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Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends

on iron and is characterized by the accumulation of lipid peroxides to lethal

levels. Ferroptosis involves multiple pathways including redox balance, iron

regulation, mitochondrial function, and amino acid, lipid, and glycometabolism.

Furthermore, various disease-related signaling pathways also play a role in

regulating the process of iron oxidation. In recent years, with the emergence

of the concept of ferroptosis and the in-depth study of its mechanisms,

ferroptosis is closely associated with various biological conditions related to

kidney diseases, including kidney organ development, aging, immunity, and

cancer. This article reviews the development of the concept of ferroptosis, the

mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10,

GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its

involvement in kidney diseases. It summarizes research on ferroptosis in kidney

diseases within the frameworks of metabolism, reactive oxygen biology, and iron

biology. The article introduces key regulatory factors and mechanisms of

ferroptosis in kidney diseases, as well as important concepts and major open

questions in ferroptosis and related natural compounds. It is hoped that in future

research, further breakthroughs can be made in understanding the regulation

mechanism of ferroptosis and utilizing ferroptosis to promote treatments for

kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD),

diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new

approach to research, prevent, and treat clinical kidney diseases.
KEYWORDS

ferroptosis, iron metabolism, acute kidney disease, chronic kidney disease,
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1 Introduction

Cell death is a finely regulated process that occurs through

different molecular pathways. Apoptosis is an active, programmed

mode of cell death, while necrosis is classically defined as

uncontrolled, accidental cell death (1). In recent years, various

forms of cell death, including programmed necrosis, ferroptosis,

pyroptosis, and mitochondria permeability transition-regulated

necrosis, have gained attention (2, 3). The term “ferroptosis” was

introduced by Dixon et al. in 2012 to describe a cell death form

induced by the small molecule erastin (4). It inhibits cysteine

import, leading to glutathione (GSH) depletion and glutathione

peroxidase 4 (GPX4) lipid peroxidase inactivation. Lipid

peroxidation is a downstream feature of ferroptosis, where the

accumulation of lipid peroxidation products and reactive oxygen

species (ROS) generated by iron metabolism lead to membrane

integrity loss through unknown mechanisms (5). Ferroptosis

exhibits distinct cellular morphology and function compared to

necrosis, apoptosis, and autophagy. It does not display the typical

morphological features of necrosis, such as swollen cytoplasm and

organelle or cell membrane rupture, nor does it show the

characteristic features of traditional apoptosis, such as cell

shrinkage, chromatin condensation, and formation of apoptotic

bodies (6, 7). Morphologically, ferroptosis is mainly characterized

by mitochondrial shrinkage, increased membrane density, and

reduction or disappearance of mitochondrial cristae,

differentiating it from other cell death modes (8).

In recent years, there has been an increasing recognition of the

importance of non-apoptotic cell death mechanisms in elucidating

the molecular processes that regulate cell death. However, under

normal physiological conditions, these alternative mechanisms of

regulating cell death largely remain unknown (8). In this review, we

focus on ferroptosis, a form of regulated cell death dependent on

iron and involving lethal, iron-catalyzed lipid damage. Ferroptosis

is significantly controlled by lipid repair systems including GSH and

GPX4, as well as pharmacological interventions, and relies on

various pro-survival enzyme reactions (9). Therefore, ferroptosis

relies on the interplay of iron, sulfhydryl, and lipid metabolism

pathways, with renal tissues particularly susceptible to oxidative-

reductive imbalances (10, 11). Recent studies have confirmed the

significant role of ferroptosis in the pathophysiology of various

kidney diseases, emerging as a new focus of research in the field of

renal fibrosis (12). Renal tubules are essential components of the

kidney and are vulnerable to damage from factors such as hypoxia,

toxins, metabolic disorders, and aging. In response to injury, renal

tubular epithelial cells undergo morphological changes and secrete

bioactive molecules, driving interstitial inflammation and fibrosis,

ultimately leading to the development of chronic kidney disease

(CKD) and end-stage renal disease (ESRD) (13, 14). Although

specific targeted therapy for renal fibrosis is currently lacking,

recent studies suggest that inhibiting ferroptosis may alleviate

renal fibrosis. Researchers are investigating the mechanisms by

which ferroptosis regulates renal fibrosis in the hope of

developing new treatment strategies to delay disease progression,

reduce the incidence of ESRD, and lower mortality rates (15–17).

Additionally, there is increasing evidence indicating that ferroptosis
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plays a crucial role in the development of various other kidney

diseases, including acute kidney injury (AKI), diabetic nephropathy

(DN), renal cell carcinoma, polycystic kidney disease, among others

(18–21).

However, there are still gaps in our understanding of the

triggering, execution, and propagation mechanisms of ferroptosis

in kidney diseases that require further research. This article

summarizes current research on ferroptosis, its potential

mechanisms, and its role in the progression of various kidney

diseases, aiming to provide insights and information for the

prevention and treatment of these devastating diseases (Table 1).
2 Overview of ferroptosis

The discovery process regarding ferroptosis began in 2001 when

TAN et al. observed that exogenous glutamate inhibits cystine

uptake through the cystine/glutamate antiporter system, depleting

GSH and inducing an increase in ROS levels and intracellular Ca2+

influx, causing a form of programmed cell death in neuronal cells

distinct from apoptosis (22). In 2003, Dolam et al. identified a

compound, Erastin, through screening compounds with genotype-

selective properties, that exhibited selective lethal effects on cells

with RAS gene mutations. Erastin induces a non-apoptotic cell

death pathway in RAS gene mutant cells (23). Subsequently, in

2008, Yang et al. identified two new compounds, Ras-selective lethal

compound (RSL)3 and RSL5, which induced a non-apoptotic form

of cell death similar to Erastin (24). In 2013, Dixon et al. discovered

that Erastin triggered an iron-dependent, non-apoptotic form of cell

death, and officially named this cell death mechanism “ferroptosis”.

Ferroptosis differs from apoptosis, necrosis, and autophagy:

morphologically, there are no chromatin condensation and

marginalization as in apoptosis, cytoplasmic and organelle

swelling as in necrosis, and double-membrane-wrapped vesicles

as in autophagy. A unique morphological feature of ferroptosis is

that mitochondria appear smaller than normal, with increased

membrane density (25). Further research has shown that Erastin

and similar ferroptosis inducers induce cell death by reducing the

synthesis of GSH, leading to the inactivation of GPX4. This results

in increased lipid peroxidation, ultimately causing cell death. On the

other hand, ferroptosis inducers such as RSL3 do not affect the

concentration of GSH in cells, instead, they directly bind to GPX4,

leading to increased lipid peroxidation and subsequent cell death

(26). Cysteine is the rate-limiting substrate in the biosynthesis of

reduced GSH in a biological system. It is either taken up by cells in

its oxidized form (cystine) through the cysteine/glutamate

antiporter (Xc- system) and the sodium-dependent neutral amino

acid transporter B(0)AT1 (SLC6A19), or in its reduced form,

cysteine, entering cells through neutral amino acid transporters,

or being produced through transsulfuration from endogenous

sources (27, 28). GSH is the most abundant reducing agent in

mammalian cells, playing a crucial role in iron-sulfur cluster

biogenesis. It also serves as a cofactor for various enzymes

including glutathione peroxidase (GPX) and glutathione S-

transferase (29). Genetically, it has been demonstrated that the

GSH synthesis, the Xc- system, and GPX4 all contribute to
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protecting cells from death under various oxidative stress

conditions, especially under conditions leading to sulfhydryl

depletion, including the inhibition of Xc- system activity (30).

With the establishment of the roles of GSH synthesis, the Xc-

system, and GPX4 in ferroptosis, we can now contextualize all these

early studies within the framework of iron-dependent cell death.

The concept of ferroptosis was first proposed by Dixon et al (31)

in 2012 as an iron-dependent form of cell death characterized by

intracellular ROS accumulation, distinct from apoptosis. Before the

introduction of the term “ferroptosis”, relevant inducers had

already been discovered. In 2003, Dolma et al. first discovered a

new compound, erastin, capable of killing tumor cells with mutant

RAS oncogenes (23, 32). The cell death did not involve changes in

the nucleus or activation of caspase-3. Subsequently, Yang et al.

discovered another compound, the RSL3, which can induce this

form of cell death. The cell death caused by these two compounds

was later confirmed to be ferroptosis (24, 33).

As a form of RCD, ferroptosis differs from apoptosis, necrosis,

autophagy, and other forms of cell death. Morphologically, cells

undergoing ferroptosis exhibit significant mitochondrial

contraction, increased mitochondrial membrane density, loss of

mitochondrial cristae, and rupture of the mitochondrial outer

membrane (8); Biochemically, inhibiting the cystine/glutamate

antiporter system, known as system Xc on the cell membrane

leads to a decrease in the activity of GPX4. This inhibition

directly or indirectly results in intracellular depletion of GSH.

Consequently, GPX4 is unable to utilize GSH to convert lipid

hydroperoxides into lipid alcohols, leading to an inability to

effectively clear ROS and lipid reactive species generated by lipid

membrane damage, disruption of the mitochondrial electron

transport chain, and potentially by iron release from iron-
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containing enzymes. This cascade eventually induces cell death,

known as ferroptosis (8, 34). A pathway map of the current

mechanism of ferroptosis is summarized in Figure 1.
2.1 The mechanism of ferroptosis

2.1.1 The GPX4/GSH signaling pathway
in ferroptosis

GSH is the primary antioxidant involved in intracellular

antioxidant stress, participating in numerous essential cellular

metabolic activities such as the removal of ROS, DNA and

protein synthesis, and signal transduction. Severe oxidative stress

can cause damage to cellular lipids, proteins, DNA, and even lead to

cell death. Oxidative stress can be induced in two main ways:

directly increasing ROS levels or impairing antioxidant defense

systems. Among the members of the GPX family, GPX4 acts as an

inhibitory protein in lipid peroxidation. It reduces lipid

hydroperoxides to lipid alcohols, preventing ROS accumulation

and playing a role in inhibiting cell ferroptosis (35). GPX4’s activity

depends on system xc, a widely distributed amino acid antiporter in

the phospholipid bilayer consisting of a light chain subunit (solute

carrier family 7A11, SLC7A11) and a heavy chain subunit (solute

carrier family 3 member 2, SLC3A2). System xc can mediate the

exchange of extracellular cystine and intracellular glutamate across

the cell membrane. Cysteine, derived from cystine, is a rate-limiting

substrate for the synthesis of the antioxidant GSH (36). Therefore,

the import of cystine through this transporter is crucial for GSH

production and oxidative protection. Ferroptosis is primarily

caused by an imbalance between the generation and degradation

of intracellular lipid ROS within cells.
TABLE 1 Comparison of characteristics of different types of programmed cell death.

Types of
cell death

Ferroptosis Apoptosis Necroptosis, Pyroptosis, Autophagy

Biological
characteristics

Inhibition of system Xc
- and GPX4,

reduced cysteine uptake, depletion
of GSH, iron accumulation,
lipid peroxidation

Nucleosomal DNA
fragmentation, Caspase
activation, mitochondrial
membrane potential decrease

Decreased ATP levels,
activation of RIP1
and RIP3

Activation of caspase-1-
dependent inflammasome
and release of pro-
inflammatory cytokines

Formation and
degradation
of
autophagosomes,

Morphological
features

Cell swelling, increased
mitochondrial membrane density,
outer membrane rupture, reduced or
lost mitochondrial cristae

Membrane blebbing, cell
shrinkage,
nuclear fragmentation

Plasma membrane
rupture, cell swelling,
organelle disarray,
chromatin condensation

Plasma membrane rupture,
organelle swelling,
nuclear condensation

Formation of
double-
membrane
lysosomes

Regulatory
genes

ATP5G3, GPX4, Nrf2, RPL8,
RAS,SLC7A11

Bcl-2, Bax, Bak, Caspase,
P53, Fas

RIPK1,RIPK3, MLKL Caspase-1,
Gasdermins, NLRP3

mTOR, LC3,
ATG5,Beclin 1,
ULK1,AMPK

Inducers Erastin, Glutamate, SAS, SRS,
Sorafenib, Artemisinin

Apoptosis protein A,
Hypoxia, Fasl,
Staurosporine, UNC5B

TNFa, Fasl, TWEAK ZnO-NPs, Ivermectin Rapamycin,
Simvastatin,
Valproic
acid, Thapsigargin

Inhibitors Ferrostatin-1, Liproxstatin-1,
Deferoxamine, VitE, U0126,
DFO, CHX

NAIP, CTX1,c-IAP1/2, XIAP,
ILP-2, Survivin, Z-VADFMK

Necrostatin-1, NSA,
Kongensin-A

Necrosulfonamide BafilomycinaA1,3-
MA, LY294002,
wortmannin,
Spautin-1

Inflammatory
features

Pro-inflammatory anti-inflammatory Pro-inflammatory Pro-inflammatory anti-inflammatory
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Studies have shown that inhibiting system Xc
- using erastin and

sulfasalazine in cancer cells cultivated in covered dishes results in a

unique form of iron-dependent cell death known as ferroptosis (31).

The small molecule erastin inhibits system Xc
-, impeding GSH

absorption. GSH is a necessary cofactor for GPX4 activity.

Consequently, GPX4 activity decreases, reducing cellular

antioxidant capacity, leading to lipid peroxidation accumulation

and inducing oxidative cell death, known as ferroptosis. (1S,3R)-

RSL3, also known as RSL3, and ML162 (also known as DPI7) can

deactivate GPX4, triggering ferroptosis in cells (33).

2.1.2 Ferroptosis and polyunsaturated fatty acids
Ferroptosis is characterized by lipid peroxidation, a process

regulated by the system xc−/GPX4/GSH signaling pathway.

Another condition for cells to undergo ferroptosis is the presence

of polyunsaturated fatty acids (PUFAs), including arachidonic acid

(AA) and docosapentaenoic acid. PUFAs contain easily extractable

bis-allylic hydrogen atoms, making them prone to lipid peroxidation,

which is necessary for executing ferroptosis (37). Therefore, the

abundance and localization of PUFAs determine the extent of lipid

peroxidation occurring in cells, thereby influencing the degree of

ferroptosis’s action. Free PUFAs serve as substrates for the synthesis
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of lipid signaling mediators, but they must be esterified into

membrane phospholipids and undergo oxidation to become signals

for ferroptosis. In cells undergoing ferroptosis, the AA is significantly

depleted, and lipid fragments derived from AA are detected in the

conditioned media of GPX4-/- mouse embryonic fibroblast cultures

(34). Long-chain acyl CoA synthetase 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) encode

enzymes involved in incorporating AA into membrane

phospholipids. The absence of ACSL4 and LPCAT3 can prevent

ferroptosis induced by GPX4 inhibitors RSL3 and ML162 (38). This

indicates that the execution of cell ferroptosis in the presence of

highly oxidative PUFAs such as AA can only occur after the direct or

indirect (i.e., induced by GSH depletion) inactivation of GPX4 (35).

Existing research suggests that this could be another potential point

of regulation for ferroptosis, by modulating the enzymes involved in

the biosynthesis of membrane phospholipids containing PUFAs to

trigger or block ferroptosis (39, 40). The summary of metabolism and

cell signaling in ferroptosis is shown in Figure 2.

