, 105). Alemtuzumab-treated

patients were reported to experience the lowest rate of infection in

the first year after transplantation (106). Notably, only limited

alemtuzumab dosing appears safe and effective for induction

therapy in SOT, as extended alemtuzumab exposure combined

with steroid and calcineurin maintenance therapy is instead

associated with a higher risk of infectious (bacterial, fungal and

viral) complications and ACR (107).
Basiliximab

Basiliximab is an interleukin-2 receptor antagonist (IL-2 RA)

used in more conservative induction immunosuppression regimens

(108). It is a monoclonal antibody directed against the IL-2 receptor

a-chain expressed on activated T cells. The rate of serious infectious

adverse events in SOT receivers appears lower in those treated with

basiliximab compared with alemtuzumab or ATG (99). Induction

therapy with ATG, and T-cell depleting agents is on the other hand

associated with a greater incidence of CMV, Epstein-Barr virus, BK

polyomavirus infections, and interstitial pneumonia, and a higher

risk of bacterial infections compared with IL–2a receptor

antagonists (103, 109).
Tocilizumab

Tocilizumab is an IL-6 inhibitor, showing promise in the

treatment of AMR in renal transplant recipients. Excessive IL-6

production is associated with activation of T-helper 17 cells and

inhibition of Treg, modulating several immune pathways

responsible for allograft injury. This suggests that anti-IL-6/IL-6R

blockade could be effective in modifying T- and B-cell responses to

induce desensitization and prevention and treatment specifically of

AMR (110). The use of tocilizumab in LuTx has shown to be able to
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induce a better clearance of DSA, lower recurrence of DSA, lower

incidence of de-novo DSA, and lower rates of graft failure (98). The

ALL IN LUNG study (clinicaltrials.gov - NCT06033196) is

currently exploring the hypothesis that treatment with triple

maintenance immunosuppression plus Tocilizumab is superior to

triple maintenance immunosuppression alone.
Belatacept

Belatacept is a fusion protein composed of the modified

extracellular domain of cytotoxic T lymphocyte-associated protein

4 (CTLA-4) and the Fc domain of human immunoglobulin IgG14

(8). It blocks co-stimulation by binding to CD80 and CD86

receptors on Antigen Presenting Cells (APCs). This eventually

prevents binding of CD28 on the T cell. Recently, few cases of

Pneumocystis jirovecii-related pneumonia have been documented

under belatacept and everolimus immunosuppressant regimen,

highlighting the importance of pneumonia prophylaxis after

conversion to belatacept (111).
Calcineurin inhibitors

Both cyclosporine and tacrolimus inhibit the phosphatase

activity of calcineurin, ultimately reducing cytokine production

(mostly IL-2) and inhibiting T cell activation. As reported by a

clinical trial of tacrolimus vs. cyclosporine in LuTx, the overall

incidence of infections appears similar, although bacterial infections

were more frequent with cyclosporine, whereas fungal infections

were more common with tacrolimus (112). As documented by a

more recent study, cyclosporine may be a risk factor for the

development of tuberculosis among renal transplant recipients

(113). Increasing evidence indicates a relatively low risk of viral

infections in patients receiving cyclosporine as this drug appears to

inhibit the replication of some viruses (114). However, the

mechanisms underlying cyclosporine-induced antiviral activity

remain to be confirmed and elucidated.
Anti-proliferative agents

Azathioprine reduces T cell proliferation whereas

mycophenolate results in inhibition of T and B cell proliferation

by blocking DNA synthesis (115). Opportunistic infections

frequently occur in post-transplant patients treated with these

drugs, a possible consequence of their strong hematologic adverse

effects, such as leukopenia, and neutropenia (116). Mycophenolate

was associated with increased risk for tissue-invasive CMV, herpes

simplex virus, varicella-zoster virus, and Aspergillus infections (117,

118). Delayed severe pneumonia has also been reported following

mycophenolate plus corticosteroids in patients with autoimmune

diseases (119). Sirolimus and Everolimus are endowed with very

broad immunological effects that include the generation and

expansion of Treg as well as the maturation and function of DC

(120). Mammalian target of rapamycin (mTOR) inhibitors, such as
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sirolimus and everolimus, have shown potential anti-CMV effects

by blocking the mTOR pathway, which is crucial for viral

replication (121). By inhibiting this pathway, mTOR inhibitors

reduce CMV replication and may decrease the incidence and

severity of CMV infections (122).
Corticosteroids

Prednisone, Prednisolone, Methylprednisolone, and

Dexamethasone are the glucocorticoids most used in

immunosuppressive regimens for LuTx. They upregulate

transcription of anti-inflammatory genes but downregulate that of

inflammatory genes (123). Long-term corticosteroids use is

associated with several side effects including opportunistic

infections, especially when administered concomitantly with

other immunosuppressive agents (123, 124). In line with this,

corticosteroids’ use appears to increase susceptibility to

invasive fungal and viral infections, as well as tuberculosis, in

transplant recipients (123, 125). Notably, severe metabolic

complications are often the result of long-term corticosteroid use.

Thus, the institution of a steroid-free immunosuppressive regimen

is highly desirable. Late steroid withdrawal appears safe in stable

patients after LuTx, as evidenced by the lack of rejection or

deterioration in pulmonary function along with amelioration of

lipid profile and blood pressure over a median follow-up of 19

months (126).

The use of immunosuppressive drugs in LuTx is essential to

prevent rejection but comes with a significant trade-off in increased

susceptibility to various infections. Understanding the specific

mechanisms of these drugs helps in tailoring prophylactic and

therapeutic strategies to mitigate infection risks while maintaining

adequate immunosuppression to protect the transplanted organ.

Regular monitoring, prophylactic antimicrobial treatments, and

prompt management of infections are crucial components of

post-transplant care.
Conclusion

LuTx is a life-saving therapeutic option for patients with end-

stage lung disease. Despite significant advancements in surgical

techniques and overall patient care, long-term outcomes post-LuTx

are considerably worse than other SOT, largely due to lung allograft

rejection, which still to date remains a relevant problem. The

management of LTR requires a delicate balance between proper

immunosuppression to prevent rejection and appropriate host

competence in an allograft that is exposed to environmental

pathogens and pollutants. Current immunosuppressive regimens

inhibit multiple immune pathways compromising the host’s

defense against infections that are one of the major causes of

post-LuTx morbidity and mortality. This broad-spectrum

immunosuppression currently used in LTR stems from a limited

understanding of the precise mechanisms underlying rejection,

both acute and chronic. Future research should also aim to
Frontiers in Immunology 08
identify diagnostic and prognostic markers of organ tolerance,

which could assist clinicians in distinguishing between rejection

and infection, improving graft prognosis. This knowledge could

facilitate the identification of biomarkers for early differential

diagnosis post-LuTx and enable personalized therapeutic

strategies. The side effects of immunosuppressive therapy,

infections and CLAD remain important challenges impairing

long-term survival. Advances in prevention and treatment of

chronic rejection are critical to further improve outcome.

Investigations into the optimal level of immunosuppression that

safeguards the allograft while preventing opportunistic infections

are also essential. As our understanding of these complex

interactions expands, we anticipate that patient quality of life and

outcomes will continue to improve.
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