2.1.3 Iron metabolism and ferroptosis
Iron is an essential trace element in the human body, playing

multiple important biological roles, including inducing ATP
FIGURE 1

This figure shows the metabolic pathways involved in iron-dependent cell death. Iron-dependent lipid peroxidation drives iron death at the cellular
level. Several aspects of iron metabolism, such as absorption, storage, and utilization, play important roles in regulating iron death. Additionally,
activation of long-chain fatty acid CoA ligase 4 (LACS4), lysophosphatidyltransferase 5 (LPLAT5), lipid oxidase (LOX), or NADPH oxidase (NOX) in the
lipid metabolism pathway promotes lipid peroxidation and iron death. The classic iron death suppression pathway involves the cysteine-glutamate
reverse transporter (Xc-system), which induces the biosynthesis of GSH by facilitating cysteine (Cys) uptake. Using GSH as a cofactor, GPX4 reduces
phospholipid hydroperoxides to their respective alcohols. The peroxidation of phospholipids can also be suppressed by the iron death inhibitor
factor 1 (FSP1)-coenzyme Q10 (CoQ10) system. Furthermore, iron death is regulated by iron metabolism, including absorption, transport, storage,
and utilization of iron. At the cellular level, non-heme iron enters cells through transferrin receptor 1 (TFR1)-mediated iron uptake by transferrin (TF)
binding, or iron uptake independent of TF mediated by solute carrier family 39 member 14 (SLC39A14, also known as zinc transporter ZIP14).
Additionally, iron engulfment mediated by heme degradation and nuclear receptor coactivator 4 (NCOA4) increases the labile iron pool (LIP), making
cells more sensitive to iron death via the Fenton reaction. FPN, ferritin, Glu represents glutamate; GSSG, oxidized glutathione; HO1, heme oxygenase
1; KEAP1, kelch-like ECH-associated protein 1; NRF2, nuclear factor E2-related factor 2; PUFA, polyunsaturated fatty acid; PUFA-CoA,
polyunsaturated fatty acid-coenzyme A; PUFA-PL, phospholipid containing polyunsaturated fatty acids (PUFA); and STEAP3,
metalloreductase STEAP3.
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production, participating in DNA and hemoglobin synthesis, and

many other physiological activities (41). Due to its ability to accept

and donate electrons, the accumulation of ferrous ions can lead to

oxidative damage and even cell death (42). In mammalian cells, the

absorption pathways for non-heme and heme iron involve various

transport proteins or receptors, providing iron for subsequent lipid

peroxidation processes. Elevated intracellular iron levels,

particularly high ferrous ions levels, can lead to lipid peroxidation

(43). Cellular iron homeostasis is closely related to the absorption,

storage, circulation, and utilization of iron (44). In general,

extracellular Fe3+ ions first bind to transferrin (TFR), and then

enter the cell through the transferrin receptor 1 (TFR1) for storage

in the form of the ferritin complex (primarily ferritin) (45).

Fe3+ ions are reduced to Fe2+ ions and then transported and

stored in the cellular iron pool, while excess Fe2+ ions are stored in

ferritin (46). Ferritin is a complex of iron storage proteins consisting

of ferritin light chain and ferritin heavy chain 1 (FTH1). In cases of

disrupted iron metabolism, low expression of FTH1 and

overexpression of TFR1 often lead to excessive accumulation of

Fe2+ ions, inducing the production and accumulation of large

amounts of ROS through the Fenton reaction, ultimately

promoting cel l ferroptosis (47) . With increased iron

supplementation, tissue iron concentrations rise, potentially

exceeding the body’s binding capacity, leading to the formation of

non-transferrin-bound iron (NTBI). Organs such as the liver and

kidneys are sensitive to iron, and their absorption and clearance of

iron differ from the reticuloendothelial system, possibly causing

tissue iron deposition and iron overload (48). During the iron

cycling process, NTBI and certain unstable ferrous species are prone

to oxidation and reduction through Fenton and Haber-Weiss
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reactions, generating hydroxyl radicals (·OH). These radicals can

damage large molecules such as lipids, proteins, and nucleic acids,

causing oxidative stress (49). The products of lipid peroxidation

chain reactions exhibit high biological activity (50). It can damage

DNA, proteins, and enzyme activity, serving as molecular signals

activating pathways that lead to cell death (51). Lipid peroxidation

plays a driving role in ferroptosis and can be accomplished through

non-enzymatic or enzymatic reactions. Compared to saturated fatty

acids and monounsaturated fatty acids, PUFAs are more prone to

lipid peroxidation and ferroptosis (52). The formation of PUFA

coenzyme A derivatives is a necessary condition for initiating

ferroptosis. Enzymes involved in regulating PUFA biosynthesis in

membrane phospholipids can either trigger or prevent ferroptosis

(52). Furthermore, studies have found that altering the intracellular

iron content can change the sensitivity of cells to ferroptosis.

Increasing transferrin and transferrin receptor-1 can boost

cellular iron levels, thereby promoting ferroptosis (53).

TFRC is the gene encoding the transferrin receptor. The

transferrin receptor is essential for cellular uptake of transferrin-

iron complexes. Silencing the TFRC encoding gene can effectively

prevent ferroptosis induced by erastin or cysteine deficiency.

Changes in the transcription of iron-regulatory genes such as

IREB2, FBXL5, TFRC, FTH1, and FTL affect the sensitivity to

erastin-induced ferroptosis, with this sensitivity positively

correlating with intracellular iron abundance (54). So far, the

mechanism of iron ions in ferroptosis remains incompletely

understood. While the independent redox action of iron ions

cannot be entirely ruled out, the most plausible explanation for

chelators preventing ferroptosis is by inhibiting iron ions from

donating electrons to oxygen to generate ROS (55). Iron ions are
FIGURE 2

The figure depicts the regulation of ferroptosis by multiple metabolic events (such as lipogenesis, autophagy, and mitochondrial TCA cycle) and
signaling pathways (such as E-cadherin-NF2-Hippo-YAP pathway, glucose-regulated AMPK signaling, and p53 and BAP1 tumor suppressor function).
See text for details. TfR, transferrin receptor; PL-OOH, phospholipid hydroperoxide; PUFA-PL, phospholipid with polyunsaturated fatty acid chain;
ROS, reactive oxygen species; TCA, mitochondrial TCA cycle; Gln, glutamine; Glu, glutamate; aKG, a-ketoglutarate.
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essential for the accumulation of lipid peroxides and the execution

of ferroptosis. Therefore, the sensitivity of iron-induced cell death is

influenced by iron intake, output, storage, and turnover. The

Regulation of systemic iron homeostasis was shown in Figure 3.

Iron metabolism was shown in Figure 4.

2.1.4 Ferroptosis and necroinflammation
Cellular ferroptosis triggers the innate immune system by

releasing damage-associated molecules associated with

inflammation. Immune cells stimulate inflammatory responses by

recognizing the mechanisms of different patterns of cell death

mechanisms (56). The ferroptosis inhibitor Ferrostatin-1 can

avoid the exacerbation of kidney damage after ferroptosis by

blocking the release of necrosis-related alarmone IL-33 and other

chemokines and cytokines, thus preventing macrophage

infiltration. This indicates the significant relationship between

ferroptosis and inflammatory responses (57). When renal tubular

epithelial cells undergo ferroptosis or other forms of RCD, their

cellular contents are released in the form of DAMPs. These DAMPs

bind to different molecular receptors on other cells in the

interstitium, leading to the generation of an immune response

known as necroinflammation, causing further damage via

inflammatory reactions. This process contributes to further
Frontiers in Immunology 06
inflammation and damage due to the necroinflammatory

response (58). Among the numerous damage-associated

molecules released by necrotic cells, high-mobility group box 1

protein (HMGB1) receives significant attention. HMGB1 is a non-

histone nuclear protein. When tissues or organs are damaged, it is

released from damaged cells into the extracellular space or directly

as a component of necrotic cell debris. It serves as a danger signal

recognized by the immune system, thereby initiating an

inflammatory response (59, 60). Current research indicates that

HMGB1 can activate the TLR4-MyD88 signaling pathway (61) by

binding to Toll-like receptors (TLRs), mainly TLR4. This activation

leads to the phosphorylation of p38 MAPK, mediating the

activation of mitogen-activated protein kinases (MAPK) and

subsequent nuclear transcription. This process promotes the

release of more inflammatory factors, thus exhibiting a pro-

inflammatory effect. Past research has indicated that HMGB1 is a

key regulatory factor in ferroptosis since HMGB1 translocation

requires ROS-dependent signaling (62, 63). Ye et al. (64) conducted

a study showing that in HL-60/NRASQ61L cells, the ferroptosis

inducer erastin increases ROS levels, facilitates cytoplasmic

translocation of HMGB1, and promotes cell death. The

downregulation of HMGB1 reduces ROS generation induced by

erastin and iron-mediated cell death in HL-60/NRASQ61L cells.
FIGURE 3

After intake of iron, Fe3+ is reduced by dcytb and then transported into enterocyte through DMT1. Dietary heme is absorbed by unknown
mechanism and degraded in enterocyte by HO-1. Once exported by FPN, Fe3+ binds to transferrin (diferric transferrin, TF-Fe2), travels to tissues,
and largely utilized in new red blood cells. Macrophage degraded senescent RBCs to recycle iron. Once needed, EPO, released by kidney, promotes
erythropoiesis by HIF signaling pathway. The iron utilization of erythroid marrow and its recycling by macrophages represent the major iron
circulation. Excess iron can be stored in hepatocytes through TFR1-mediated TF-Fe2 or SLC39A14-participated non-transferrin-bound iron (NTBI).
The release of iron from enterocyte, red blood cells, and macrophages is precisely controlled by FPN, the body’s sole iron exporter, to maintain a
relatively stable iron level. The peptide hepcidin, the master regulator of systemic iron homeostasis, is a circulating hormone synthesized by the liver.
Recently, we identified RNF217 as a novel E3 ligase for mediating FPN degradation. Dcytb, duodenal cytochrome b; DMT1, divalent metal transporter
1; EPO, erythropoietin; FPN, ferroportin; TFR1, transferrin receptor 1; HO-1, heme oxygenase 1; HIF, hypoxia induced factor; RBCs, red blood cells;
NTBI, non-transferrin-bound iron.
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This suggests that the ferroptosis inducer erastin acts as an activator

for HMGB1 cytoplasmic translocation and release and that

HMGB1 is a crucial regulatory point in executing ferroptosis.
2.2 Other regulatory pathways and
significance of ferroptosis

2.2.1 Regulation by System Xc
-

Xc
- is a cystine/glutamate antiporter protein that plays a crucial

role in regulating cellular redox homeostasis (65). The system Xc
-

consists of two subunits: SLC7A11 and SLC3A2, functioning to

import cystine into the cell in exchange for glutamate (66). Cystine

is then converted to cysteine, and cysteine serves as a precursor to
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synthesize GSH, an important intracellular antioxidant (67). The

interaction mechanism between ferroptosis and the system Xc
-

involves the regulation of cellular redox balance. The normal

function of the system Xc
- is crucial for maintaining intracellular

redox balance. When the system Xc
- is dysfunctional or inhibited,

the levels of cysteine and GSH inside the cell decrease, leading to an

exacerbation of intracellular oxidative stress, resulting in the

accumulation of lipid peroxides and ultimately triggering

ferroptosis (68, 69). Therefore, restoring or maintaining the

normal function of the system Xc
- can help in maintaining

intracellular redox balance, inhibiting the occurrence of

ferroptosis, and potentially have therapeutic effects for various

diseases, such as cerebral ischemia-reperfusion injury (CIRI)

(70, 71).
FIGURE 4

Under iron-deficient conditions (left), the majority of iron is bound to transferrin (TF), which binds to the transferrin receptor 1 (TFR1) at the cell
surface followed by receptor-mediated endocytosis, resulting in ferric iron being released from TF and reduction to ferrous iron by an lysosomal
reductase such as STEAP3. The ferrous iron is then transported into the lysosomal membrane by DMT1 and TRPML1/2, where it becomes part of the
labile iron pool in the cytosol. Labile iron can be stored in the iron-storage protein ferritin or used to synthesize heme and iron-sulfur clusters in the
mitochondria or in the cytosol. Iron can also be exported from the cell by the body’s sole iron exporter, ferroportin (FPN). In addition, the IRE/IRP
system regulates the expression of iron-related proteins such as TFR1, ferritin and FPN, upregulating TFR1 and DMT1 expression and downregulating
FPN and FTH/FTL expression. During iron overload (right), hepcidin expression is upregulated by either the canonical bone morphogenetic protein
(BMP)/SMAD pathway or by IL-6-pSTAT3 inflammatory signaling, which in turn limits iron absorption by increasing FPN degradation. In response to
excess iron, BMP6, together with HJV, activates type 1 (Alk2/3)and type 2 (BMPR2, ACVR2A) BMP serine threonine kinase receptors to phosphorylate
R-SMAD (receptor-activated SMAD), leading to activation of BMP/SMAD signaling pathway. High concentration of TF-Fe2 interact with TFR1,
resulting in forming complex of TFR2/HJV/HFE to enhance the BMP/SMAD signaling in regulating hepcidin. TMPRSS6 inhibits BMP/SMAD signaling
by cleaving HJV. The IRP system not only downregulates iron uptake-related genes such as TFR1 and DMT1 expression, it also upregulates FPN and
FTH/FTL expression. IRP2 mediated by SKP1-CUL1 E3 ubiquitin ligase and NCOA4 are degraded, while IPR1 works as aconitase to convert citrate to
isocitrate due to conformational change. RNF217 is a recently identified E3 ligase that regulates the degradation of FPN. ACVR2A, activin receptor
type-2A; ALK, activin receptor-like kinase; BMP6, bone morphogenetic protein 6; BMPR2, bone morphogenetic protein receptor type 2; DMT1,
divalent metal transporter 1; EPO, erythropoietin; ERFE, erythroferrone; ETC, electron transport chain; FBXL5, F-box/LRR-repeat protein 5; FPN,
ferroportin; FTH, ferritin heavy chain; FTL, ferritin light chain; JAK, Janus kinase; LIP, labile iron pool; NCOA4, nuclear receptor coactivator 4; NTBI,
non-transferrin-bound iron; HJV, hemojuvelin; IL-6, interleukin 6; IRE, iron-responsive elements; IRP, iron-regulatory proteins; SLC39A14, solute
carrier family 39 member 14; SMAD4, SMAD family member 4; SMAD7, SMAD family member 7; STAT3, signal transducer and activator of
transcription 3; STEAP3, six-transmembrane epithelial antigen of prostate 3; TCA cycle, tricarboxylic acid cycle; TFR1, transferrin receptor 1; TFR2,
transferrin receptor 2; TMPRSS6, transmembrane protease serine 6; TRPML1/2, Mucolipin TRP channel 1/2;UTRs, untranslated regions.
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2.2.2 FSP1/CoQ10/NADPH pathway
Ferroptosis suppressor protein 1(FSP1) is a protein capable of

participating in iron-sulfur cluster modifications, transferring iron-

sulfur clusters frommitochondria to target proteins (72). Coenzyme

Q10 (CoQ10) is an antioxidant that can reduce the generation of

free radicals and diminish the occurrence of oxidative stress

reactions (73). Nicotinamide adenine dinucleotide phosphate

(NADPH) is a reducing coenzyme that provides reducing power

and participates in many metabolic pathways (74). Recent research

indicates that FSP1 in the FSP1/CoQ10/NADPH pathway can

protect mitochondria from oxidative stress damage during

ferroptosis processes by regulating the synthesis and transfer of

iron-sulfur clusters; CoQ10 reduces the generation of free radicals

directly, thereby reducing the occurrence of oxidative stress

reactions. NADPH provides reducing power, reducing the

severity of oxidative stress reactions, thereby protecting cells from

damage caused by oxidative stress reactions (72, 74). In conclusion,

the FSP1/CoQ10/NADPH pathway regulates ferroptosis processes

through various mechanisms, protecting cells from damage caused

by ferroptosis. This discovery provides a new perspective and

approach to the treatment of ferroptosis (74).

2.2.3 DHODH pathway
Dihydroorotate dehydrogenase (DHODH) is a mitochondrial

inner membrane enzyme that plays a role in important metabolic

pathways such as cytochrome P450, purine synthesis, and fatty acid
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metabolism (75, 76). Research indicates that the DHODH pathway

can protect cells from oxidative stress and mitochondrial damage

through various mechanisms, including downregulating ROS levels,

maintaining mitochondrial membrane potential, and inhibiting cell

apoptosis (77, 78). DHODH inhibits ROS production and increases

mitochondrial membrane potential, thus preventing cells from

undergoing mitochondrial permeability transition and apoptosis,

safeguarding cells from oxidative stress and mitochondrial damage.

This provides a novel approach and pathway to shield cells from

ferroptosis (79, 80). The regulatory role of mitochondria in

ferroptosis shown in Figure 5.

2.2.4 GTP cyclohydrolase 1 (GCH1)/
tetrahydrobiopterin (BH4)

The GCH1/BH4 pathway is an intracellular enzymatic pathway

involved in various crucial cellular metabolic processes (81, 82).

GCH1 is the rate-limiting enzyme for BH4, and the GCH1/BH4

pathway can regulate redox reactions and cell apoptosis, thereby

protecting cells from the impact of oxidative stress and

mitochondrial damage (83, 84). Recent research indicates that the

GCH1/BH4 pathway also plays a critical role in ferroptosis, where

GCH1 increases BH4 synthesis, decreases ROS levels, mitigates

oxidative stress, and promotes cell survival. Furthermore, BH4 can

regulate multiple cellular signaling pathways and metabolic

pathways, further reducing oxidative stress and cell death, thereby

protecting cells from the damage caused by ferroptosis (82, 83, 85).
FIGURE 5

Mitochondria host a wide range of key metabolic processes (such as the tricarboxylic acid (TCA) cycle) and are a major source of reactive oxygen
species (ROS). Separate mitochondria-localized defense systems have evolved to prevent mitochondrial lipid peroxidation and ferroptosis. For
example, either the mitochondrial version of phospholipid hydroperoxide glutathione peroxidase 4 (GPX4) or dihydroorotate dehydrogenase
(quinone), mitochondrial (DHODH) can specifically detoxify mitochondrial lipid peroxides. Moreover, the mitochondria-specific form of ferritin
(FTMT) protects mitochondria from iron overload-induced oxidative injury, and mitoNEET (also known as CISD1) suppresses ferroptosis by limiting
mitochondrial iron uptake. CoQ10, coenzyme Q10; FPN, ferroportin; FSP1, ferroptosis suppressor protein 1; GSH, glutathione; GSSG, glutathione
disulfide; HO1, haem oxygenase 1; LIP, labile iron pool; PL-PUFA-OOH, polyunsaturated fatty acid-containing phospholipid hydroperoxides; PLOO·,
phospholipid peroxyl radical; RNF217, E3 ubiquitin protein ligase RNF217; SLC25A39, probable mitochondrial glutathione transporter SLC25A39;
SLC39A14, solute carrier family 39 member 14; TF, transferrin; TFR1, transferrin receptor protein 1.
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2.2.5 Others
Currently, there are multiple endogenous defense pathways in

cells to counteract ferroptosis, including GSH-GPX4, FSP1-CoQ1,

DHODH-CoQ10, GCH1-BH4, as well as MBOAT1/2 (86, 87). Lang

et al. revealed through whole-genome CRISPR activation screening

that MBOAT1 and MBOAT2 are novel inhibitors of ferroptosis

(88). They suppress ferroptosis by reshaping phospholipids, a

mechanism independent of GPX4 or FSP1 (88). The research also

uncovered that transcription of MBOAT1 and MBOAT2 is

upregulated by estrogen receptor (ER) and androgen receptor

(AR), respectively. Inducing ferroptosis in combination with ER

or AR antagonists significantly inhibits the growth of ER-positive

breast cancer or AR-positive prostate cancer, offering a novel

therapeutic approach for cancers with specific genetic

backgrounds. Additionally, Interleukin 4 Induced Protein 1

(IL4i1) is an extracellular matrix enzyme that metabolizes

tryptophan and its metabolites to regulate the intracellular redox

balance (89, 90). Recent studies indicate that IL4i1 plays a crucial

role in ferroptosis by modulating cellular redox balance through the

metabolism of tryptophan and its derivatives. This helps in

reducing ROS levels, mitigating oxidative stress, and protecting

cells from ferroptosis-induced damage (91). The relationship

between ferroptosis and IL4i1 is intricate, necessitating further in-

depth exploration of their interactions and regulatory mechanisms

to offer new insights and avenues for ferroptosis treatment.
2.3 The relationship between ferroptosis
and other programmed cell
death responses

Ferroptosis is intricately linked to biological processes,

including autophagy, endoplasmic reticulum stress, and

inflammation, among others, and may be involved in the

reciprocal regulation of recalcitrant diseases. Therefore, a deeper

exploration of the relationship and regulatory effects between these

processes can offer a solid foundation for disease treatment.

2.3.1 The relationship between ferroptosis
and autophagy

Appropriate autophagy has evolved into a pro-survival response

for cells, but excessive autophagy, especially selective autophagy,

and impaired lysosomal activity may promote cellular ferroptosis

(92). The degradation of ferritin can be completed through

ferritinophagy, a selective autophagy process mediated by Nuclear

Receptor Co-activator 4 (NCOA4). Knocking out NCOA4 can

inhibit ferritin degradation, preventing ferroptosis caused by free

iron in fibroblasts and pancreatic cancer cells, thereby directly

linking autophagy to ferroptosis (92). The autophagy-dependent

lysosomal degradation of ferritin also enhances artemisinin-induced

ferroptosis in cancer cells, which is another mechanism during

ferroptosis that leads to ferritin degradation (93). Clockophagy is a

recently discovered form of selective autophagy. ARNTL is a

circadian rhythm transcription factor that inhibits the

transcription of Egln2 and activates the survival transcription
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factor HIF1A, thereby inhibiting ferroptosis. Targeting this novel

ARNTL-EGLN1-HIF1A pathway may enhance the anticancer

activity of ferroptosis inducers (94).

2.3.2 Ferroptosis and endoplasmic
reticulum stress

Dixon et al. found that Erastin induces endoplasmic reticulum

stress by activating the PERK-eIF2a-ATF4-CHOP pathway and

upregulating the expression of the apoptotic protein PUMA,

indicating that endoplasmic reticulum stress may be involved in

ferroptosis (95). Furthermore, HSPA5 is a molecular chaperone

associated with endoplasmic reticulum stress that can bind to GPX4

to inhibit protein kinase-induced degradation of GPX4, thereby

suppressing ferroptosis in pancreatic cancer cells. Chen et al. (96)

identified elevated levels of ATF4 in human glioblastoma, and

pharmacological or genetic inhibition of System Xc
- can attenuate

ATF4-induced cancer cell proliferation. Additionally, ATF4

promotes tumor-mediated neurotoxicity and tumor angiogenesis,

which can be alleviated by ferroptosis inducers such as Erastin and

RSL3. Therefore, inhibition of ATF4 may be an effective target for

reducing tumor growth by sensitizing cancer cells to ferroptotic

cell death.

2.3.3 Ferroptosisis and inflammation
Unlike immunologically silent apoptosis, ferroptosis is

immunogenic, as cells undergoing ferroptosis release cell contents

including DAMPs and alarm proteins due to plasma membrane

rupture, amplifying cell death and triggering a cascade of

inflammation-related responses (97). In a mouse model of crystal-

induced acute kidney injury (AKI), inhibitors of ferroptosis

suppressed the expression of pro-inflammatory cytokines and the

infiltration of neutrophils into the damaged tissue (98). Kang et al.

(99) demonstrated that Gpx4 expressed in myeloid cells plays a

crucial role in lipid peroxidation, inflammasome activation, and

release of DAMPs in the setting of sepsis, with Gpx4 deletion

leading to increased lethality in sepsis conditions. Qi et al. (100)

found that in a mouse model of nonalcoholic steatohepatitis

(NASH) induced by methionine/choline deficiency (MCD)

feeding, levels of inflammatory cytokines including TNF-a, IL-1b,
and IL-6 protein increased significantly after treatment with the

ferroptosis inducer RSL3. However, mice fed with an MCD diet and

treated with sodium selenite (a GPX4 activator) showed elevated

hepatic GPX4 levels, reduced lipid peroxidation, and decreased

severity of NASH.
3 Ferroptosis inducers and inhibitors

Ferroptosis inducers and inhibitors act by modulating key

mechanisms in the ferroptosis pathway mentioned above to

respectively promote or inhibit iron-dependent cell death (24, 74,

98, 101–108). Inducers mainly include (1) small molecules and drug

inducers targeting iron metabolism: such as Erastin, Temozolomide

(TMZ), and small molecules like MMRi62. (2) Small molecules and

drug inducers targeting lipid metabolism: such as the anti-cancer
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drug sorafenib, and inhibitors of cardiolipin oxidation like XJB-5–

131 and JP4–039. (3) Small molecules and drug inducers targeting

the GSH/GPX4 axis: such as RSL3 and RSL5, ML162, DPI7, and

DPI10. (4) Small molecules and drug inducers targeting the FSP1/

CoQ-related pathway: NDP4928, FIN56, etc. (5)Small molecules

and drug inducers targeting other pathways include brequinar,

dexamethasone, etc. Inhibitors primarily include (1) Small

molecule inhibitors that lower iron levels, such as ciclopirox

olamine (CPX), deferiprone (DFP), and deferasirox (DFX). (2)

Small molecule inhibitors used to reduce lipid peroxidation

include Ferrostatin-1 (Fer-1), a-Tocopherol (Vitamin E), SRS15–

72B, SRS15–72A, SRS16–80, and SRS16–86, among others. (3)

Small molecule inhibitors affecting the GSH/GPX4 axis: such as

b -mercaptoe thanol (b -ME) , 2-amino-5-ch loro-N, 3-

dimethylbenzamide (CDDO), a triterpenoid compound, etc. Next,

let’s summarize a few representative drugs from the list.
3.1 Ferroptosis inducers

Erastin, first reported in 2003 (102), was the earliest discovered

ferroptosis inducer. It was later confirmed that Erastin binds to and

blocks the transport of cysteine by the cystine/glutamate antiporter,

leading to intracellular depletion of GSH and triggering iron-

dependent cell death. Affinity purification and mass spectrometry

analysis have shown that Erastin interacts with voltage-dependent

anion channel 2 (VDAC2) (103), reducing the permeability of

VDAC2 to the reduced form of nicotinamide adenine

dinucleotide (NADH), altering its ion selectivity, and disrupting

mitochondrial respiratory chain oxidative phosphorylation (104).
3.2 Ras selective lethal compound 3

Ras-selective lethal small molecule 3 (RSL3) was first reported

in 2008 (24), and it wasn’t until 2014 that Yang et al. discovered that

GPX4 is the target protein of RSL3, revealing this key pathway

molecule (105). RSL3 directly inhibits GPX4, leading to an

imbalance in the intracellular redox system and triggering

ferroptosis. Alongside RSL3, RSL5 was discovered to induce iron-

dependent cell death by targeting VDAC (24).
3.3 The inhibitor of ferroptosis inhibitor 1

Bersuker et al. discovered that Apoptosis-Inducing Factor

Mitochondria-Associated 2(AIFM2) can reduce cellular sensitivity

to iron-dependent cell death by decreasing Coenzyme Q10 (CoQ10)

level, thereby exhibiting an anti-ferroptotic effect independent of

GPX4 (106). It was consequently renamed Ferroptosis Suppressor

Protein 1 (FSP1). Meanwhile, Doll et al. found that the inhibitor of

FSP1, iFSP1, can induce selective ferroptosis in GPX4 knockout

cells overexpressing FSP1. As a novel inducer of ferroptosis, the

mechanisms of iFSP1 are worthy of further exploration (74).
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3.4 Ferroptosis inhibitors 1(Fer-1)

Fer-1 is a ferroptosis inhibitor obtained through high-

throughput screening. It captures lipid peroxides through its

lipophilic properties, downregulating prostaglandin-endoperoxide

synthase 2 (PTGS2), upregulating GPX4, and nuclear factor

erythroid 2-like 2 (NFE2L2) (107). Linkermann et al (98)

discovered a third-generation Fer compound, SRS-16–86, which

has superior plasma stability and stronger inhibition of ferroptosis

compared to Fer-1.
2.5 Liproxstatin-1(Lip-1)

Lip-1 is a specific inhibitor of LPO, and its mechanism of action

in clearing LPO is similar to that of Fer-1. Lip-1 easily stays within the

lipid bilayer, and the free radicals formed after clearing LPO can be

reduced by other antioxidants in the body through targeted contact.

Research indicates that the aromatic amine structure is essential for

Liproxstatin class compounds to reduce peroxides (108).
2.6 Others

Other ferroptosis inhibitors include iron chelators like

deferoxamine (DFO), ciclopirox olamine (CPX), and antioxidants

like vitamin E. They primarily function by reducing iron levels and

inhibiting oxidative stress to prevent cell death (109–111).
4 Ferroptosis and kidney disease

Ferroptosis-related diseases that can present throughout the

human lifespan are present in Figure 6.
4.1 Ferroptosis and DN

The pathogenesis of DN involves multiple factors, including

dysregulation of glucose and lipid metabolism, oxidative stress,

accumulation of advanced glycation end-products (AGEs),

inflammation, activation of the innate immune system, genetic

susceptibility, activation of the renin-angiotensin system, and

miRNAs (112–114).

Recently, researchers have identified hub genes (FPR3, C3AR1,

CD14, ITGB2, RAC2, and ITGAM) associated with ferroptosis in

diabetic kidney disease through gene differential expression analysis

in patients. Non-coding genes (hsa-miR-572, hsa-miR-29a-3p, hsa-

miR-29b-3p, hsa-miR-208a-3p, hsa-miR-153–3p, and hsa-miR-

29c-3p) and transcription factors (HIF1a, KLF4, KLF5, RUNX1,
SP1, VDR, andWT1) that interact with these hub genes may also be

relevant to diabetic kidney disease (115). This further deepens our

understanding of the molecular mechanisms involved in the

pathogenesis of diabetic kidney disease. In patients with type 2
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diabetes kidney disease, ferritin levels are elevated, along with

significantly increased ROS and MDA levels. The expression of

ferroptosis-related proteins ACSL4, PTGS2, and NOX1 is elevated,

while GPX4 levels are reduced. In a diabetic kidney disease model, it

was observed that the renal tissue shows a significant increase in

iron ion content, elevated levels of MDA and 4-hydroxynonenal (4-

HNE), decreased GSH, markedly decreased FTH1 expression,

significantly increased TFR-1 expression. Transmission electron

microscopy revealed mitochondrial membrane rupture,

fragmentation, and mitochondrial cristae fragmentation and

disappearance. Treatment with Ferrostatin-1 improved the iron

overload, accumulation of lipid peroxidation, and antioxidant levels

associated with ferroptosis. Additionally, there was a significant

decrease in urinary protein, urinary creatinine, and urinary protein/

creatinine ratio. This leads to significant reductions in urinary

protein, urinary creatinine, and urinary protein/creatinine ratio,

along with improvements in glomerular changes, tubular epithelial

degeneration with loss of brush border, tubular luminal dilation,

folding and fracturing of the tubular basement membrane, renal

fibrosis area, and collagen content associated with diabetic kidney

disease (116, 117). In high glucose-induced models of renal tubular
Frontiers in Immunology 11
epithelial cells, mesangial cells, and podocytes, ferroptosis

phenomena were also observed. Furthermore, in tubular cells

stimulated with TGF-b1, a decrease in GSH concentration and

enhanced lipid peroxidation, which are characteristic changes of

ferroptosis, were observed.

Ferrostatin-1 was able to alleviate TGF-b1-induced ferroptosis

in these cells (117). The above data indicate that ferroptosis

contributes to the exacerbation of diabetic kidney injury and

kidney fibrosis. Inhibiting ferroptosis may help improve the

structure and function of the kidney. Ferroptosis plays a

significant role in the advancement of diabetic kidney disease.

4.1.1 The involvement of ferroptosis in the
mechanism of DN

Research suggests that ferroptosis leads to the development of

DN by inducing injury to renal tubules (117–120), glomeruli (121–

126), and kidney fibrosis (127, 128). Tubular injury is a key factor in

the development of DN, as high glucose levels trigger renal tubular

cell iron overload, reduced antioxidant capacity, excessive ROS

production, and lipid peroxidation (129). Animal studies have

shown that in the kidneys of mice induced with DN models by
FIGURE 6

Ferroptosis-related diseases that can present throughout the human lifespan.
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streptozotocin and diabetic (db/db) mice, there is an increase in

iron content, particularly in the renal tubules. The inhibitor of acyl-

CoA synthetase long-chain family 4 (ACSL4), rosiglitazone,

improves renal function in DN model mice, reducing lipid

peroxidation products and iron content. These effects are related

to the alleviation of ferroptosis (118). Mesangial cells in the

glomerulus are a special type of smooth muscle cell located

between the capillary loops of the glomerular capillaries. Their

injury is a fundamental pathological change in DN (123).

Recent studies have indicated that ferroptosis is involved in

renal fibrosis in DN (117, 118). The latter represents the ultimate

pathological change in DN (130). In patients with DN, serum

ferritin, and lactate dehydrogenase release both increase (124); In

kidney biopsy specimens, the expression of xCT and GPX4 mRNA

decreases (119). A low iron diet or iron chelators can delay the

progression of DN in rats (131). Recent studies have suggested that

inhibiting ferroptosis may be a novel approach to exploring the

progression and treatment of DN (117–119, 124, 131). In

conclusion, ferroptosis is involved in the pathogenesis of DN, and

targeting the inhibition of ferroptosis holds promise as a new

pathway for treating DN.

4.1.2 Targeting the inhibition of ferroptosis for
the treatment of DN

Exploration has been conducted on inhibiting ferroptosis as a

therapy for DN. Current research indicates that certain active

ingredients from natural plant ingredients can target the inhibit

ferroptosis, thereby attenuating diabetes-induced tubular and

glomerular damage as well as renal fibrosis, ultimately serving as

a potential treatment for DN (132–134). Studies suggest that certain

drugs or bioactive substances can mediate the occurrence and

development of DN by modulating ferroptosis (135). Nobiletin

(136) upregulates NRF2, enhancing the antioxidant stress capacity

in the kidneys of diabetic mice. Increased expression of FTH-1 and

downregulation of TFR-1 help ameliorate iron deposition in the

kidneys of diabetic mice. Moreover, pretreatment with nobiletin can

reverse mitochondrial morphological changes induced by diabetic

ferroptosis, delaying the progression of DN. The ACSL4 inhibitor

rosiglitazone (Rosi) can also alleviate diabetic kidney damage by

inhibiting ferroptosis (135). The role of certain traditional Chinese

herbs in regulating ferroptosis is also noteworthy. Gimatinib

i nh i b i t s p odo c y t e f e r r op t o s i s b y modu l a t i n g t h e

mmu_circRNA_0000309/miR-188–3p/GPX4 signaling axis, thus

improving diabetic kidney damage (137). Berberine can

significantly improve the levels of ROS and GSH in podocytes

induced by high glucose, upregulate NRF2 expression, and thereby

alleviate podocyte ferroptosis (138). Furthermore, Aloe-emodin can

significantly improve oxidative stress responses, downregulate the

expression of HMOX-1 and NRF2, and inhibit ferroptosis levels

(139). HMGB1 regulates mesangial cell ferroptosis induced by high

glucose through the NRF2 pathway (124). Upregulation of Prdx6

expression mediated by Sp1 can alleviate oxidative stress and

ferroptosis, preventing podocyte damage in DN (126).

Furthermore, certain endogenous active peptides like salicin-b
can promote high glucose-induced ferroptosis in HK-2 cells by
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regulating gene expression of antioxidant systems (GPX4 and

SLC7A1) and iron metabolism regulatory systems (FTH-1 and

TFR-1) (129). These studies suggest that in the future, regulating

DN from the perspective of iron cell death may provide new

insights for the treatment of diabetic kidney disease.

4.1.3 Targeting ferroptosis to improve tubular
damage in DN

Ferroptosis mediates tubular injury in DN, suggesting that

inhibiting tubular injury ferroptosis may provide a therapeutic

approach for DN. Licorice may exert therapeutic effects on

diabetes and its complications through anti-inflammatory or

antioxidant mechanisms (140). Glabridin, a flavonoid extracted

from the natural plant component licorice, can promote tubular

epithelial cell survival by increasing the activity of superoxide

dismutase (SOD) and GSH in NRK-52E cells, upregulating the

expression of GPX4, SLC7A11, and SLC3A2, reducing

malondialdehyde and iron concentrations, lowering TfR1

expression to inhibit ferroptosis in DN. Similarly, the flavonoid

calycosin, which also possesses antioxidant and anti-inflammatory

properties, prevents high glucose-induced cell ferroptotic damage

by upregulating the GSH/GPX4 pathway in human renal proximal

tubular epithelial cells (HK-2 cells), reducing LPO, and inhibiting

the expression of nuclear receptor coactivator 4 (NCOA4) (141).

Umbelliferone (142) and platycodin D (143) protect renal tubules

by inhibiting iron cell ferroptosis in HK-2 cells and blocking cell

damage induced by high glucose. Therefore, the above-mentioned

compounds may exert therapeutic effects on DN by inhibiting

ferroptosis in renal tubular cells.

4.1.4 Targeting ferroptosis to improve glomerular
injury in DN

Mesangial cells are a special type of smooth muscle cell distributed

between the capillary loops of glomerular capillaries. Their injury is a

basic pathological change in DN renal damage (123). In vitro,

experimental results demonstrate that the ferroptosis inducers erastin

and high glucose both induce ferroptosis in the mesangial cells of the

glomeruli. High glucose and erastin significantly induce LDH release,

promote the expression of ACSL4, cyclooxygenase 2, and NADPH

oxidase 1, and decrease GPX4 levels. Conversely, iron chelators reverse

the glucose-induced LDH release and alterations in ferroptosis-related

genes in mouse mesangial cells, indicating that high glucose can induce

ferroptosis inmesangial cells (124). High glucose can induce ferroptosis

in podocytes, leading to podocyte injury (126). Berberine in high

glucose-induced podocytes inhibits ROS production, promotes GSH

generation, upregulates the expression of nuclear factor-erythroid 2-

related factor 2 (Nrf2), heme oxygenase-1 (HO-1), GPX4, and podocin,

and decreases the levels of cyclooxygenase 2 and ACSL4. This alleviates

podocyte cytoplasmic membrane foaming and mitochondrial

shrinkage under high glucose conditions. By activating the Nrf2/HO-

1/GPX4 pathway, it inhibits ferroptosis in podocytes, thereby exerting

its renal protective effect (144). Glycyrrhizic acid primarily exerts renal

protective effects by upregulating GPX4 and inhibiting ROS production

to inhibit high glucose-induced iron cell death in podocytes (145). In

conclusion, the active ingredients of the aforementioned natural plant
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ingredients may improve glomerular damage caused by DN by

inhibiting ferroptosis.

4.1.5 Targeting ferroptosis to improve renal
fibrosis in DN

Studies indicate that ferroptosis is involved in renal fibrosis in

DN, which is the final pathological change in DN (130). In a

diabetic rat model induced by a high-sugar diet and streptozotocin,

Sirius Red staining revealed that liquiritigenin improved kidney

function, and inhibited renal interstitial fibrosis. This is related to its

promotion of SOD and GSH activity, upregulation of GPX4,

SLC7A11, and SLC3A2 expression, reduction of malondialdehyde

content and iron concentration, as well as downregulation of TFR1

expression. These findings indicate that liquiritigenin improves

renal fibrosis in DN by inhibiting ferroptosis (131). In db/db

diabetic mouse models, hesperetin can upregulate GPX4

expression, inhibit LPO and NCOA4 expression, and suppress

collagen deposition in renal tissue. This indicates that hesperetin

may reduce collagen deposition and renal fibrosis by inhibiting

ferroptosis (140). The above-mentioned compounds may improve

renal fibrosis in DN by inhibiting ferroptosis.

Since the involvement of ferroptosis in the pathogenesis of DN

was identified in 2020, scholars have started to explore drugs

targeting the inhibition of ferroptosis for the treatment of DN.

Some active ingredients from natural plant components can

alleviate tubular and glomerular injury as well as renal fibrosis

induced by high glucose and diabetes by selectively inhibiting

ferroptosis, thereby serving as a treatment for DN. Although

exploratory experimental studies currently indicate that

ferroptosis is involved in the pathology of DN and can be

targeted and intervened pharmacologically, the detailed

mechanism still needs to be elucidated. The broad application

prospects also require further elucidation. In conclusion,

ferroptosis plays a significant role in the progression of DN, and

targeting ferroptosis is a promising therapeutic approach for

treating DN. It is a potential treatment approach with

hopeful prospects.
4.2 Ferroptosis and AKI

AKI has always been a severely debilitating disease worldwide,

and it remains a focus of clinical research (146). In recent years, the

incidence and mortality rate of AKI has been on the rise. AKI has

been associated with acute changes in kidney function and long-

term prognosis, including progression to CKD, cardiovascular

disease, persistent function, and even death (147, 148). AKI is

caused by a variety of factors. Prerenal AKI refers to AKI caused by

inadequate renal perfusion. AKI caused by renal parenchymal

injury is named based on the location of the injury (glomerular,

tubular, or interstitial) (149). The pathophysiological response to

AKI may determine whether kidney function is recovered or

progresses to CKD. Regeneration of tubular epithelial cells

promotes recovery, whereas interstitial fibrosis and loss of renal

capillaries are associated with progression to CKD (150).
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Experimental models have demonstrated that AKI can lead to

chronic damage of renal parenchyma, resulting in CKD,

indicating that early intervention may impact long-term

outcomes (151). However, the specific mechanisms of AKI

occurrence and development of AKI are not yet clear. Currently,

there are no effective treatment methods to prevent the occurrence

of AKI.

4.2.1 AKI caused by ischemia-reperfusion injury
In ischemia-reperfusion injury-induced AKI, apoptosis has long

been considered the primary mechanism of cell death. However,

using apoptosis-related inhibitors has not been effective in blocking

the occurrence of AKI (152). On the contrary, using ferroptosis

inhibitors such as liproxstatin-1 has been shown to alleviate tissue

damage caused by ischemia-reperfusion and significantly protect

kidney function (153). Pannexin-1 is a member of the ATP-release

pathway protein family. Research (154) has shown that silencing

pannexin-1 can promote the expression of the intracellular

antioxidant enzyme HO-1 and inhibit ferroptosis through the

mitogen-activated protein kinase/extracellular signal-regulated

kinase pathway, thereby reducing ischemia-reperfusion injury in

the kidneys. Irisin is an exercise-induced hormone that can improve

mitochondrial function and reduce the production of ROS.

Research (155) has found that treatment with irisin can

significantly alleviate the inflammatory response, endoplasmic

reticulum stress, and oxidative stress in mice with renal ischemia-

reperfusion injury. Its mechanism of action may be related to the

upregulation of GPX4 expression. Quercetin is a natural flavonoid

compound known for its pharmacological properties such as

antioxidant, anti-inflammatory, and anti-aging effects. Research

(156) has shown that quercetin can inhibit ferroptosis in renal

tubular epithelial cells by downregulating the expression of

activating transcription factor 3 gene, leading to a significant

increase in the expression of SLC7A11 and GPX4. This

conclusion has been validated by studies on the regulatory role of

microRNAs (miRNAs, miR) on ischemia-reperfusion-induced

renal injury in rats (157). Ischemia-reperfusion induced

upregulation of miR-182–5p and miR-378a-3p, leading to

activation of ferroptosis in kidney injury through downregulation

of GPX4 and SLC7A11. Therefore, ferroptosis may be the primary

pathway through which ischemia-reperfusion injury triggers AKI.

4.2.2 AKI caused by cisplatin
Cisplatin is a widely used anti-tumor drug, and its main adverse

effect is severe nephrotoxicity (158). Researchers have long been

striving to elucidate the mechanisms underlying cisplatin-induced

nephrotoxicity to better utilize this therapeutic drug. GPX4 is

significantly downregulated in cisplatin-induced AKI, while

ferroptosis biomarkers 4-hydroxynonenal and malondialdehyde

are upregulated. This indicates that ferroptosis plays an important

role in cisplatin-induced AKI (159). The Vitamin D receptor

agonist paricalcitol can prevent cisplatin-induced AKI by

reducing lipid peroxidation and reversing GPX4 downregulation

(160). This is similar to the mechanism of mangiferin in treating

cisplatin-induced AKI (159). Conversely, overexpression of myo-
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inositol oxygenase in proximal renal tubules can exacerbate

ferroptotic damage in the kidneys of mice treated with cisplatin

(161). Ras homolog enriched in brain 1 (Rheb1), a GTPase, plays a

crucial role in regulating cell growth, differentiation, and survival in

the brain. Research (162) found that Rheb1 can prevent cisplatin-

induced ferroptosis in renal tubular cells by maintaining

mitochondrial homeostasis. Fumarate esters, an oral small

molecule drug, have been found in a study (163) to prevent

ferroptosis through its antioxidant action via Nrf2 and improve

AKI. Furthermore, research (164) has demonstrated that mice with

knockout of the ferritin heavy chain gene exhibit more severe

kidney injury after cisplatin injection compared to control mice.

Indicating the crucial protective role of the ferritin heavy chain as a

significant iron metabolism-related protein in renal tubular

damage. The above research results also indicate that the use of

iron chelators such as deferoxamine or iron suppressors like

Ferristatin-1 can significantly alleviate cisplatin-induced acute

AKI (161, 164).

4.2.3 Folic acid-induced AKI
The folic acid-induced acute kidney injury (AKI) model is

commonly regarded as an excellent model for replicating human

AKI. Studies have shown that in mice pre-treated with the

ferroptosis inhibitor Ferrostatin-1, folic acid-induced intracellular

lipid peroxidation and tissue damage were markedly reduced,

leading to improved kidney function (165). FG-4592, a hypoxia-

inducible factor-prolyl hydroxylase inhibitor, has been found to

elevate intracellular GSH levels and decrease iron accumulation

when administered as a pre-treatment (166). Its protective

mechanism primarily involves the activation of the intracellular

antioxidant enzyme Nrf2, thereby inhibiting folic acid-induced

renal cell ferroptosis and slowing down fibrosis progression.

Studies have also indicated that nuclear receptor subfamily 1

group D member 1 (NR1D1) can stimulate ferroptosis by directly

binding to ROR response elements and repressing the transcription

of SLC7A11 and HO-1. Consequently, targeting and inhibiting

NR1D1 may restrain ferroptosis, thereby ameliorating folic acid-

induced AKI in mice (167). Notably, nuciferine, the primary

bioactive compound isolated from lotus leaf, can prevent iron

accumulation and lipid peroxidation in folic acid-induced AKI by

enhancing intracellular GSH and GPX4 levels, ultimately inhibiting

ferroptosis (166). These research findings collectively underscore

the significant role of ferroptosis in folic acid-induced AKI.

4.2.4 AKI caused by rhabdomyolysis
The causes of rhabdomyolysis include factors such as trauma,

drugs, toxins, and infections, with AKI being a serious complication

of rhabdomyolysis. Research (168) indicates that the Fe2+ directly

induced by myoglobin metabolism may lead to lipid peroxidation in

proximal tubule epithelial cells, which could be an important

pathogenic mechanism of rhabdomyolysis-induced acute AKI.

Guerrero-Hue et al (169) discovered that curcumin, as a potent

antioxidant, can inhibit ferroptosis in kidney cells. The mechanism

may involve the inhibition of the Toll-like receptor 4/NF-kB
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signaling pathway and the activation of intracellular HO-1, which

reduces the myoglobin-mediated inflammation and oxidative stress

response. The study also found that the use of iron chelator-1

significantly improved renal function in glycerol-injected mice.

4.2.5 Other models of AKI
Aristolochic Acid I (AAI) is an important metabolite of

aristolochic acid, which has been found to have significant

nephrotoxicity. Research has shown that it can significantly

decrease the levels of intracellular GSH while simultaneously

upregulating the expression of 4-hydroxynonenal and Fe2+. Iron

chelators such as deferoxamine mesylate and ferroptosis inhibitor

ferrostatin-1 have been found to significantly alleviate the cell

toxicity induced by aristolochic acid I. The Nrf2/HO-1/GPX4

antioxidant signaling pathway may be an important intervention

target for preventing drug-induced AKI containing AAI. AKI (170).

Alpha-lipoic acid is a natural antioxidant with the ability to

scavenge free radicals and chelate toxic metals. Research (171)

has found that it can effectively mitigate cobalt-induced

ferroptosis in the kidneys due to metal implants in the human

body. The above research results indicate that ferroptosis is widely

involved in the occurrence and development mechanisms of various

types of AKI.

4.2.6 Targeting ferroptosis for the treatment
of AKI

Given that ferroptosis is extensively involved in the occurrence

and development mechanisms of various types of AKI, targeting the

ferroptosis pathway may be a novel strategy for preventing and

treating AKI. This strategy mainly includes iron chelation therapy,

targeting iron metabolism-related proteins, lipophilic antioxidants,

and direct inhibitors of ferroptosis (172). The overall strategy of

iron chelation therapy is to reduce the unstable iron pool, minimize

the production of ROS, and thus prevent lipid peroxidation caused

by excessive iron overload. In addition to iron chelators, cellular

iron depletion can also be achieved by targeting iron metabolism-

related proteins. Research has found that increasing the iron

regulator hepcidin level in the bloodstream can induce the

degradation of ferroportin 1 and promote ferritin expression,

effectively restoring iron homeostasis and reducing the generation

of ROS (148). Overactivation of intracellular Nrf2 can not only

promote the production of a series of downstream antioxidant

enzymes but also increase the level of GSH, effectively inhibiting the

progression of renal ischemia-reperfusion injury in the early stages

(173). HO-1, as an intracellular antioxidant protective enzyme,

plays a good role in preventing AKI in various animal injury models

induced by ischemia-reperfusion, cisplatin, and lipopolysaccharide

(174). Iron-regulatory proteins such as ferritin-1, as representatives

of ferroptosis inhibitors, primarily inhibit iron-dependent cell death

by interfering with lipid peroxidation (174). However, the in vivo

use of ferritin-1 is limited by its stability and lower effectiveness.

Therefore, there is an urgent need to develop a safer, more stable

ferroptosis inhibitor that can be used for treating human diseases in

clinical settings.
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4.2.7 Natural plant compounds regulate
ferroptosis to intervene in kidney injury

Natural plant components offer unique advantages in the

prevention and treatment of kidney injury. Compounds such as

glycyrrhizic acid, astragaloside IV, ginsenoside Rg1, and dioscin,

derived from licorice, astragalus, ginseng, and yam, respectively,

possess natural properties that nourish qi, nourish yin, invigorate

the spleen, and benefit the lungs. Similarly, compounds like

paeoniflorin and curcumin, sourced from peony and turmeric, are

known for their natural properties that promote blood circulation

and remove blood stasis. Furthermore, compounds such as

acteoside and emodin, derived from natural plant sources, are

recognized for their heat-clearing and detoxifying effects. These

natural components align with the pathogenesis and treatment

principles of acute kidney injury (AKI). In recent years, there

have been numerous reports on the use of natural plant

compounds to regulate ferroptosis and alleviate kidney injury,

showcasing targeted therapy and significant efficacy (Tables 2, 3).
Fron
(1) Flavonoids: Baicalein mainly exists in the roots of

Scutellaria baicalensis and Scutellaria lateriflora. being one

of the flavonoids with the highest content in Scutellaria

baicalensis. It has effects such as reducing cerebral vascular

resistance, anti-inflammatory, and antibacterial properties

(175). Research has found that baicalein has significant

anti-ferroptosis activity. It markedly inhibits GPX4

degradation, and lipid peroxidation, and enhances cellular

resistance to ferroptosis. In the AKI model induced by

polymyxin B (PMB), baicalein reduces P53 acetylation

levels, inhibits ferroptosis, and ultimately alleviates AKI

(175). Isoliquiritigenin is an isoflavone compound found in

licorice, with various pharmacological effects such as anti-

tumor, antioxidant, and anti-inflammatory properties. It

can inhibit the expression of HMGB1 and NCOA4 induced

by lipopolysaccharides (LPS), suppress the accumulation of

free iron in renal tubular epithelial cells, alleviate

mitochondrial damage in renal tubules, enhance the

expression levels of GPX4, and provide certain protective

effects on kidney function (176). Chrysanthemin-3-glucose

has antioxidant and anti-tumor effects. It significantly

reduces levels of Fe2+, ROS, MDA, and ACSL4 in AKI

mice and damaged renal tubular epithelial cells By

activating the AMPK pathway. It also increases GPX4

and GSH levels, effectively inhibiting ferroptosis and

alleviating kidney damage (177).

(2) Saponins: Astragaloside IV, an active component of

Astragalus, activates the PI3K/AKT and Nrf2 signaling

pathways, reduces oxidative stress, enhances GPX4 and

Nrf2 expression, reduces iron accumulation, inhibits

ferroptosis induced by Aflatoxin, significantly improves

kidney damage, and protects kidney cells (178).

Ginsenoside Rg1, a compound found in Panax ginseng,

exhibits a positive therapeutic effect on kidney diseases.
tiers in Immunology 15
TABLE 2 Reagents that modulate ferroptosis (Ferroptosis inhibitors).

Reagents Targets Impact
on ferroptosis

Ferrostatin-1 Lipid peroxidation Inhibition of
lipid peroxidation

Liproxstatin-1 Lipid peroxidation Inhibition of
lipid peroxidation

Vitamin E Lipid peroxidation Inhibition of
lipid peroxidation

SRS 16–86、SRS 11–92 Lipid peroxidation Inhibition of
lipid peroxidation

Troglitazone,
Pioglitazone, Rosiglitazone

ACSL4 Inactivation of ACSL4

Deuterated
polyunsaturated fatty acids
(D-PUFAs)

Lipid peroxidation Inhibition of
lipid peroxidation

XJB-5–131 Lipid peroxidation Inhibition of
lipid peroxidation

Butylated
hydroxytoluene, butylated

Lipid peroxidation Inhibition of
lipid peroxidation

hydroxyanisole Lipid peroxidation Inhibition of
lipid peroxidation

Ferrostatins, liproxstatins Lipid peroxidation Inhibition of
lipid peroxidation

CDC, PD-146176, AA-
861, zileuton

Lipoxygenase Inhibition of
lipid peroxidation

Selenium Selenoproteins Inhibition of
lipid peroxidation

Deferoxamine,
cyclipirox, deferiprone

Intracellular iron Decreases cellular iron

Vildagliptin, alogliptin,
and Linagliptin

DPP4 Blocks DPP4-mediated
lipid peroxidation

Irisin GPX4 Upregulates GPX4

Melatonin System Xc
and GPX4-

Upregulates system Xc
and GPX4-

Vitexin System Xc
and GPX4-

Upregulates system Xc
and GPX4-

Isoliquiritigenin System Xc
and GPX4-

Upregulates system Xc
and GPX4-

Vitamin A Lipid peroxidation Blocks lipid peroxidation

Paricalcitol GPX4 Upregulates GPX4

Pachymic acid Nrf2,GPX4,
SCL7A11, and HO-

Upregulates of Nrf2,
GPX4, SCL7A11 and
HO-1

Rheb1 Maintains
mitochondrial
homeostasis

Maintains
mitochondrial
homeostasis

Quercetin System Xc
and GPX4-

Upregulates system Xc
and GPX4-

Artesunate Lipoxygenases Blocks lipid peroxidation
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It promotes the expression of FSP1, reduces cellular level of

Fe2+, ferritin heavy chain, and MDA, increases GPX4, and

GSH, inhibits lipid peroxidation and cell ferroptosis,
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enhances the vitality of renal tubular cells, and alleviates

AKI in septic rats (179). Diosgenin saponin, as the basic raw

material for synthesizing various steroidal hormones, is

present in natural plants such as Dioscoreaceae and

Fabaceae. It possesses pharmacological properties such as

anti-inflammatory, anti-tumor, and antioxidant effects.

Research indicates that it can alleviate kidney tissue

lesions and mitochondrial damage in mice, reducing

inflammatory responses (180); Furthermore, by

promoting Nrf2 expression and activating HO-1, it

significantly reduces ROS levels and MDA content in the

kidneys of AKI rats, increases levels of GSH, GPX4, and

other anti-ferroptosis proteins, markedly reduces the

number of apoptotic cells in the kidneys and renal

tubular epithelial cells of model rats, and promote the

expression levels of pro-apoptotic proteins, thereby

protecting the kidneys (181). Paeoniflorin possesses

pharmacological properties such as analgesic, sedative,

vasodilatory, antipyretic, and anti-inflammatory effects. It

plays a beneficial role in protecting kidney diseases such as

AKI and DN. In vitro experiments have shown that

paeoniflorin can upregulate the expression levels of

SLC7A11, thereby inhibiting ferroptosis in renal tubular

epithelial cells, providing a potential therapeutic strategy

for protecting kidney tissues (182).

(3) Alkaloids: Nelumbine, a bioactive alkaloid isolated from

lotus leaf, exhibits strong antioxidant properties and targets

the suppression of folate-induced ferroptosis-related renal

pathological changes by regulating the levels of GPX4,

SLC7A11, and FSP1. It also improves inflammation, cell

infiltration, and kidney function impairment in renal

tubular epithelial cells (166). Protopine is a substance

extracted from the fresh or dried aerial parts of

motherwort. By activating the Nrf2 pathway, it disrupts

iron accumulation, lipid peroxidation, and ferroptosis,

preventing the downregulation of GSH and GPX4 levels,

thus ameliorating cisplatin-induced AKI (183).

(4) Polyphenols: Rhein, as one of the main components of

rhubarb, has been proven to possess antibacterial and

antioxidant effects. Recent research has shown that rhein

can alleviate changes in the renal microstructure of model

rats, and decrease the expression of apoptosis-related

proteins , thereby reducing cel l apoptosis , and

counteracting the damage caused by oxidative stress to

the kidneys (184). Further research reveals that rhein can

alleviate endoplasmic reticulum stress induced by H/R,

upregulate GPX4 and SLC7A11 to mitigate lipid

peroxidation, reduce renal ferroptosis, and protect against

AKI (185). Curcumin is a lipophilic polyphenol extracted

from the rhizomes of ginger and turmeric plants. It

possesses renal protective properties by inhibiting the

TLR4/NF-kB signaling pathway, activating HO-1 to

suppress myoglobin-induced inflammation and oxidative

stress. This action helps improve lipid peroxidation,

decreased antioxidant capacity, and myoglobin-induced
TABLE 3 Reagents that modulate ferroptosis (Ferroptosis inducers).

Reagents Targets Impact on ferroptosis

Sulphasalazine System Xc
- Prevents cystine import, causes

GSH depletion

Sorafenib System Xc
- Prevents cystine import, causes

GSH depletion

Glutamate System Xc
- Prevents cystine import, causes

GSH depletion

Erastin and its analogs System Xc
-

VDAC2/3-
Prevents cystine import, causes
GSH depletion

RSL3 GPX4 Covalent inhibitor of GPX4
that causes accumulation of
lipid hydroperoxides

ML162 GPX4
Covalent inhibitor of GPX4
that causes accumulation of
lipid hydroperoxides

FINO2 GPX4
Covalent inhibitor of GPX4
that causes accumulation of
lipid hydroperoxides

FIN56 CoQ10 and GPX4

Depletes CoQ10 via SQS-
mevalonate pathway and
causes a decrease in GPX4
protein abundance

BSO, DPI2, cisplatin GHS GHS deletion

Statins (e.g.,
cerivastatin, simvastatin)

HMGCR Blocks CoQ10 biosynthesis

Trigonelline, brusatol Nrf2 Nrf2 inhibition

Siramesine, lapatinib
Ferroportin,
Transferrin

Upregulates cellular iron

Brequinar DHODH Inhibits DHODH

iFSP FSP1 Inhibits FSP1

BAY 87‐2243
Mitochondrial
respiratory chain

Inhibits mitochondrial
respiratory chain

Andrographolide
Lipid
peroxidation

Promotes lipid peroxidation

Toosendanin
Lipid
peroxidation

Promotes lipid peroxidation

Gliotoxin
ROS,
lipid peroxidation

Promotes lipid peroxidation

Arsenic trioxide ACSL4 ACSL4 activation

Manganese
ROS,
lipid peroxidation

Promotes lipid peroxidation

Fatostatin GPX4 Inhibits GPX4 expression

Legumain GPX4
Facilitates chaperone-mediated
autophagy of GPX4

Dihydroartemisinin
(DHA)

Ferritin,
iron overload

Increases cellular iron

Artemisinins Iron overload Increases cellular iron
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ferroptosis in renal tubular cells, thereby alleviating kidney

damage (169). Tiger cane glucoside is derived from the

dried rhizomes of the Polygonum cuspidatum, a plant in

the Polygonaceae family . I t possesses var ious

pharmacological activities such as anti-inflammatory and

antioxidant effects, and has a protective effect on AKI (186).

It significantly reduces the excessive production of free iron,

ROS, and MDA induced by cisplatin, alleviates GSH

depletion, and distinctly reverses ferroptosis in renal

tubular epithelial cells, thereby offering protection to the

kidneys (187).

(5) Triterpenoids: Centelloside is a triterpenoid compound

isolated from gotu kola, possessing anti-inflammatory and

antioxidant properties. Research has shown that

centelloside selectively regulates the Nrf2 pathway,

increasing the expression of Nrf2, GPX4, and SLC7A11 in

a kidney injury model, inhibiting oxidative stress and

ferroptosis, alleviating LPS-induced vacuolation and

glomerular mesangial expansion in kidney tissues, to

reduce AKI (188). Poria acid has anti-renal interstitial

fibrosis and can improve renal pathological damage. It

activates the Nrf2 signaling pathway, decreases MDA and

cyclooxygenase-2 (COX-2) expression, increases GSH,

GPX4, and SLC7A11, inhibits blood creatinine and urea

nitrogen retention caused by renal ischemia-reperfusion

injury, thus ameliorating renal pathology (189). In

conclusion, ferroptosis is involved in the pathogenesis of

AKI, and natural plant components can alleviate

ferroptosis, and reduce AKI progression by targeting the

inhibition of GPX4 degradation and lipid peroxidation.

However, there is currently no reported evidence on

whether traditional Chinese medicines and herbal

formulations can also alleviate AKI by inhibiting

ferroptosis. With the advancement of science and

technology, further exploration of the deep mechanisms

of natural plant components in regulating AKI ferroptosis

can be carried out through various techniques such as mass

spectrometry analysis, metabolomics, and genomics.
In summary, ferroptosis, as a novel form of cell death, is

involved in the pathogenesis of various diseases. It plays an

indispensable role in the pathogenesis of AKI. Due to the

incomplete understanding of the specific mechanisms of

ferroptosis in AKI and the high mortality rate associated with

AKI, exploring therapeutic targets for AKI from the perspective

of ferroptosis may represent a novel direction with great potential

for development. In recent years, there has been an increasing

amount of research on using natural plant compounds to inhibit

ferroptosis and alleviate kidney damage. Natural plant components

are complex, and future studies could focus on enhancing the

activity of GPX4 and System Xc
-, inhibiting lipid peroxidation,

and targeted regulation of the Nrf2 signaling pathway to reduce

ferroptosis in the kidney. However, most studies have focused on

the active ingredients of natural plant compounds, failing to fully

harness the complex effects of these compounds. Additionally, the

long-term therapeutic efficacy of active ingredients from natural
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plant compounds has not been fully evaluated yet. This review

focuses on intervening in AKI by targeting ferroptosis and

summarizes the targets in traditional Chinese medicine for

regulating ferroptosis in AKI. However, there is currently limited

research on complex formulas, and the mechanisms of intervening

in AKI through ferroptosis have not been deeply explored. In the

future, natural plant compounds could enhance the therapeutic

effects on ferroptosis in AKI by targeting pathways, receptors,

inhibitors, activators, and other methods. This could further

promote the development of traditional Chinese medicine in

the future.
4.3 The relationship between ferroptosis
and renal fibrosis

Renal fibrosis is the ultimate common process and main

pathological manifestation of CKD caused by different etiologies,

characterized primarily by the activation of myofibroblasts. The

transforming growth factor-b (TGF-b)/Smad signaling pathway is a

major pathway in renal fibrosis, and it is closely related to

ferroptosis (190). TGF-b is a major pro-fibrotic factor, and

various factors can promote its secretion, such as angiotensin II,

hypoxia-inducible factor 1, mitogen-activated protein kinase, and

high glucose (190). Research indicates that TGF-b1 modulates renal

injury by stimulating downstream Smads, where Smad3 is a key

mediator that promotes renal fibrosis, Smad2, and Smad7 have

renal protective effects, and Smad4 exhibits both promotion of

fibrosis and inhibition of inflammation through different

mechanisms (191). additionally, Smads also interact with other

signaling pathways such as the mitogen-activated protein kinase

and nuclear factor kB pathways to positively or negatively regulate

renal inflammation and fibrosis (192). TGF-b secreted by tumor

vascular endothelial cells can induce differentiation of endothelial

cells and adjacent fibroblasts into myofibroblasts through both

autocrine and paracrine mechanisms (193). Renal tubular

epithelial cells can release exosomes containing TGF-b mRNA to

activate fibroblasts, thereby promoting renal fibrosis following AKI

(194). Research has confirmed that the pro-fibrotic factor Wnt-1-

induced signaling protein 1 (WISP-1) may mediate renal fibrosis by

enhancing autophagy mediated by TGF-b1 (195, 196). The

physiological functions of iron include participating in the

mitochondrial respiratory chain and hemoglobin synthesis. Both

iron excess and deficiency are detrimental to metabolic

homeostasis. Iron excess can lead to the generation of free

radicals, and it may result in organelle stress and disruption of

cellular structural integrity. Renal cells are susceptible to the effects

of iron overload, and tissue iron deposition can lead to oxidative

damage and pathological reactions, including fibrosis and

inflammatory reactions (197). Ferroptosis is a non-traditional

form of RCD characterized by iron overload and lipid

peroxidation. Erastin, Sorafenib, RSL3, and FIN56 are common

inducers of ferroptosis, while deferoxamine, Ferrostatin-1 (Fer-1),

and Liproxstatin-1 (Lip-1) are common inhibitors of this process.

Obstruction of the ureter leads to ferroptosis in renal tubular

epithelial cells, which in turn causes the secretion of various
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fibrogenic factors and affects interstitial fibroblasts in a paracrine

manner, promoting their proliferation and differentiation (128).

However, the specific mechanism of fibrogenic factor secretion

during ferroptosis in renal tubular epithelial cells remains unclear.

In TGF-b1-stimulated renal tubular epithelial cell injury, the

expression of SLC7A11 and GPx4 is decreased, while Fer-1 can

alleviate this change (198).

Inhibition of ferroptosis to alleviate renal fibrosis: Studies

indicate that targeting ferroptosis specifically with certain

inhibitors can mitigate kidney damage and renal fibrosis: (1) In a

5/6 nephrectomy-induced CKD rat model, deferoxamine alleviates

kidney injury and fibrosis by regulating iron metabolism and the

TGF-b1/Smad3 pathway (199). (2) Lip-1 significantly attenuates

renal collagen protein deposition and expression of fibrotic factors

in a unilateral ureteral occlusion (UUO) mouse model, thereby

alleviating renal fibrosis. Moreover, it reduces the activation of

surrounding fibroblasts by inhibiting the paracrine secretion of

fibrosis-promoting fibrotic factors in human renal proximal tubule

cells (HK2) (200). (3) Fer-1 and deferiprone can inhibit iron-

dependent cell death in renal tubular epithelial cells, thereby

reducing kidney injury and fibrosis induced by UUO or ischemia-

reperfusion (128). (4) Berberine reduces lipid peroxidation and

inhibits ferroptosis by activating adenosine monophosphate-

activated protein kinase in a renal ischemia-reperfusion mouse

model, thereby alleviating kidney fibrosis (201). (5) Irisin can

inhibit ferroptosis induced by Erastin/RSL3 and fibrosis

stimulated by TGF-b1 in primary renal tubular epithelial cells.

Irisin also significantly alleviates tubular epithelial cell injury and

fibrosis by inhibiting Smad3 phosphorylation and suppressing the

expression of Nox4 (a downstream regulator of ferroptosis) in the

UUO mouse model, thus blocking Smad3-mediated ferroptosis

(202). Furthermore, Balzer et al. established an adaptive repair

and maladaptation (fibrosis) kidney regeneration model by titrating

ischemic injury doses (203). Through detailed biochemical and

histological analysis of a maladaptive/pro-fibrotic cluster of

proximal tubules, they discovered that cell necroptosis/ferroptosis

is a vulnerable pathway in these pro-fibrotic cells. Pharmacological

targeting of cell necroptosis/ferroptosis could promote cell adaptive

repair and improve fibrosis. The above studies all indicate that

targeting ferroptosis for treatment may prevent renal fibrosis in

CKD patients, which shows promising potential applications.

4.3.1 Ferroptosis and fibrosis induced by
kidney stones

Kidney stones are a common urinary system disorder, with an

incidence rate as high as 14.8% and a recurrence rate of up to 50%.

0.8% to 17.5% of kidney stone patients also suffer from CKD.

Research has found that genes related to renal interstitial fibrosis are

significantly upregulated in patients with kidney stones. Calcium

oxalate (CaOx) crystals can adhere to and aggregate on the renal

tubular epithelial cells, causing damage to the tubular epithelial cells

and endothelial-mesenchymal transition, ultimately leading to renal

fibrosis (204, 205). Research has shown that in mice with high

oxalate urine and oxalate-stimulated HK-2 cells, there is a

significant increase in ROS levels (206), indicating that ferroptosis
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may be involved in the formation of kidney stones. Furthermore,

recent studies have found that CaOx crystals can induce ferroptosis

in renal tubular epithelial cells, leading to damage of the tubular

epithelial cells and kidney injury. Research has found that exposing

renal tubular epithelial cells to various concentrations of CaOx

crystal solution results in a significant increase in the expression of

ferroptosis-related proteins such as p53, ACSL4, transferrin

receptor (TRC), and TF as the concentration of CaOx crystals

increases. Conversely, the expression of ferroptosis-inhibiting

proteins, solute carrier family 7 member 11 (SLC7A11), and

GPX4 decreases relatively. Additionally, due to the stimulation by

CaOx crystals, mitochondrial function is impaired and cannot exert

antioxidant capabilities, leading to the accumulation of ROS within

cells, ultimately inducing ferroptosis. The use of a ferroptosis

inhibitor, Ferrostatin-1, can suppress ferroptosis, thereby

alleviating damage to renal tubular epithelial cells (207).

Furthermore, Song et al (208) found in a cell model of oxalate-

induced kidney stones that CaOx crystals can induce ferroptosis

through autophagy, thereby exacerbating kidney damage. BECN1 is

a molecule that regulates autophagic activity. Experiments have

shown that overexpression of BECN1 significantly increases levels

of malondialdehyde (MDA), Fe2+, and ROS in cells, promoting the

occurrence of ferroptosis induced by CaOx crystals. Nuclear

receptor coactivator 4 (NCOA4) is a widely expressed

intracellular protein that can mediate ferritinophagy to control

the release and storage of iron within cells. Studies have shown

that knocking out the NCOA4 gene inhibits ferritin degradation

and even reverses the effects of BECN1. Other studies have

demonstrated that ferroptosis not only participates in cell damage

caused by kidney stones but also plays a role in the process of kidney

injury repair. Persistent damage to renal tubular epithelial cells can

lead to the accumulation of inflammatory proximal tubular cells.

These inflammatory proximal tubular cells can significantly

downregulate GSH metabolic genes, making cells more prone to

ferroptosis, resulting in repair failure after kidney injury, ultimately

promoting kidney fibrosis and the progression of AKI to CKD

(209). Although ferroptosis is currently believed to be associated

with the progression of kidney fibrosis induced by kidney stones,

the specific mechanisms remain to be further explored.

4.3.2 Ferroptosis and renal hydronephrosis
Renal hydronephrosis refers to the obstruction of urine

drainage from the renal pelvis, leading to an accumulation of

urine and increased pressure within the kidney, resulting in the

dilation of the renal pelvis and calyces, renal parenchymal atrophy,

and a decline in kidney function. Research has found that renal

hydronephrosis not only leads to kidney damage but also induces

renal fibrosis. Moreover, the severity of renal fibrosis is positively

correlated with the severity of renal hydronephrosis (210, 211). At

the same time, research indicates that ferroptosis is involved in the

process of renal fibrosis caused by renal hydronephrosis. Zhang et al

(200) found that in a mouse model of UUO-induced renal

hydronephrosis, renal tubular epithelial cells underwent

ferroptosis. Additionally, in vitro studies suggest that the

ferroptosis inhibitor Lip-1 can alleviate renal fibrosis and
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extracellular matrix deposition. The mechanism may be that Lip-1

inhibits the secretion of pro-fibrotic factors by renal tubular

epithelial cells, ultimately suppressing the activation of fibroblasts

surrounding the renal tubules. Smad3 is a common signaling

protein that can directly promote the expression of pro-fibrotic

genes as a transcription factor. Recent studies have revealed that in

the mouse model of renal hydronephrosis induced by UUO, the

expression of the ferroptosis biomarker GPX4 significantly

decreases, accompanied by abnormal activation of Smad3, thereby

promoting fibrosis. Additionally, quercetin, as an inhibitor of

Smad3 phosphorylation, may inhibit renal interstitial fibrosis in

UUO mice by inhibiting Smad3-mediated ferroptosis (202), further

confirming the close relationship between ferroptosis and renal

fibrosis induced by renal hydronephrosis.

4.3.3 Ferroptosis and CKD
CKD affects 8% to 16% of the global population (212). CKD is

defined as a clinical syndrome caused by various factors,

characterized by a glomerular filtration rate <60 ml·min-1·(1.73

m2)-1, urine protein >30 mg/d, or the presence of kidney damage

markers for more than 3 months. The most common causes are

diabetes and hypertension. Zhou et al. (128) found typical

ferroptosis characteristics in a CKD mouse model, with decreased

expression of GPX4 and increased abundance of 4-HNE. Treatment

with Fer-1, which inhibits ferroptosis, reduced kidney damage and

fibrosis in the mice. In addition, Jin and Chen (142) found that in

diabetic kidney disease, umbelliferone inhibits ferroptosis by

activating the nuclear factor E2-related factor 2 (NRF-2)/heme

oxygenase-1 (HO-1) pathway, significantly improving kidney

damage and reducing ROS generation. In Wang et al.’s study

(213) on a rat CKD model, typical ferroptosis characteristics were

observed in the CKD group, including increased iron content,

oxidative stress, and lipid peroxidation. Further investigation

revealed the upregulation of NCOA4 expression and

downregulation of FTH1 and FTL expression in residual kidney

tissue. Treatment with DFO reversed these phenomena, indicating

that ferroptosis in CKD is associated with iron overload caused by

ferritin autophagy. Moreover, cellular autophagy is closely related to

the progression of CKD to renal fibrosis (214).

CKD is the common outcome of various primary and secondary

kidney diseases, characterized by renal interstitial fibrosis and

progressive decline in kidney function (215). Studies have shown

that the majority of CKD patients experience varying degrees of

iron metabolism and lipid metabolism disorders. Disruptions in

iron metabolism lead to iron deposition in the kidneys, thereby

inducing ferroptosis; disruptions in lipid metabolism result in lipid

deposition in the renal parenchyma, promoting lipid peroxidation,

further inducing ferroptosis (216). Furthermore, iron-mediated

epithelial cell death promotes the secretion of various pro-fibrotic

factors such as TGF-b, CTGF, etc., inducing proliferation and

differentiation of interstitial fibroblasts, ultimately leading to renal

fibrosis. Nait et al. (217) found that the iron chelator deferoxamine

can inhibit pathways such as TGF-b1/Smad3, inflammatory

response, and oxidative stress, thereby alleviating renal fibrosis in

CKD rats. Disruption of iron metabolism and lipid metabolism in
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CKD can lead to ferroptosis, aggravating renal damage. Targeted

therapies focusing on inhibiting ferroptosis may play an important

role in protecting renal function in CKD patients.

The above studies indicate that the progression of CKD is

closely associated with ferroptosis. By inhibiting ferritinophagy to

reduce intracellular free iron levels, thereby suppressing the

occurrence of ferroptosis, may emerge as a therapeutic target

for CKD.

4.3.4 Targeted inhibition of ferroptosis to
alleviate renal fibrosis: key mechanisms

GPX (Glutathione Peroxidase) is a selenoprotein antioxidant

enzyme that converts hydrogen peroxide to water (H2O) using

oxidized GSH as a substrate. GPX consists of 8 members, among

which GPx4 is one of the most important antioxidant enzymes in

mammals, regulating the occurrence and progression of ferroptosis

(218–220). Renal tubular epithelial cells preferentially oxidize fatty

acids as an important energy source (221).

Under normal circumstances, there is a dynamic balance

between fatty acid synthesis and oxidation, preventing

intracellular lipid accumulation. However, blocking fatty acid

oxidation (FAO) in renal tubular epithelial cells can promote

intracellular lipid deposition during the fibrotic process. TGF-b
can reduce FAO and enhance lipid accumulation associated with

renal fibrosis. Research has found that TGF-b1-stimulated renal

tubular epithelial cells exhibit increased lipid peroxidation

associated with renal failure, a process that can be reversed by

GPx4 (153). Leonarduzzi et al. (222) observed that a lack of GPx4

can promote the production of TGF-b1, thereby exacerbating

fibrosis, while upregulation of GPx4 can reverse this change.

Therefore, the deficiency in GPx4 may be involved in the

occurrence and development of renal fibrosis. Conversely,

elevation of GPx4 can weaken the activation of the nuclear factor

kB pathway, thus alleviating renal fibrosis (223). Interleukin-6 is a

pleiotropic cytokine positively correlated with renal fibrosis.

Overexpression of GPx4 in fibroblasts can inhibit ultraviolet A

radiation-induced release of interleukin-6 (224). In renal biopsy

tissue studies of CKD patients and mice models including UUO and

renal ischemia-reperfusion injury, downregulation of GPx4 and

upregulation of 4-hydroxynonenal were observed. This study

demonstrates the potential role and mechanism of ferroptosis in

renal tubular epithelial cell death in renal fibrosis. The above

conclusions all indicate that GPx4 plays a protective role in the

development of renal fibrosis. On the other hand, Lip-1 can inhibit

the downregulation of GPX4 expression, and reduce iron deposition

and lipid peroxidation, thereby inhibiting ferroptosis. Gong et al

(225) found that Erastin promotes the differentiation of fibroblasts

into myofibroblasts by increasing lipid peroxidation and inhibiting

GPx4 expression, while Fer-1 inhibits ferroptosis and fibrosis by

suppressing lipid peroxidation and enhancing GPx4 expression.

The above studies all confirm that GPx4 is a key substance for

targeted inhibition to alleviate ferroptosis and renal fibrosis. This

holds important implications for the specific treatment of renal

fibrosis in the future, but further research is still needed to reveal the

mechanisms of certain key steps in this process.
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In summary, we can observe that in recent years, there has been

a considerable amount of evidence supporting the role of ferroptosis

in renal fibrosis. This article primarily reviews the main signaling

pathways and regulatory factors involved in regulating ferroptosis,

the role of ferroptosis in renal fibrosis, and potential therapeutic

strategies that interfere with ferroptosis in the treatment of renal

fibrosis. While progress has been made, there are still some issues

that need to be addressed, including (1) Ferroptosis is not an

isolated event and appears to be closely related to other forms of

cell death. Besides ferroptosis, necrosis, apoptosis, pyroptosis,

autophagy, and other cell death pathways have also been observed

in renal fibrosis. Do these cell death mechanisms interact with each

other during the fibrosis process? Therefore, studying the potential

antagonistic or synergistic effects of ferroptosis in the context of

kidney disease is necessary; (2) Currently, research on ferroptosis is

based on various disease models, and the impact of ferroptosis on

renal fibrosis under physiological conditions is not yet clear; (3)

Although regulatory factors of ferroptosis such as ROS, GPx4, GSH,

and iron metabolism have been described, they do not constitute

suitable sensitive biomarkers for monitoring ferroptosis. Finding

simple and reliable biomarkers, especially in the context of kidney

disease, remains a challenge; (4) Although the connection between

ferroptosis and AKI has been extensively explored, research on the

relationship between ferroptosis and renal fibrosis as well as CKD

remains limited. Most relevant studies conducted so far have

utilized in vitro cell culture models or animal models of kidney

disease. However, the use of different disease models leads to

variations in research outcomes, posing a challenge for the

translation of research on the relationship between ferroptosis

and renal fibrosis into clinical applications.
4.4 Polycystic kidney disease (PKD) and
urinary tract infections

PKD is an autosomal dominant genetic kidney disease

characterized by the progressive development of cysts in renal

epithelial cells, ultimately leading to end-stage renal disease

(ESRD). Studies have shown that the mRNA, protein content, and

activity levels of antioxidant enzymes such as GPX and superoxide

dismutase are downregulated in PKD, resulting in an exacerbation of

lipid peroxidation reactions, implicating oxidative stress in the

growth of PKD cysts. The Cystic Fibrosis Transmembrane

Conductance Regulator (CFTR), a cAMP-activated ATP-gated

chloride ion channel expressed in the apical membrane of various

epithelial cells, plays a significant role in mediating the efflux of

glutathione (GSH) in renal cell lines. In proximal tubule cells, CFTR-

mediated reactive oxygen species (ROS)-induced cell death has been

observed (226). Simos et al. (227) demonstrated that increased ROS

in the cytoplasm activate transmembrane protein 16F (TMEM16F),

leading to outward chloride ion flux and disruption of membrane

phospholipids. This disruption results in the translocation of

phosphatidylserine from the cytoplasm to the extracellular space,

potentially leading to sustained lipid peroxidation of the membrane

lipids and ultimately cell death, with CFTR playing a synergistic role

in this process. Schreiber et al. (228) found that membrane
Frontiers in Immunology 20
phospholipid peroxidation activates renal TMEM16A, thereby

stimulating CFTR. The ferroptosis inhibitor Fer-1 shows promise

in preventing the growth of renal cysts, with related clinical trials

currently underway. The aforementioned findings suggest that

ferroptosis may be one of the pathogenic mechanisms of PKD, and

inhibitors of ferroptosis offer a new perspective for developing

treatment strategies for PKD (229). Other animal models in

chronic kidney disease (CKD) research also provide functional

evidence of iron exposure in kidney injury. For instance, in

proteinuric CKD rats, restricting iron intake can reduce

proteinuria, glomerular iron deposition, and glomerulosclerosis. In

the unilateral ureteral obstruction (UUO) animal model, the

administration of deferoxamine (DFO) has been shown to alleviate

tubulointerstitial fibrosis. Iron chelators can specifically reduce the

deposition of iron in the lysosomes of proximal tubules (127). Kidney

biopsy specimens from CKD patients reveal the accumulation of iron

in renal tubular epithelial cells and infiltrating macrophages. Iron-

induced cell death, serving as a trigger, may contribute to the

transition from acute kidney injury (AKI) to CKD through

sustained oxidative stress and mitochondrial dysfunction. While

the kidneys have the function of secreting erythropoietin (EPO),

many CKD patients exhibit reduced EPO secretion, leading to a

situation where anemia and iron deficiency coexist. Therefore, simply

reducing iron exposure is not an effective method for managing CKD,

and maintaining iron balance should be approached cautiously.

Urinary tract infection is one of the most common infections in

the community and healthcare systems (230), with over 25% of

urinary tract infections recurring, leading to the persistence of drug-

resistant strains (231). Research indicates that uropathogenic E. coli

(UPEC) infecting bladder epithelial cells can activate ferritinophagy

when treated with ammonium ferric citrate, leading to the

prolonged presence of UPEC in bladder epithelial cells. This

increases the risk of recurrent infections and reinfections. In

addition to activating ferritinophagy, treatment with ferric

ammonium citrate also promotes host bladder epithelial cell

death. Knocking out NCOA4 to inhibit ferritinophagy reduces

bacterial load and decreases bladder epithelial cell death. Further

research reveals that this type of cell death is neither apoptosis nor

necrosis but a form of cell death induced by iron overload.

However, the authors did not perform specific tests to

characterize the phenotype of ferroptosis (232). In conclusion, the

persistent presence of UPEC in bladder epithelial cells involves

ferritinophagy, which promotes bladder epithelial cell death,

exacerbating the severity of urinary tract infections. By inhibiting

ferritinophagy and reducing iron content within bladder epithelial

cells, it may serve as a potential therapeutic target to control UPEC

proliferation. This could provide a theoretical basis for preventing

recurrent urinary tract infections and reinfections.
4.5 The molecular mechanisms of
ferroptosis involvement in renal
cell carcinoma

Renal cell carcinoma, abbreviated as RCC, is the most common

malignant tumor of the kidney, accounting for 85% to 90% of renal
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malignant tumors. It can be classified into different subtypes based on

pathology, including clear cell carcinoma, chromophobe carcinoma,

renal papillary cell carcinoma, medullary carcinoma, and

undifferentiated carcinoma (233). According to epidemiological

data, the incidence of renal cell carcinoma is second only to

bladder tumors and shows an increasing trend year by year (234).

The primary treatment methods for renal cell carcinoma include

surgical intervention, as well as radiation therapy and chemotherapy.

Although there have been some advances in the treatment of renal

cell carcinoma in recent years, the prognosis remains suboptimal.

Hence, there is an urgent need to explore new targets for its

treatment. Numerous studies indicate that inducing ferroptosis in

cells may be a novel direction for the treatment of renal cell

carcinoma. Yang et al. (235) tested the sensitivity of 117 cancer cell

lines to Erastin-induced ferroptosis and found that diffuse large B-cell

lymphoma and clear cell renal cell carcinoma (ccRCC) were

particularly sensitive to GPX4-regulated ferroptosis. Zou et al. (236)

found that GPX4 inhibitors exhibited strong cytotoxicity against

ccRCC, with the reduction of GPX4 being a key factor in the

occurrence of ferroptosis. Their further investigation revealed that

in renal cancer cells, high expression of the hypoxia-inducible factor

(HIF) pathway’s hypoxia-inducible factor 2a enhances the sensitivity

of ccRCC to ferroptosis by enriching unsaturated fatty acids through

hilpda. The von Hippel-Lindau (VHL) gene acts as a major tumor

suppressor in ccRCC. Miess et al. (237) discovered that exogenous

overexpression of the VHL gene within cells can reduce intracellular

lipid peroxides, thereby inhibiting the occurrence of ferroptosis. This

study confirmed that VHL is an important gene in regulating

ferroptosis sensitivity in ccRCC, demonstrating that VHL-induced

ferroptosis could be a potential target for treating ccRCC. Mou et al.

(238) used bioinformatics methods to discover that the expression of

nuclear receptor coactivator 4 (NCOA4) is reduced in ccRCC and is

associated with a poor prognosis in ccRCC patients. NCOA4 is

closely linked to iron transport, and its decrease leads to a reduced

sensitivity of tumor cells to ferroptosis. Therefore, promoting

ferroptosis through targeting NCOA4 may be an effective method

for treating ccRCC. However, this conclusion is solely based on

bioinformatics analysis and may not be entirely reliable. Further

experimental validation is needed to confirm its effectiveness.

Artesunate (ART) is a chemical compound derived from the

natural plant Artemisia annua, which has been shown to exhibit

anti-tumor effects in various types of cancer (239). Markowitsch et al.

found that ART can induce ferroptosis in drug-resistant kidney

cancer cells, significantly inhibiting the progression of kidney

cancer cells. This suggests that ART holds promise as an effective

new drug for treating patients with drug-resistant renal cell

carcinoma, addressing the issue of drug resistance in renal

cancer (240).

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an

autosomal dominant inherited disease that originates from germ-

line mutations in the fumarate hydratase (FH) gene. It has a low

incidence rate and is often solitary, but most cases present with

metastasis at the time of diagnosis, with a median survival rate of 24

months (241). Despite some progress in understanding its

pathogenesis, the primary treatment remains surgery, with

relatively poor treatment outcomes. Therefore, the search for
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better treatment methods is crucial for extending the survival of

patients. Michael et al. (242) found in their research that in

hereditary leiomyomatosis and renal cell cancer cells, due to the

inactivation of FH, GPX4 is succinated, leading to a decrease in its

activity. Additionally, the activity of nuclear factor E2-related factor

2 (NRF2) increases, thereby preventing ferroptosis. Researchers

suggest that future studies could explore NRF2 activity inhibitors

applicable to humans or develop inhibitors targeting succinated

GPX4 to induce ferroptosis in hereditary leiomyomatosis and renal

cell cancer cells. This approach could lead to better treatment

options for this disease and potentially open up new avenues for

the precision treatment of renal cell cancer.

4.5.1 The roles of iron metabolism and lipid
metabolism in the progression of renal
cell carcinoma

Iron accumulation is a main source of ROS, a crucial factor in

ferroptosis. Increasing research indicates a close association between

iron accumulation and the development of renal cell carcinoma,

particularly ccRCC. Proteins involved in iron metabolism include

ferritin light chain (FTL), ferritin heavy chain (FTH1), ferroportin

(FPN), transferrin receptor 1 (TfR1) for iron uptake, and iron

regulatory proteins 1 and 2 (IRP1/2) (243). Schnetz et al. found

that genes related to iron metabolism are significantly upregulated in

renal cell carcinoma tissues, especially in ccRCC tissues (243). In

ccRCC tissues, the expression of FTL, FTH1, TfR1, and IRP1/2

proteins are upregulated, while the expression of FPN protein is

downregulated, showing a phenotype of iron retention where iron

accumulates within cancer cells. However, this iron accumulation

does not trigger iron-induced cell death; instead, it promotes the

development of renal cell carcinoma. FTH1 possesses ferroxidase

activity, converting Fe2+ to Fe3+, which, upon binding with FTL,

effectively reduces the toxicity of intracellular Fe2+, thus preventing

cellular ferroptosis (244). Nuclear receptor coactivator 4 (NCOA4) is

a component of the autophagosome involved in the process of

ferritinophagy, the selective autophagy of ferritin proteins (245).

Mou et al. analyzed the Cancer Genome Atlas (TCGA) database

and found that NCOA4, a gene related to ferritinophagy, is closely

associated with the malignancy and TNM staging of renal cell

carcinoma (238). Research indicates that NCOA4 acts as a receptor

for autophagy-related proteins 5 (ATG5) and 7(ATG7). The

interaction between NCOA4 and ATG5/ATG7 promotes

ferritinophagy, leading to a reduction in cellular ferritin levels, an

increase in labile iron pools within cells, and ultimately triggering

iron-dependent cell death in cancer cells. This indicates that the

ATG5-ATG7-NCOA4 autophagy pathway may be a novel

therapeutic target for treating renal cell carcinoma (92).

Lipid peroxidation is one of the main features of iron-

dependent cell death, driving cells toward iron-induced death.

However, ccRCC cells contain abundant lipid droplets but do not

trigger iron-dependent cell death. The proportions of lipid

components in lipid droplets vary, with PUFAs, particularly

arachidonic acid and docosahexaenoic acid, playing important

roles in the process of iron-dependent cell death (246). In ccRCC

tissues, hypoxia-inducible factor2a (HIF-2a) can selectively enrich

PUFAs through the mediation of lipid droplet-associated protein
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(HILPDA). ccRCC cells are not only more sensitive to iron-

dependent cell death compared to normal kidney cells but also

exhibit higher levels of PUFAs as the stage of ccRCC advances. The

HIF-2a-HILPDA axis holds promise as a new therapeutic pathway

for advanced kidney cancer. In certain ccRCC cells (such as FR1 and

FR2 cells in the 786-O series), even with an increase in PUFA

content, they do not exhibit increased sensitivity to iron-dependent

cell death. Zou et al. (246) discovered that polyunsaturated ether

phospholipids (PUFAePLs) can promote the evasion of iron-

dependent cell death and increase sensitivity. The synthesis of

PUFA-ePLs is associated with enzymes such as alkylglycerone

phosphate synthase (AGPS) located in peroxisomes, fatty acyl-

CoA reductase 1 (FAR1), glyceronephosphate O-acyltransferase

(GNPAT), 1-acyl-sn-glycerol-3-phosphate acyltransferase 3

(AGPAT3) in the endoplasmic reticulum, and plasmalogen

biosynthesis enzyme phytanoyl-CoA dihydroxyacetone phosphate

acyltransferase (PEDS1). FR1 and FR2 cells can reduce PUFAePL

levels by spontaneously downregulating AGPS, thereby decreasing

cancer cell sensitivity to iron-dependent cell death, promoting

cancer cell proliferation, and metastasis. Therefore, regulating

cancer cell sensitivity to iron-dependent cell death by modulating

AGPS expression can serve as a therapeutic strategy for treating

iron-death-insensitive cancer cells. The transcription factor Nuclear

factor erythroid 2–related factor 2 (Nrf2) is closely associated with

iron-dependent cell death and is a member of the solute carrier

family 7 member 11 (SLC7A11). It is also an upstream regulator of

GPX4 and a key regulatory factor in cellular antioxidant responses.

Nrf2 can protect cells from damage caused by lipid peroxidation

products such as 4-hydroxynonenal and acrolein, thereby inhibiting

iron-dependent cell death. Studies have indicated that the

expression of Nrf2 and its pathway is associated with the staging

and grading of kidney cancer, as well as resistance to targeted

therapies and poor prognoses (247, 248). Therefore, Nrf2 could

serve as a potential target for the treatment of advanced kidney

cancer in the future. However, research on Nrf2 inhibitors,

particularly in the context of kidney cancer, is currently limited.

Currently discovered Nrf2 inhibitors include chlorobutanol in lung

cancer research and berberine in head and neck cancer research.

Both compounds can enhance tumor cell sensitivity to ferroptosis

(249, 250). Further research is needed to determine whether the

application of chlorobutanol or berberine in kidney cancer yields

similar effects as seen in lung cancer and head and neck

cancer, respectively.

4.5.2 The role of the System Xc
- GSH-GPX4 axis

in the progression of kidney cancer
The System Xc

- transports extracellular cystine into the cell and

transports intracellular glutamate out of the cell to further GSH.

GPX4 utilizes GSH to neutralize lipid peroxidation caused by ROS,

thereby inhibiting ferroptosis in cells. Xu et al. (251) found that

compared to normal kidney tissue, SLC7A11 is highly expressed in

renal cancer tissue and inhibits ferroptosis by promoting GPX4

expression, thus promoting renal cancer cell proliferation,

migration, and invasion. This indicates that SLC7A11 is one of

the therapeutic targets for preventing the progression of renal
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cancer to metastatic renal cancer. GSH, as an essential

intracellular antioxidant, can neutralize lipid peroxidation

products. Gamma-glutamyltransferase 1 (GGT1) catalyzes the

breakdown of extracellular GSH, providing cysteine for the

generation of intracellular GSH, and is a component of the GSH

recovery pathway. Bansal et al. (252) found that GGT1 levels are

significantly increased in ccRCC cell lines (786-O and RCC10), and

GGT1 can promote GSH synthesis, preventing ferroptosis caused

by lipid peroxidation in tumor cells, thereby promoting tumor cell

proliferation and metastasis. Studies have shown that the GGT1

inhibitor OU749 has minimal adverse effects and good efficacy,

making it a promising new approach for treating ccRCC (253).

Kruppel-like factor 2 (KLF2) is a member of the Kruppel-like factor

family of transcription factors, characterized by a DNA-binding

domain containing zinc fingers. Recent studies have found that

KLF2 is involved in the development and progression of various

cancers such as liver cancer, and kidney cancer, among others (254,

255). The downregulation of KLF2 expression is significantly

correlated with the TNM staging of ccRCC, and ccRCC patients

with low expression of KLF2 have significantly shorter overall

survival and metastasis-free survival periods. In the study, a

mouse model of ccRCC lung metastasis was developed, and it was

found that compared to the low-expression group of KLF2, the

group with KLF2 overexpression had smaller and significantly fewer

lung metastatic nodules. Further research has revealed that KLF2

can bind to the promoter of GPX4 in ccRCC, leading to the

downregulation of GPX4 expression, which protects ccRCC cells

from ferroptosis, thus promoting tumor cell metastasis (255).

Therefore, the System Xc
-GSH-GPX4 axis plays a crucial role in

the progression of renal cancer and may represent a novel strategy

for utilizing ferroptosis therapy in advanced renal cancer and even

drug-resistant renal cancer in the future.

4.5.3 The role of ferroptosis in the treatment of
renal cancer

Ferroptosis is an emerging cancer suppression strategy, and

identifying renal cancer patients who are sensitive to ferroptosis

inducers quickly remains a challenging issue. 18F-TRX-PET can be

used to predict the sensitivity of tumors to iron-targeted therapy,

but its high cost limits its clinical applicability (256). In situ

detection technology can assess the sensitivity of tumor tissues to

ferroptosis. This technology involves using a high-power laser to

induce local PUFA acyl chains in cell or tissue samples, generating

lipid peroxidation, and demonstrating the sensitivity of cells or

tissues to ferroptosis inducers on-site (257). Therefore, in situ

detection is a cost-effective and convenient imaging technology

that holds the promise of rapidly categorizing the sensitivity of

cancer patients to ferroptosis. It could accelerate the development of

targeted cancer therapies focusing on ferroptosis.

(1) Ferroptosis and immunotherapy in ccRCC

As the mechanism of ferroptosis continues to be elucidated, an

increasing body of research suggests a close association between

ferroptosis and the tumor microenvironment. NCOA4 is an

autophagic component involved in the autophagic process of iron

proteins FTH1 and FTL, capable of degrading iron proteins,
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releasing ferrous iron, and promoting cell ferroptosis. However,

NCOA4 is generally underexpressed in ccRCC tissues. HU et al

(258) discovered through the TCGA database that iron metabolism-

related proteins FTH1 and FTL are upregulated in most solid tumor

tissues. These proteins are associated with regulating T cells (Tregs)

and tumor-associated macrophages (TAMs), especially M2

macrophages’ infiltration. Iron derived from M2 macrophages in

TAMs can be exported through ferroportin (FPN) and secreted in

the form of the iron carrier protein lipocalin-2 (LCN-2). This allows

the transfer of iron to ccRCC cells, thereby promoting ccRCC cell

proliferation. This correlation is positively associated with poor

prognosis in patients. Treg cells are a major factor in creating an

immunosuppressive tumor microenvironment. Infiltration of Treg

cells in tumors is associated with higher pathological staging and

poor prognosis in patients with ccRCC (259). Therefore, NCOA4 is

a key molecule linking ferroptosis and immunotherapy. Studies

indicate that the ferroptosis-related gene CARS is a potential

immune-infiltration-related regulator of ferroptosis. Its high

expression suggests a poor prognosis for patients and is positively

correlated with PD-L1 expression in ccRCC. This indicates that

CARS could be a potential target for immunotherapy in ccRCC

(260). The above research indicates that iron metabolism and

related genes in ferroptosis could serve as a point of entry for

immunotherapy in ccRCC.

(2) Targeted therapy for ferroptosis in ccRCC

Targeted therapy is a frontline treatment for ccRCC with good

clinical outcomes. However, with the continuous use of targeted

drugs, some patients exhibit resistance. Ferroptosis, as a newly

discovered modulated form of cell death, plays a significant role in

the development and progression of kidney cancer. Previous studies

have often highlighted the close relationship between ferroptosis

and iron metabolism disturbance. However, recent research shows

that zinc plays a role similar to iron in the process of ferroptosis

(261). Zinc is transported between organelles and the cytoplasm

through transport proteins in the SLC39 family (ZIP) or the SLC30

family (ZNT). Among these, ZIP7 participates in cell ferroptosis

along with zinc. Lowering ZIP7 expression enables RCC4 cells to

resist erastin-induced ferroptosis, but this protective effect can be

eliminated by supplementing ZnCl2. This suggests that ZIP7 could

serve as a potential therapeutic target in ccRCC (261). ccRCC

tumors contain various subcellular lineages that exhibit different

sensitivities to ferroptosis. How to enhance the sensitivity of these

different cell lineages to ferroptosis, thereby improving the efficacy

of ferroptosis inducers, remains a question that needs to be

addressed. Research indicates that the susceptibility to ferroptosis

is greatly influenced by cell density and fusogenicity. Cell density

affects the sensitivity of cells to ferroptosis through the Hippo

pathway. Further studies have revealed two compensatory

downstream molecular pathways within the Hippo pathway: the

Yes-associated protein (YAP) - S-phase kinase-associated protein 2

(SKP2) pathway and the WW domain-containing transcription

regulator 1 (TAZ) - ERM protein 1 (EMP1) - NADPH oxidase 4

(NOX4) pathway. In renal cancer cells, the TAZ pathway is

predominant (262). NOX4 can generate and accumulate

superoxide and hydrogen peroxide, thereby promoting lipid

peroxidation and the onset of ferroptosis. Upregulation of SKP2
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can facilitate the expression of mRNA for serine/threonine kinases

and transferrin receptors, thereby contributing to ferroptosis (263).

It can be seen It is evident that the Hippo pathway mainly regulates

ferroptosis through the involvement of SKP2 and NOX4, providing

new insights for the treatment of ccRCC.

(3) Nanotherapy for ferroptosis in ccRCC

With the advancement of materials science, an increasing

number of studies have found that nanoparticles can induce

ferroptosis in various tumor cells including lung cancer, breast

cancer, liver cancer, and others (264). Nanoparticles exhibit

advantages such as improved solubility of small molecule

ferroptosis inducers, enhanced targeting specificity, lower

systemic toxicity, controllable drug release, and synergistic effects

with emerging therapies. Nanoparticles have broad prospects in

tumor treatment (265). A recent study discovered that using a

peptide-modified iron oxide (Fe3O4) nanoformulation of 1 H-

perfluorobutane (1 H-PFP) called GBP@Fe3O4 can trigger

thermally induced ferroptosis in 786-O cells. Under 808 nm laser

irradiation, localized moderate heat (45°C) triggered the liquid-gas

transition of 1H-PFP, leading to the rapid release of Fe3O4

nanoparticles. This process generates a significant amount of ROS

through the Fenton reaction in the tumor microenvironment.

Meanwhile, heat stress reduces GSH synthesis, inhibiting the

antioxidant response of tumor cells, and further exacerbating the

damage caused by ROS. Simultaneously, tumor cells undergo lipid

metabolism reprogramming, producing a large amount of lipid

peroxides, ultimately leading to tumor-specific ferroptosis (266).

This demonstrates that nanotechnology holds great promise as a

potential treatment modality for ccRCC in the future. However, it

currently remains in the early stages of basic research, with limited

clinical studies and a need for further safety validation. In

conclusion, the main mechanisms involved in ferroptosis—iron

metabolism, lipid peroxidation, and the System Xc
- GSH-GPX4

axis-are closely related to the progression of kidney cancer. They

play vital roles in immunotherapy, targeted therapy, and potentially

impactful nanotherapy for advanced kidney cancer. However, it

remains unclear how ferroptosis regulates immune cell infiltration

in the tumor microenvironment of kidney cancer and how it

promotes the transition of M2 macrophages to M1 macrophages.

Currently, ferroptosis inducers are still at the stage of cell and

animal research due to their low solubility, weak targeting

capabilities, and high systemic toxicity in vivo. With the

advancement of nanotechnology, combining ferroptosis inducers

with nanoparticles may help overcome the limitations of the

inducers. However, there is limited research on their clinical

application, and further investigation is required.
5 Prospects

Ferroptosis is a regulated form of cell death characterized by

iron-catalyzed lipid peroxidation and can be modulated through

various mechanisms. Extensive research has shown that ferroptosis

plays a significant role in various cardiovascular diseases,

degenerative diseases, and tumors, indicating the broad prospects

for studying ferroptosis in CKD. In the regulation of ferroptosis
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through epigenetic modifications, only a few microRNAs are

currently known to regulate the occurrence of ferroptosis. The

role of other non-coding RNAs in this regulation remains

unexplored. Current research on ferroptosis and kidney disease

primarily focuses on acute and chronic renal conditions,

particularly in the context of how ferroptosis contributes to the

pathological processes of CKD such as interstitial fibrosis,

mitochondrial dysfunction, inflammation, tubular cell

regeneration, and other cellular processes. Ferroptosis may serve

as a driver in converting maladaptive renal responses into CKD and

represents a promising therapeutic target to halt disease

progression. In the future, it will still be necessary to research

specific biomarkers to identify ferroptosis in vivo, especially in the

context of kidney disease pathology and its interaction with other

modes of programmed cell death. As demonstrated in a recent

study (267), metformin induces ferroptosis-mediated programmed

cell death, exacerbating kidney damage. Neutrophils were identified

as a significant trigger for metformin-induced renal toxicity.

Specifically, the protein NGAL, in conjunction with iron and

metformin, forms complexes that drive neutrophil infiltration

into the kidneys, ultimately leading to NETosis and worsening

AKI. In the future, concerning the research of ferroptosis inhibitors,

current inhibitor studies are predominantly focused on animal

research. Compounds like ferrostatin-1 and liproxstatin-1 have

shown promising results in animal models, but further research is

essential to ensure their safety and feasibility for human use. Due to

the lack of clinical studies on some drugs, the efficacy of ferroptosis

inhibitors in a clinical setting remains undetermined. Although

some drugs have been used in clinical settings, several issues still

need to be addressed in the future. For instance, paricalcitol

regulates the antioxidant function of GPX4 by activating the

vitamin D receptor, thereby inhibiting cisplatin-induced AKI

(268). Iron chelators deferoxamine can alleviate ferroptosis and

fibrosis in CKD rats (199). Antioxidants like vitamin E and

melatonin also face similar challenges. Therefore, although

numerous small molecule drugs have been discovered for

inducing and inhibiting ferroptosis, these drugs have not yet been

translated into clinical applications to benefit patients. We believe

that future research can focus on the following aspects: 1) Further

elucidating the mechanism of ferroptosis and identifying more

regulators targeting crucial points of ferroptosis. 2) Continuing to
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investigate the relationship between ferroptosis regulation and

kidney-related diseases, studying the role of ferroptosis in CKD.

3) Exploring the role of epigenetic modifications in mediating

ferroptosis regulation. 4) Translating currently available small

molecule drugs for regulating ferroptosis into clinical use. This

review elaborates on the mechanism of ferroptosis and its research

progress in kidney-related diseases, providing a solid foundation for

the treatment, diagnosis, and related research of kidney-

related diseases.
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